

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202303682

Charge Self-Regulation of Metallic Heterostructure Ni₂P@Co₉S₈ for Alkaline Water Electrolysis with Ultralow Overpotential at Large Current Density

Xingxing Zhu, Xue Yao, Xingyou Lang, Jie Liu, Chandra-Veer Singh*, Erhong Song*, Yongfu Zhu* and Qing Jiang*

Supporting Information

for

Charge Self-regulation of Metallic Heterostructure Ni₂P@Co₉S₈ for Alkaline Water Electrolysis with Ultralow Overpotential at Large Current Density

Xingxing Zhu[#], Xue Yao[#], Xingyou Lang, Jie Liu, Chandra-Veer Singh^{*}, Erhong Song^{*}, Yongfu Zhu^{*}, Qing Jiang^{*}

X. Zhu, Prof. X. Lang, Prof. Y. Zhu, Prof. Q. Jiang

Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China

E-mail: yfzhu@jlu.edu.cn

E-mail: jiangq@jlu.edu.cn

Prof. J. Liu, Prof. E. Song

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai

Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

Prof. E. Song

Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing, 100049, China

E-mail: ehsong@mail.sic.ac.cn;

Dr. X. Yao, Prof. C.-V. Singh

Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada

Email: chandraveer.singh@utoronto.ca

Prof. C.-V. Singh

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto,

ON M5S 3G8, Canada

[#]These authors contributed equally

*Corresponding authors



Figure S1 FESEM observation of (a) Ni_2P and (b) Co_9S_8 .

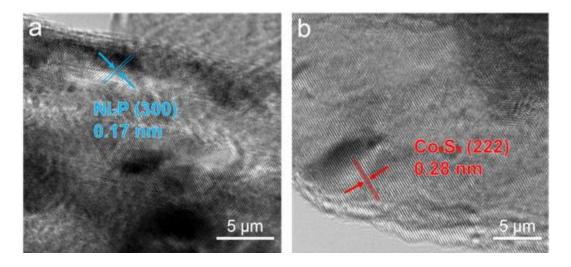


Figure S2 HR-TEM observation of (a) Ni_2P and (b) Co_9S_8 .

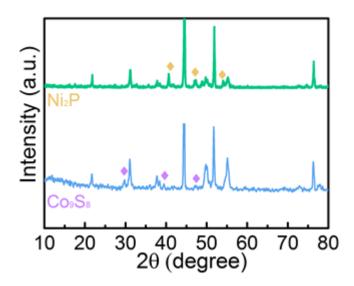


Figure S3 XRD patterns of Ni₂P and Co₉S₈.

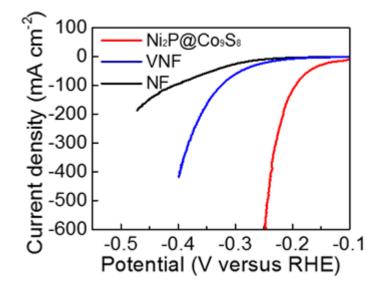


Figure S4 LSV curves of Ni₂P@Co₉S₈, VNF and NF for HER.

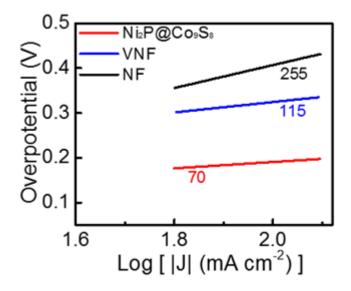


Figure S5 Tafel slopes of Ni₂P@Co₉S₈, VNF and NF for HER.

