
Method S1: Mathematical Analysis of input–coupled positive feedback
and emergent behaviors related to Figure 5

General framework

Assumptions and conclusions

We consider two models of increasing complexity for the dynamics in the system de-
scribing PINK1–Parkin–Ubiquitin on a Mitochondrion discussed in the main body of the
paper. Simplifying somewhat, we may say that in the experiment the amount P (t) at time t
of Parkin on a mitochondrion is tracked as it grows until it reaches a certain detection level
Pdet. The initial amount of Parkin Pinit is assumed to be much smaller than the detection
level Pdet. This yields a measurement of the time T it takes the Parkin level to grow from
Pinit to Pdet. The level E of PINK1 affects the rate at which Parkin increases and thus the
experiment gives us a measurement of the growth time T as a function of the PINK1 level
E.

The main assumptions concerning the system that we make are

i. The system contains a positive feedback mechanism
ii. PINK1 acts as a catalyst: some of the reaction rates in the system increase when the

amount of PINK1 is increased
iii. Pinit is much smaller than Pdet

iv. The rate at which free Ubiquitin spontaneously moves to the mitochondrion is relatively
small and may be ignored

v. The amounts of free Ubiquitin and Parkin are large compared to Pdet and may be
considered constant

These assumptions lead to the following consequences:

Exponential Growth: The amount of Parkin grows (or decays) exponentially; if P (t) is the
amount of Parkin at time t, then the models predict P (t) ≈ Pinite

λEt, where the growth rate
λE depends on the many reaction rates in the model, and in particular on the amount E of
PINK1 in the system.

Threshold for circuit activation: There is a critical value E∗ such that λE < 0 when E < E∗
and such that λE > 0 when E > E∗. This means that if the PINK1 amount is below E∗ the
Parkin levels will decrease exponentially, and if the PINK1 amount exceeds E∗ then Parkin
will grow exponentially.

Time to detection decreases with increasing PINK1 levels: The exponent λE is an increasing
function of the PINK1 level E. When λE > 0 the Parkin level grows exponentially according
to

P (t) ≈ P (0)eλEt.

Let Pdet be the minimal level at which Parkin is detected, and assume that the initial amount
Pinit of Parkin is small compared to Pdet. If the growth rate λE is negative then the amount
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P (t) of Parkin will only decay and thus never reach the detection level. On the other hand,
if the growth rate λE is positive, then the detection time Tdet(E) follows from

(1) P (Tdet) = Pdet ⇐⇒ Pinite
λETdet = Pdet ⇐⇒ Tdet =

ln(Pdet/Pinit)

λE

.

For each of the models we find that the growth rate λE increases when E is increased, which
therefore implies that the time to detection Tdet is a decreasing function of E.

The inverse law

In the minimal model one finds that there is a minimal PINK1 level E∗ such that the
system does not activate if E ≤ E∗, in which case the time to detection should be considered
infinite. For E > E∗ the time to detection in the minimal model is given by an inverse law
of the form

(2) Tdet =
C∗

E − E∗

for some constant C∗, i.e. the time to detection is inversely proportional to E −E∗, which is
the amount of PINK1 above the critical value E∗. See (Eq. 11) for a derivation of this law
in the minimal model case.

In the general model the inverse law still holds approximately. We can justify this
theoretically for values of E close to the critical level E∗, and also for very large values of
E. Numerical computations (see Appendix Figure 1) indicate that the approximation also
holds for intermediate PINK1 levels.

For PINK1 values E that are close to the critical value E∗ it follows from Lemma 4 that

∂λ

∂E
(E∗) > 0.

If E ≈ E∗ then

λ(E) ≈ ∂λ

∂E
(E∗)

(
E − E∗

)
,

and thus, if E > E∗ and if E − E∗ is small, then

(3) Tdet(E) =
lnPdet/Pinit

λE

≈ C∗

E − E∗
, with C∗ =

ln
(
Pdet/Pinit

)
∂λ
∂E

(E∗)
.

We will also show that as E →∞, the dominant eigenvalue converges to a limiting value λ∞
(see (Eq. 15)), and that λ(E) is a strictly increasing function of E for all E > E∗. It follows
that Tdet(E) has a limiting value T∞ for very large E. Moreover, (Eq. 15) also implies that,
for a suitably chosen constant C∞ depending on the parameters ki, one has

(4) Tdet(E) ≈ C∞

E − E∗
+ T∞.