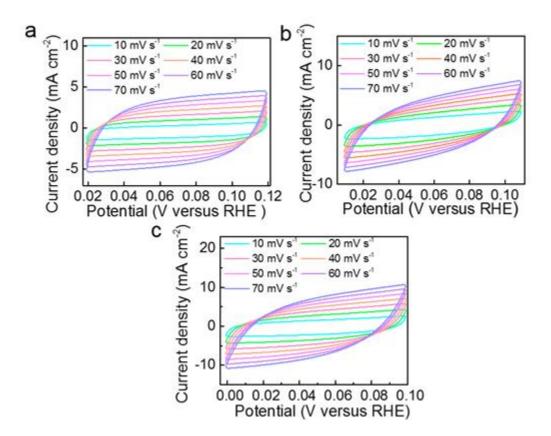


Figure S6 CV curves of (a) Ni₂P, (b) Co₉S₈ and (c) Ni₂P@Co₉S₈ for HER.

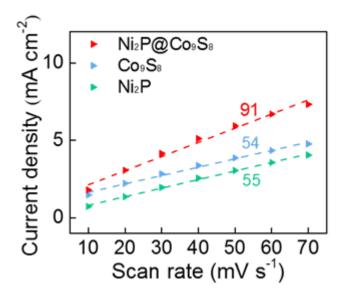


Figure S7 Plots used to evaluate the double-layer capacitances of Ni₂P, Co₉S₈ and

Ni₂P@Co₉S₈ for HER.

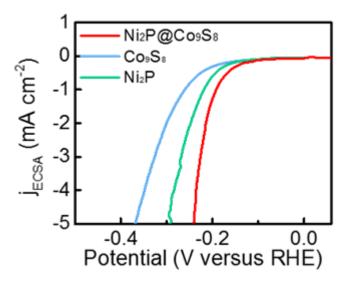


Figure S8 Polarization curves with the current density normalized to ECSA of Ni₂P,

Co₉S₈ and Ni₂P@Co₉S₈ for HER.

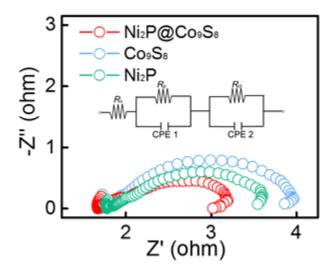
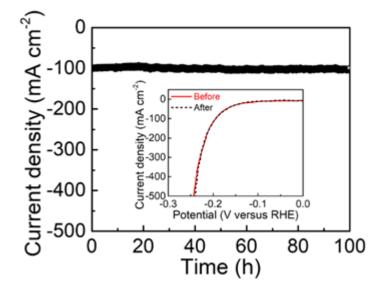



Figure S9 Nyquist plots of Ni₂P, Co₉S₈ and Ni₂P@Co₉S₈ for HER.

Figure S10 The long-time current density vs time curve (*i*-*t* curve) of $Ni_2P@Co_9S_8$ at

the potential of -0.188 V versus RHE, and the inset shows the polarization data for

Ni₂P@Co₉S₈ before and after 100 h.

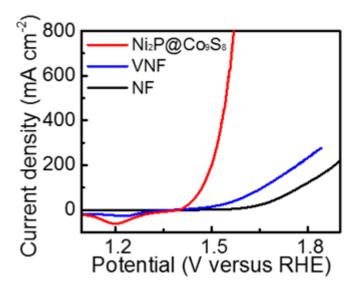


Figure S11 Polarization curves of Ni₂P@Co₉S₈, VNF and NF for OER.

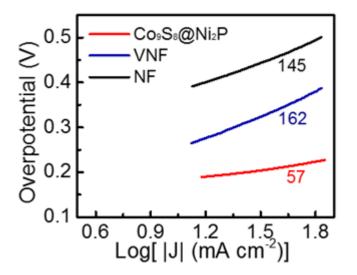


Figure S12 Tafel slopes of Ni₂P@Co₉S₈, VNF and NF for OER.

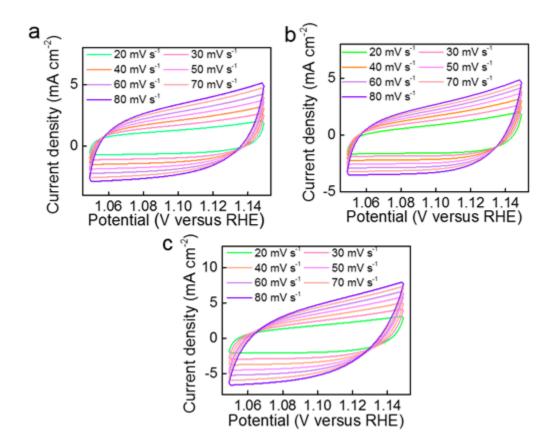


Figure S13 CV curves of (a) Ni₂P, (b) Co₉S₈ and (c) Ni₂P@Co₉S₈ for OER.

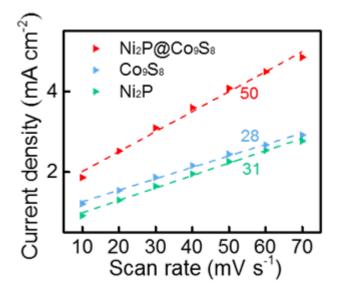


Figure S14 Plots used to evaluate the double-layer capacitances of Ni₂P, Co₉S₈ and

Ni₂P@Co₉S₈ for OER.

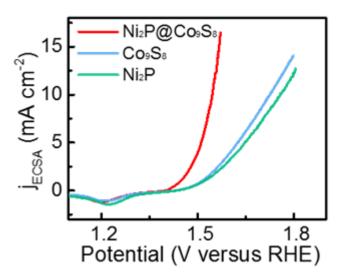


Figure S15 Polarization curves with the current density normalized to ECSA of Ni₂P,

Co₉S₈ and Ni₂P@Co₉S₈ for OER.

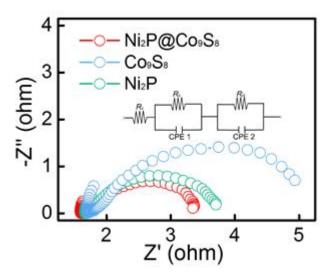


Figure S16 Nyquist plots of Ni₂P, Co₉S₈ and Ni₂P@Co₉S₈ for OER.

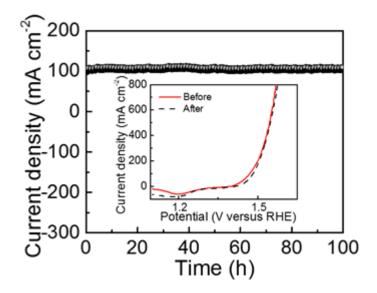
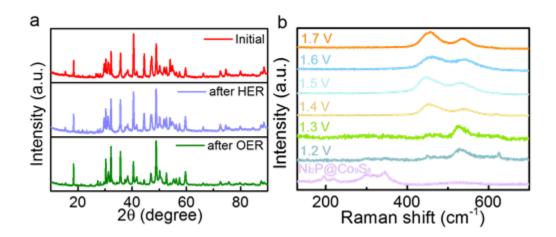



Figure S17 The *i-t* curve of Ni₂P@Co₉S₈ at the potential of 1.485 V versus RHE, and

the inset shows the polarization data for Ni₂P@Co₉S₈ before and after 100 h.

Figure S18 (a) XRD patterns of Ni₂P@Co₉S₈ before and after HER and OER reactions; (b) In situ Raman spectra of OER on Ni₂P@Co₉S₈ in 1 M KOH.

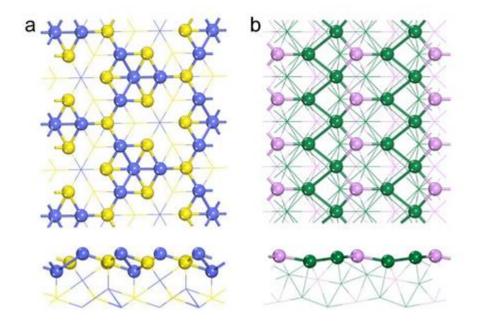


Figure S19 Optimized structures of (a) $Co_9S_8(111)$ and (b) $Ni_2P(100)$. The top layers are displayed in the ball-stick style while others are in the line style.