Thus the graph of Tdet vs. E has both horizontal and vertical asymptotes, and approaches
both asymptotes like a hyperbola.



General form of the models

In each of the models we have a vector

S(t) =

s1(t)...
sn(t)


containing the total amounts of the components that the model tracks, such as Parkin,
Ubiquitin, (phosphorylated or not), or combinations of these. Using mass action kinetics we
arrive at a system of differential equations governing the time dependence of S(t). Assuming
that we only consider the system when the amounts of non-free Parkin and Ubiquitin are
small, we arrive at a linear system

(5) S ′(t) =MS(t),

where

• E is the amount of PINK1 in the system; this quantity is assumed to be kept constant;
• M is a matrix containing the reaction rates, and which can be further decomposed
as

M =M0 + EM1.

The matrix M0 contains the rates at which reactions take place in the absence of
PINK1, whileM1 accounts for the change in the reaction rates caused by the presence
of PINK1.

Eigenvalue analysis of the models

Using the method of eigenvalues and vectors one shows that the general solution of a
linear equation such as (Eq. 5) is a superposition of exponentially growing or decaying terms,
i.e.

(6) S(t) = eλ1tV1 + eλ2tV2 + · · ·+ eλntVn

in which λ1, . . . , λn are the eigenvalues of the matrixM, V1, . . . , Vn are corresponding eigen-
vectors. Since we are interested in the time it takes S(t) to grow from a small initial amount
to the detection value, we want to consider the fastest growing term(s) in (Eq. 6), i.e. the
terms corresponding to the largest eigenvalues λi. In studying the eigenvalues λ1, . . . , λn we
note that in all versions of our model the matrixM has non-negative off-diagonal entries, and
is irreducible. This implies, by the Perron-Frobenius theorem, that M has a unique dom-
inant eigenvalue. If we renumber the eigenvalues so that λdom, is the dominant eigenvalue,
then

i. λdom is a real eigenvalue ofM (not a complex eigenvalue)
ii. every other (possibly complex) eigenvalue µ ofM satisfies Reµ < λdom

iii. corresponding to the eigenvalue λdom, the matrix M has positive left and right eigen-
vectors Wdom, Vdom respectively; by definition these satisfy

MVdom = λdomVdom, M⊤Wdom = λdomWdom.

They can be normalized so that ⟨Wdom, Vdom⟩ = 1.



The dominant eigenvalue tells us the largest exponential rate with which solutions to (Eq. 5)
can grow. More precisely, the eigenvalue decomposition (Eq. 6) contains one term corre-
sponding to the dominant eigenvalue λdom. If we denote this term by s(t)Vdom and group
the remaining terms into a slower growing component S◦(t) then we have

(7) S(t) = s(t)Vdom + S◦(t), ⟨Wdom, S
◦(t)⟩ = 0.

The left-eigenvector Wdom allows one to find the coefficient s(t) from the vector S(t) via

s(t) = ⟨Wdom, S(t)⟩.
By taking the inner product with Wdom on both sides in (Eq. 5) one finds that the Vdom

component of S satisfies an ordinary differential equation

(8) s′(t) = λdoms(t),

whose solution can be written as

(9) s(t) = eλdomts(0)

To compute the time to detection we assume that Parkin is detected when s(t) reaches a
specific detection value xdet. Then the time to detection is

Tdet =
1

λdom

ln
sdet
s(0)

.

The minimal PINK1-Parkin model

In our simplest model we only keep track of the Parkin in the system, assuming it exists
in one of two states: on the mitochondria or free (not on the mitochondria).

Parkin on the mitochondria can bind free Parkin and this process is aided by PINK1 as
an enzymatic catalyst. Parkin on the mitochondria also spontaneously leaves the mitochon-
dria.

Our model keeps track of the following quantities:

Xtot total amount of Parkin in the system; a constant
Xp amount of Parkin on the mitochondria (referred to as “pX” in the main text)
X amount of free Parkin, X +Xp = Xtot

E amount of PINK1 in the system; constant in time

Since Xtot and E are time independent and since Xp and X are constrained by Xp+X =
Xtot, the time evolution of the system is completely determined by that of Xp . The following
differential equation takes both recruitment and degradation into account:

dXp

dt
= kfbE(Xtot −Xp)Xp − koffXp.

Here kfb and koff are reaction constants.

We make one further simplifying assumption, namely, during the observations in the
experiment, prior to Xp detection, the total amount Xtot of Parkin is much larger than
the amount Xp on the mitochondria. Thus the amount X of free Parkin remains nearly



constant, approximately equal to the total amount Xtot of Parkin. We may therefore replace
Xtot −Xp = X by Xtot, which leads us to the differential equation

(10)
dXp

dt
= kfbEXtotXp − koffXp = (kfbEXtot − koff)Xp.

The coefficient kfbEXtot− koff is constant in time, so this differential equation is of the type
dx
dt

= kx, and its solution is given by the exponential growth formula x(t) = ektx(0). In
terms of Xp we get

Xp(t) = e(kfbEXtot−koff)tXp(0).

Indeed, equation (Eq. 10) is of the form (Eq. 5), if one lets S(t) be the vector with only one
component S(t) = [Xp(t)], and if one lets M be the 1 × 1-matrix M = [kfbEXtot − koff ].
The dominant (and only) eigenvalue ofM is

λE = kfbEXtot − koff .

However, since both the vector S(t) and the matrix M only have one component, the
eigenvalue analysis is not needed to solve the differential equation (Eq. 10) in this case.

In the experiment one begins with a given small amount Xp(0) of Parkin and measures
how long it takes before the amount Xp(t) of Parkin reaches a fixed detectable level, Xp,det .
By solving the equation Xp(t) = Xp,det for t we find, as announced in (Eq. 2),

(11) Tdet(E) =
ln

Xp,det

Xp(0)

kfbXtotE − koff
=

1
kfbXtot

ln
Xp,det

Xp(0)

E − E∗
=

C∗

E − E∗
.

It follows from (Eq. 10) that the critical value of E, at which the systems “switches on”, is

E∗ =
koff

kfbXtot

,

while the constant C∗ in the inverse law (Eq. 2) is given by

C∗ =
1

kfbXtot

ln
Xp,det

Xp(0)
.

The full model

The nonlinear model

Here we consider a more complete model for the PINK1-Parkin system. The full model
is nonlinear, but by considering only the initial growth phase we can reduce the system to a
linear set of differential equations. We then observe the existence of a dominant growth rate
λdom and analyze its dependence on the parameters in the model.

The following variables appear in the full model

Uf , Um, Up: Three forms of Ubiquitin: free, mitochondrial, and phosphorylated
Af , Ab, Ap: Three forms of Parkin: free, bound, and phosphorylated
E : The amount of PINK1 present in the system; a constant.



We assume that the system is governed by the following reactions (see model schematic in
Fig. S5F-G):

Uf

k1−−→←−−
k3

Um

k4E−−→←−−
k5

Up

k6Af−−−→←−−−
k7

Ab

k8E−−→←−−
k9

Ap

Uf + Ap
k2−−→ Um + Ap

Assuming mass-action kinetics, the variables Uf , Um, Up, Af , Am, Ap evolve according to the
following set of differential equations

dUf

dt
= −k1U f − k2UfAp + k3Um

dUm

dt
= k1Uf + k2UfAp − k3Um − k4EUm + k5Up

dUp

dt
= k4EUm − k5Up − k6UpAf + k7Ab

dAf

dt
= −k6UpAf + k7Ab

dAb

dt
= k6UpAf − k7Ab − k8EAb + k9Ap

dAp

dt
= k8EAb − k9Ap

Linearization assuming abundant free Parkin and Ubiquitin

We can simplify the model by assuming that Af and Uf are nearly constant because
free Parkin and Ubiquitin are abundantly present. This leads to a reduced system with four
components Um, Up, Ab, Ap, which satisfy the following four linear differential equations:

(12)

dUm

dt
=−(k3 + k4E)Um +k5Up +k2UfAp

dUp

dt
= k4EUm−(k5 + k6Af )Up +k7Ab

dAb

dt
= +k6AfUp−(k7 + k8E)Ab +k9Ap

dAp

dt
= k8EAb −k9Ap

This linear system is of the form X ′(t) =MX(t) (see (Eq. 5)) where

X(t) =


Um

Up

Ab

Ap





The matrix in this linear system is

M =


−k3 − k4E k5 0 k2Uf

k4E −k5 − k6Af k7 0
0 k6Af −k7 − k8E k9
0 0 k8E −k9


Assuming all reaction rates ki as well as the quantities E,Af , Uf are positive, the matrixM
satisfies the description on Eigenvalue Analysis surrounding (Eq. 6) in this appendix, i.e.