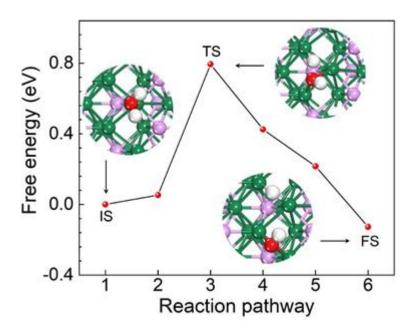


Figure S20 The energy barrier and reaction pathway of water dissociation on Ni₂P,

including the corresponding configurations of IS, TS and FS.

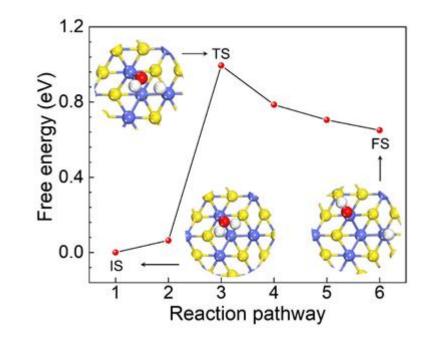


Figure S21 The energy barrier and reaction pathway of water dissociation on Co_9S_8 ,

including the corresponding configurations of IS, TS and FS.

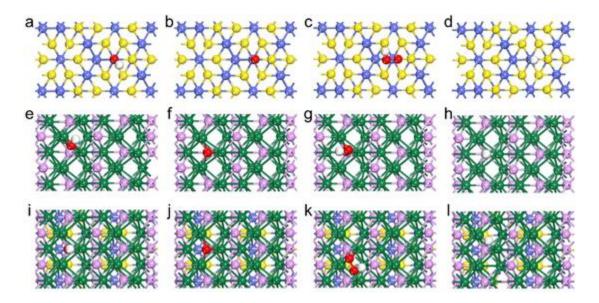


Figure S22 Top views of *OH, *O, *OOH and *H on (a-d) Co₉S₈, (e-h) Ni₂P and (i-l)

 $Ni_2P@Co_9S_{8.}$



Figure S23 Bader charge analyses of (a) $Ni_2P@Co_9S_8$ and (b) Ni_2P including the

Bader charge values of surface active Ni sites.

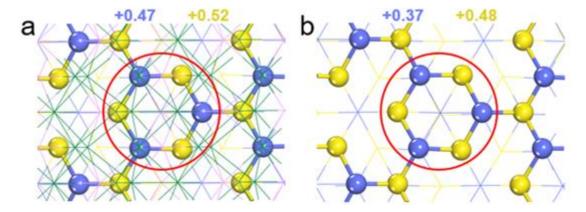


Figure S24 Bader charge analysis of topmost Co and S atoms in (a) Ni₂P@Co₉S₈ and (b) Co₉S₈. Target Co and S atoms are shown by red circles, and blue and yellow numbers are the average Bader charge values of three target Co and S atoms, respectively.

Catalyst	$C_{\rm dl}$ (mF cm ⁻²)	RF
Ni ₂ P@Co ₉ S ₈	91	2275
Co_9S_8	54	1350
Ni ₂ P	55	1375

Table S1 Calculated double layer capacitance and corresponding RF values (HER).

Table S2 R_{ct} values of Ni ₂ P@Co ₉ S ₈ , Co ₉ S ₈ and Ni ₂ P for HER.		
Catalyst $R_{\rm ct}(\Omega)$		
Ni ₂ P@Co ₉ S ₈	2.79	
Co_9S_8	3.52	
Ni ₂ P	3.85	

 Table S3 Calculated double layer capacitance and corresponding RF values (OER).

Catalyst	$C_{\rm dl}({\rm mF}{\rm cm}^{-2})$	RF
Ni ₂ P@Co ₉ S ₈	50	1250
Co ₉ S ₈	28	700
Ni ₂ P	31	775

Table S4 R_{ct} values of Ni₂P@Co₉S₈, Co₉S₈ and Ni₂P for OER.