• the off-diagonal entries ofM are non negative
• the matrixM is irreducible

This implies that M has a dominant eigenvalue λdom and corresponding left- and right-
eigenvectors

Wdom =


w1

w2

w3

w4

 , Vdom =


v1
v2
v3
v4

 , for whichM⊤Wdom = λdomWdom, MVdom = λdomVdom .

Lemma 1. The dominant eigenvalue is a differentiable function of the parameters k2, k3,
. . . , k9, as well as E, Af , and Uf .

Proof. This follows from the fact that the dominant eigenvalue is a simple eigenvalue, and
that simple eigenvalues of any matrix are differentiable functions of the entries of the matrix
M. □

We will show that the dominant eigenvalue turns out to be a monotone function of the
parameters, at least when λdom ≥ 0. The following property of the left eigenvectors Wdom

will help in the analysis of the derivatives of λdom with respect to the parameters.

Lemma 2. If λdom ≥ 0 and if the parameters k2, k3, . . . , k9, as well as E, Af , and Uf are
all positive, then the entries of the left eigenvector are increasing:

(13) w1 < w2 < w3 < w4.

Proof. Expanding the eigenvalue equationM⊤Wdom = λdomWdom and rearranging terms we
get

−k3w1 + k4E(w2 − w1) = λdomw1

k5(w1 − w2) + k6Af (w3 − w2) = λdomw2

k7(w2 − w3) + k8E(w4 − w3) = λdomw3

k2Ufw1 + k9(w3 − w4) = λdomw4

Using the assumption that λdom ≥ 0 we conclude from the first equation

k4E(w2 − w1) = λdomw1 + k3w1 ≥ k3w1 > 0 =⇒ w2 − w1 > 0.

The second equation then implies

k6Af (w3 − w2) = λdomw2 + k5(w2 − w1) > 0 =⇒ w3 − w2 > 0.



Finally the third equation leads to

k8E(w4 − w3) = λdomw3 + k7(w3 − w2) > 0 =⇒ w4 − w3 > 0.

□

Lemma 3. Let z be one of the parameters k2, k3, . . . , k9, or E. If the left and right
eigenvectors are normalized by ⟨Wdom, Vdom⟩ = 1, then the derivative of λdom with respect to
z is given by

(14)
∂λdom

∂z
=

〈
Wdom,

∂M
∂z
· Vdom

〉
Proof. Differentiate the relationMVdom = λdomVdom with respect to z to get

M∂Vdom

∂z
+

∂M
∂z
· Vdom = λdom

∂Vdom

∂z
+

∂λdom

∂z
Vdom

Take the inner product with Wdom on both sides:〈
Wdom,M

∂Vdom

∂z

〉
+

〈
Wdom,

∂M
∂z
· Vdom

〉
=

〈
Wdom, λdom

∂Vdom

∂z

〉
+
∂λdom

∂z
⟨Wdom, Vdom⟩.

Since Wdom is a left eigenvector, this implies

λdom

〈
Wdom,

∂Vdom

∂z

〉
+

〈
Wdom,

∂M
∂z
· Vdom

〉
= λdom

〈
Wdom,

∂Vdom

∂z

〉
+
∂λdom

∂z
⟨Wdom, Vdom⟩.

Cancelling the first terms on both sides and then using ⟨Wdom, Vdom⟩ = 1 leads to (Eq. 14).
□

Lemma 4. As long as the dominant eigenvalue λdom is nonnegative, it is an increasing
function of k2, k4, k6, k8 (forward reactions), and E, while it is a decreasing function of k3,
k5, and k7 (reverse reactions).

Proof. Using the previous Lemma we can compute the derivative of λdom with respect to
any of the parameters. Lemma 2 then tells us the sign of the derivative. Computing this for
each of the parameters leads to the following result:

z ∂λdom

∂z
= ⟨Wdom,

∂M
∂z

Vdom⟩
k2 Ufw1v4 > 0 increasing always
k3 −w1v1 < 0 decreasing always
k4 Ev1(w2 − w1) > 0 increasing if λdom ≥ 0
k6 Afv2(w3 − w2) > 0 increasing if λdom ≥ 0
k8 Ev3(w4 − w3) > 0 increasing if λdom ≥ 0
E k4v1(w2 − w1) + v3k8(w4 − w3) > 0 increasing if λdom ≥ 0
k5 v2(w1 − w2) < 0 decreasing if λdom ≥ 0
k7 v3(w2 − w3) < 0 decreasing if λdom ≥ 0

□



The critical PINK1 value E∗

Under the assumption that the parameters k2, k3, . . . , k9, Uf , and Af are positive we
will argue that there is a critical value E∗ such that λdom > 0 for E > E∗ and λdom < 0 for
E < E∗. Moreover we analyze how E∗ changes if one of the parameters k2, k3, . . . , k9, Uf ,
Af is changed.