Catalyst	$R_{ m ct}\left(\Omega ight)$
Ni ₂ P@Co ₉ S ₈	2.51
Co_9S_8	3.06
Ni ₂ P	2.76

Catalyst	Tafel	$\eta ({ m mV}) @ 100$	Reference
	$(mV dec^{-1})$	mA cm ⁻²	
Ni ₂ P@Co ₉ S ₈	70	188	This work
c-NiP ₂ /m-NiP ₂	67	200	Angew. Chem. Int. Ec 2021 , 60, 259
Ni ₂ P/MoS ₂	60.2	260	Adv. Funct. Mater 2019 , 29, 1809151
ZnP@Ni ₂ P-NiSe ₂	82	214	Adv. Funct. Mate 2022 , 32, 2113224
Ni5P4-Ni2P NS	79.1	200	Angew. Chem. Int. Ed 2015 , 54, 8188-8192
1T _{0.81} -MoS ₂ @Ni ₂ P	79	292	Nat. Commun. 202. 12, 5260
NiCu@C	95	247	J. Am. Chem. Soc 2018 , 140, 610-617
Ni ₅ Co ₃ Mo-OH	59	250	ACS Energy Let 2019 , 4, 952-959
Ni -ZIF/NiB	101	280	Adv. Energy Mate 2020, 10, 1902714
Mo-Co ₉ S ₈ @C	68	320	Adv. Energy Mate 2020 , 10, 1903137
PBA@Co(OH) ₂	100	260	Adv. Energy Mate 2019 , 9, 1802939
NiFeSe	49	230	Adv. Energy Mate 2019, 9, 1802983
Ni-Mo-N/CFC	70	250	Nat. Commun. 201 10, 5335
Co-Ni ₃ N/CC	185	~256	Adv. Mater. 2018 , 3 e1705516
FeNiP-NPHC	102	182	Adv. Funct. Mate 2022 , 32, 2205767
Co _{0.42} Fe _{0.58} P@C	66.6	181(10)	Adv. Energy Mate 2022, 12, 2202394

Table S5 Comparison of overpotentials at 100 mA cm⁻² and Tafel slopes of differentheterogeneous electrocatalysts recently reported for HER in 1.0 M KOH solution

Catalyst	Tafel	η (mV) @ 100	Reference
	$(mV dec^{-1})$	mA cm ⁻²	
Ni ₂ P@Co ₉ S ₈	57	253	This work
MoS2/Co9S8/Ni3S2/Ni	58	420	J. Am. Chem. Soc 2019 , 141, 10417 10430
Co ₃ O ₄ -NP/N-rGO	62	380	Adv. Energy Mater 2018 8, 1702222
CoFe ₂ O ₄ @N-CNFs	80	349	Adv. Sci. 2017 , 4 1700226
CF/VGSs/MoS	113	450	Nat. Commun. 2021 12, 1380
Co-MoS ₂ /BCCF-21	85	370	Adv. Mater. 2018 , 30 1801450
Ni ₂ P-NiSe ₂	71	326	Adv. Funct. Mater 2022 , 32, 2113224
Fe-Ni ₂ P@Cu _x S	59	390	ACS Energy Lett 2019 , 4, 952-959
S-(Ni,Fe)OOH	48.9	281	Energy Environ. Sci 2020 , 13, 3439-3446
W _{0.5} Co _{0.4} Fe _{0.1} /NF	310	42	Angew. Chem. Int. Ed 2017 , 56, 4502-4506
2D/1D FeNi LDH/MOF	37.1	272	Adv. Funct. Mater 2021 , 31, 2103318
Fe ₂ Ni-BPTC/CC	42	365	Angew. Chem. Int. Ed 2018 , 57, 9660
(CrMnFeCoNi)S _x	66	295	Adv. Energy Mater 2021, 11, 2002887
CoMoNiS-NF-31	53	260	J. Am. Chem. Soc. 2019 , 141, 10417 10430.
MoOx/Ni ₃ S ₂	72	310	Adv. Funct. Mater 2016 , 26, 4839.
(Fe,Co)OOH/MI	73	290	Adv. Mater. 2022 , 34 2200270
CoNiFeCu	43.5	292	Adv. Mater. 2022 , 34 2109108
MoS2/NiFe LDH MoNiFe	23	290	Nat. Commun. 2022 13, 2191

Table S6 Comparison of overpotentials at 100 mA cm⁻² and Tafel slopes of different heterogeneous electrocatalysts recently reported for OER in 1.0 M KOH solution

CoNiRu-NT	67	335	Adv. Mater. 2022, 34,
			2107488
FeCoNiMnRu/CNF	61.3	308	Nat. Commun. 2022,
			13, 2662
Mn-NG	55	337(10)	Nat. Catal. 2018, 1,
			870-877
Ni–NHGF	61	331(10)	Nat. Catal. 2018, 1,
			63-72

Catalyst	Cell voltage at 10 mA cm ⁻² (V)	Cell voltage at 100 mA cm ⁻² (V)	Reference
Ni ₂ P@Co ₉ S ₈	1.46	1.66	This work
FeCoNi/CC	1.55	2.00	Adv. Energy Mater 2019 , 9, 1901312
Co ₃ S ₄ /MOF	1.55	1.90	Adv. Mater. 2019 , 31, 1806672
Ni/γ-Fe ₂ O ₃	1.47	1.77	Nat. Commun. 2019 10, 5599
CoFeZrO _x	1.63	1.78	Adv. Mater. 2019 , 31 1901439
Ni-ZIF/NiB	1.54	1.77	Adv. Energy Mater 2020 , 10, 1902714
PBA@Co(OH)2	1.65	1.99	Adv. Energy Mater 2019 , 9, 1802939
Cr/FeNi-P	1.54	1.70	Adv. Mater. 2019 , 31 1900178
CoMoNiS	1.54	2.09	J. Am. Chem. Soc 2019 , 141, 10417 10430
Au/Ni ₃ S ₂ /NF	1.52	1.82*	Appl. Catal. B Environ. 2022 , 304 120935
MH-TMO	1.49	1.72	Adv. Energy Mater 2022, 12, 2200067
BPIr-be	1.57	1.78	Adv. Mater. 2021 , 33 2104638
O-CMMOFs-NF	1.47	1.85	Appl. Catal. B Environ. 2022 , 307 121151
Ni-MoO ₂ /NF-IH	1.50	1.72	Adv. Funct. Mater 2021 , 31, 2009580.
CoFeO@BP	1.58	1.78	Angew. Chem. Int. Ed. 2020 , 59, 21106.
MoS2/NiFe LDH MoNiFe	1.61	1.73	Nat. Commun. 2022 13, 2191

Table S7 Comparison of cell voltages at 10 and 100 mA cm⁻² and stabilities of different bifunctional non–noble metal electrocatalysts recently reported for overall water splitting in 1.0 M KOH solution

CoFeP@C	1.55	1.78	Adv. Energy Mater
			2022 , 12, 2202394
FeCoNi MOF	1.60	1.90	J. Am. Chem. Soc
			2022 , 144, 3411

Catalyst	$\eta~(\mathrm{mV})$ @ 200 mA	Reference
	cm ⁻²	
Ni ₂ P@Co ₉ S ₈	204	This work
CoNC@Co ₂ N/CPs	330	Adv. Energy Mater.
		2020 , 10, 2002214
Ni-N ₃	345	Adv. Mater. 2020, 33,
		2003846
Cu1Ni ₂ -N	255	Adv. Energy Mater.
		2019 , 9, 1900390
Ni5Co3Mo-OH	290	ACS Energy Lett. 2019,
		4, 952-959
Cu ₃ N	335	ACS Energy Lett. 2019,
		4, 747-754
NiMoN/CFC	400	Nat. Commun. 2019 , 10,
		5335
FeNiS/Ni	300	Adv. Energy Mater.
		2020 , 2001963
NiFeP/graphene	290	Adv. Mater. 2020, 32,
		1908201
NiFeSe	325	Adv. Energy Mater.
		2019 , 9, 1802983

Table S8 Comparison of the overpotentials at 200 mA cm⁻² toward the HER in 1 M KOH of the $Ni_2P@Co_9S_8$ with other reported high-performance bifunctional catalysts.