Lemma 5. When E = 0, one has λdom < 0, while for E → ∞ the dominant eigenvalue
converges to a positive limiting value λ∞

dom > 0. In fact there is a constant Λ∞ such that

(15) λ(E) = λ∞ −
Λ∞

E
+O

( 1

E2

)
(E →∞)

Proof. We postpone the rather long proof to the next section. □

Lemma 6. There is a unique positive number E∗ such that λE∗ = 0. For all E > E∗ one
has λdom > 0, while for 0 < E < E∗ one has λdom < 0.

Proof. We have just shown that λdom < 0 when E = 0, while λdom > 0 for large E. It follows
from continuous dependence of the dominant eigenvalue on all parameters that there must
exist intermediate values E∗ at which λdom vanishes. In Lemma 4 we showed that whenever
λdom = 0, λdom is increasing. This implies that there cannot be more than one E∗ at which
λdom vanishes. □

Lemma 7. The critical PINK1 level E∗ is an increasing function of k3, k5, k7, and a
decreasing function of k2, k4, k6, and k8.

Proof. By implicit differentiation applied to the equation λdom(z, E∗) = 0 we find that

∂E∗

∂z
= − ∂λdom/∂z

∂λdom/∂E
.

The Lemma now follows from the table in Lemma 4. □

Proofs of Lemma 5

We can write the matrixM as

M =M0 + EM1

where

M0 =


−k3 k5 0 k2Uf

0 −k5 − k6Af k7 0
0 k6Af −k7 k9
0 0 0 −k9

 M1 =


−k4 0 0 0
k4 0 0 0
0 0 −k8 0
0 0 k8 0


The dominant eigenvalue ofM is the largest real root λ of the characteristic equation∣∣∣∣∣∣∣∣

−k3 − k4E − λ k5 0 k2Uf

k4E −k5 − k6Af − λ k7 0
0 k6Af −k7 − k8E − λ k9
0 0 k8E −k9 − λ

∣∣∣∣∣∣∣∣ = 0.



Proof of Lemma 5 when E = 0

We compute the characteristic polynomial for E = 0:

det(M− λ) = det(M0 − λ)

=

∣∣∣∣∣∣∣∣
−k3 − λ k5 0 k2Uf

0 −k5 − k6Af − λ k7 0
0 k6Af −k7 − λ k9
0 0 0 −k9 − λ

∣∣∣∣∣∣∣∣
= (λ+ k3)(λ+ k9)

(
λ2 + (k5 + k7 + k6Af )λ+ k5k7

)
It follows that when E = 0 the eigenvalues of the matrixM are

λ1 = −k3, λ2 = −k9,

λ3, λ4 =
−k5 − k7 − k6Af ±

√
(k5 − k7)2 + 2(k5 + k7)k6Af + (k6Af )2

2

All four eigenvalues are real and negative. The dominant eigenvalue λdom is the largest of
these,

λdom = max{λ1, λ2, λ3, λ4} if E = 0

and it follows that for E = 0 one has λdom < 0.

Proof of Lemma 5 for large E

We write the characteristic polynomial as

(16) det(M− λ) = D0(λ) +D1(λ)E +D2(λ)E
2

where D0, D1, D2 are polynomials in λ, which upon computation turn out to satisfy

D0(λ) = det(M0 − λ)

= (k3 + λ)(k9 + λ)
(
λ2 + (k5 + k7 + k6Af )λ+ k5k7

)
= λ4 + lower order terms,

D1(λ) = λ
(
k4(λ+ k6Af + k7)(λ+ k9) + (λ+ k3)(k8λ+ k5k8 + (k8 − k7)k7Af )

)
= (k4 + k8)λ

3 +
[
k4(k7 + k9) + (k3 + k5)k8 + (k4 + k8 − k7)k6Af

]
λ2

+ (k3k5k8 + k3(k8 − k7)k6Af )λ

= (k4 + k8)λ
3 + lower order terms,

and

D2(λ) = k4k8(λ
2 + k6Afλ− k2Ufk6Af )

= k4k8λ
2 + lower order terms

For large values of E the four eigenvalues of M can be separated into those eigenvalues λ
for which λ≪ E, and those for which λ is comparable to E or larger.