Catalyst	η (mV) @ 200 mA	Reference
	cm ⁻²	
Ni ₂ P@Co ₉ S ₈	276	This work
NiCo LDH/NiCoS	378	Nano Res. 2022, 15, 4986-
		4995
СоООН	340	J. Mater. Chem. A 2019 , 7,
		7777-7783
Co ₂ P-Co ₃ O ₄	405	Adv. Energy Mater. 2018,
		8, 1802445
Ni/MoN/rNS)	533	Adv. Sci. 2022, 9, 2105869
NixCo _{3-x} S ₄ /Ni ₃ S ₂	318	Nano Energy 2017 , 35,
		161-170
MoO _x /Ni ₃ S ₂	312	Adv. Funct. Mater. 2016,
		26, 4839-4847
EG/Co _{0.85} Se/NiFe-LDH	290*	Energy Environ. Sci. 2016,
		9, 478-483
FeCoNiCuMn HEA/CNF	386	Energy Environ. Sci. 2023,
		16, 619-628
MX@MOF-Co ₂ P	407	J. Mater. Sci. Technol.
		2023 , 145, 74-82
Ni/MoN/rNS	533	Adv. Sci. 2022, 9, 2105869
Co/CoO/Co(OH) ₂	360*	Appl. Catal. B 2021 , 292,
		120063
Ir-1/Ni _{1.6} Mn _{1.4} O ₄	350	Adv. Sci. 2022, 9, 2200529

Table S9 Comparison of the overpotentials at 200 mA cm⁻² toward the OER in 1 M KOH of the $Ni_2P@Co_9S_8$ with other reported high-performance bifunctional catalysts.

*The data were calculated according to the curves given in the literature

Catalyst	Cell voltage at 200	Reference
	$mA cm^{-2} (V)$	
Ni ₂ P@Co ₉ S ₈	1.76	This work
Co ₃ Se ₄ /CF	2.11	Adv. Energy Mater., 2017
		7, 1602579
CoP/NCNHP	1.97	J. Am. Chem. Soc. 2018
		140, 2610-2618
NiCoP@NF-100	1.87	J. Energy Chem. 2020, 50
		395-401
CoPO/NF	1.98	Adv. Funct. Mater. 2018
		28, 1706120
NC@CuCo ₂ N _x /CF	1.93	Adv. Funct. Mater. 2017
		27, 1704169
Ni-P/NF	2.17*	J. Mater. Chem. A. 2016 , 4
		5639-5646
Ni-P/CP	3.3*	Adv. Funct. Mater. 2016
		26, 4067-4077
Cu ₃ N	1.8	ACS Energy Lett. 2019, 4
		747-754
FeNiS/Ni	1.95	Adv. Energy Mater. 2020
		2001963.
FeCoNi/CC	2.13	Adv. Energy Mater. 2019
		9, 1901312.
NiFeP/graphene	1.90	Adv. Mater. 2020 , 32
		1908201

Table S10 Comparison of the overpotentials at 200 mA cm⁻² toward the overall water splitting in 1 M KOH of the $Ni_2P@Co_9S_8$ with other reported high-performance bifunctional catalysts

CoNC	1.91	Energy Environ. Sci. 2020,
		13, 545-553
FeCo/Co ₂ P@C	2.1	Adv. Energy Mater. 2020,
		10, 1903854.
CoNSC	1.78	Adv. Energy Mater. 2020,
		10, 2002896
NiCoP/NF	1.98	Nano Lett. 2016 , 16, 7718-
		7725

*The data were calculated according to the curves given in the literature