If |λ| ∼ E or |λ| ≫ E then the dominant terms in the characteristic polynomial (Eq. 16)
are those that contain λ4, λ3E, λ2E2. Two eigenvalues are therefore approximated by the
nonzero roots of

λ4 + (k4 + k8)λ
3E + k4k8λ

2E2 = 0.

This yields two very negative eigenvalues

λ1 ≈ −k4E, λ2 ≈ −k8E.

If on the other hand |λ| ≪ E then D2(λ)E
2 is the dominant term in the characteristic

polynomial (Eq. 16), and thus two of the eigenvalues are close to the roots of D2(λ) = 0, i.e.
λ2 + k6Afλ− k2Ufk6Af = 0, which are given by

λ∞
± =

−k6Af ±
√

(k6Af )2 + 4k2Ufk6Af

2
.

Of these, λ∞
− is negative and λ∞

dom is positive. Since λ∞
dom is the only positive eigenvalue, it

is the dominant eigenvalue.

The dominant eigenvalue therefore satisfies

(17) λdom ≈ λ∞
dom =

−k6Af +
√
(k6Af )2 + 4k2Ufk6Af

2
> 0.

Thus we have shown that the dominant eigenvalue does indeed converge to the limiting
value λ∞. To complete the proof of Lemma 5 we now verify the asymptotic formula (Eq. 17).
We can do this by recalling that λ is a solution of the characteristic equation

det(M− λ) = 0

which we can rewrite using (Eq. 16) as

D0(λ) +D1(λ)E +D2(λ)E
2 = 0.

Divide both sides by E2 to get

D2(λ) +D1(λ)E
−1 +D0(λ)E

−2 = 0.

Instead of regarding this as an equation for λ and E, we introduce a new variable

ϵ =
1

E
which is related to λ by

(18) D2(λ) +D1(λ)ϵ+D0(λ)ϵ
2 = 0.

Abbreviate the left hand side in this equation to φ(λ, ϵ) = D2(λ) +D1(λ)ϵ +D0(λ)ϵ
2. The

limiting value λ∞ is a solution of D2(λ∞) = 0, so φ(λ∞, 0) = 0. Since λ∞ is the largest root
of the quadratic polynomial D2(λ) we have D′

2(λ∞) > 0. This implies

∂φ

∂λ
(λ∞, 0) = D′

2(λ∞) ̸= 0, and
∂φ

∂ϵ
(λ∞, 0) = D1(λ∞),

and we may therefore invoke the implicit function theorem to conclude that the solution λ(ϵ)
of φ(λ, ϵ) = 0 is a smooth function of ϵ. Its Taylor expansion begins with

λ = λ∞ −
D1(λ∞)

D′
2(λ∞)

ϵ+O(ϵ2).



Finally, after setting ϵ = 1
E
, we obtain (Eq. 15), where the constant Λ∞ is given by

Λ∞ =
D1(λ∞)

D′
2(λ∞)

.

Numerical computation of Tdet

While there is no explicit formula that expresses the largest eigenvalue λ∞ of the ma-
trix M(E), and thus also the time to detection Tdet, in terms of E and the parameters
k1, . . . , k9, Uf , Af both λ∞ and Tdet can be easily computed numerically for any specific
given values of the parameters.

Using the eigvals routine from the Numpy.linalg package we produced log-log plots
of Tdet − T∞ vs. E − E∗. See Appendix Figure 1. In these plots the parameters k1, . . . , k9
were chosen using a random number generator so that log ki is uniformly distributed with
−1 ≤ log ki ≤ +1. After choosing the parameters ki we normalized their product, so that
k1k2 · · · k8k9 = 1.

One sees from the simulations that plotting a log-log graph of Tdet − T∞ vs. E − E∗
consistently produces a nearly straight line with slope approximately equal to −1. This
implies that the dependence of Tdet on E follows the inverse law (Eq. 2).
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Appendix Figure 1. Tdet − T∞ vs E − E∗ for randomly chosen parameter
values k1, . . . , k9


