

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Initial prescriptions and medication switches of biological products: an analysis of prescription pathways and determinants in the Swiss healthcare setting

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-077454
Article Type:	Original research
Date Submitted by the Author:	05-Jul-2023
Complete List of Authors:	Wirth, Kevin; Helsana Versicherungen AG, Boes, Stefan; University of Lucerne, Department of Health Sciences and Medicine Näpflin, Markus; Helsana Group, Department of Health Sciences Huber, Carola; Helsana Health Insurance Co, ; University Hospital Zurich, Blozik, Eva; University of Zurich, Institute of Primary Care
Keywords:	PUBLIC HEALTH, Health Literacy, MEDICAL EDUCATION & TRAINING

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Initial prescriptions and medication switches of biological products: an analysis of

2 prescription pathways and determinants in the Swiss healthcare setting

3 Kevin Wirth^{1,2*}, Stefan Boes², Markus Näpflin¹, Carola A. Huber^{1,3}, Eva Blozik³

- ⁴ ¹Department of Health Sciences, Helsana Group, Zurich, Switzerland
- 5 ² Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- 6 ³ Institute of Primary Care, University of Zurich, Zurich, Switzerland
- 7 * Corresponding author
- 8 Kevin Wirth, Südstrasse 29, 8180 Bülach, <u>kevin.wirth.migliazza@gmail.com</u>
- 9 Word count: 3'943

2 3 4 5	10 11	ABSTRACT Objectives Biological products have contributed to extraordinary advances in disease
6 7	12	treatments over the last decade. However, the cost-saving potential of imitator products, so-
8 9 10	13	called biosimilars, is still underresearched in Switzerland. This study aims to assess biosimilars'
11 12	14	prescriptions at treatment initiation and their determinants, as well as biological therapy
13 14	15	switches.
15 16 17	16	Design We analyzed longitudinal data for biosimilar prescriptions in Switzerland using
18 19	17	descriptive statistics and logistic regression to quantify the associations with individual,
20 21	18	pharmaceutical, and provider-related variables.
22 23 24	19	Setting The analysis is based on de-identified claims data of patients with mandatory health
24 25 26	20	insurance at Helsana, a leading Swiss health insurance.
27 28	21	Participants Overall, 17'654 patients receiving at least one biological product between 2016
29 30 31	22	and 2021 were identified.
32 33	23	Primary and secondary outcome measures: We differentiated between initial prescriptions
34 35	24	and follow-up prescriptions. Our regression focused on initial prescriptions due to evidence
36 37	25	indicating that patients tend to follow the medication prescribed at therapy initiation.
38 39 40	26	Results Although biosimilars market share was low (28.6%), the number of prescriptions has
41 42	27	increased. Few medication switches were detected. Increased relative price difference was
43 44	28	associated with decreased probability of biosimilar prescriptions, whereas male sex, an increase
45 46 47	29	of available imitator drugs on the market and, larger packaging sizes, and prescriptions from
47 48 49	30	specialists or physicians in outpatient settings were associated with increased biosimilars use.
50 51	31	Conclusion The low number of biosimilar prescriptions despite the proliferating biosimilar
52 53	32	market indicates a high potential for biosimilar diffusion. Our research highlights the need for
54 55 56	33	awareness initiatives to improve understanding among patients and physicians, enabling
57 58	34	informed, shared decision-making about biosimilar prescriptions.
59 60	35	[249 of max 250 words]

2 3 4 5 6 7 8	36	Key words: biosimilars, biologics, reference products, switches, initial prescription
9 10 11		ARTICLE SUMMARY
12 13	37	Strengths and limitations of this study:
14 15	38	• First scientific study to evaluate the prescription of biosimilars using a comprehensive
16 17 18	39	set of sociodemographic, pharmaceutical, and healthcare provider variables
19 20	40	representing a nearly representative database in Switzerland.
21 22	41	• This research paper is the first to divide the medication treatment pathway into initial
23 24 25	42	and follow-up prescriptions, with a specific focus on the initial prescriptions. This is
26 27	43	particularly relevant, as initial prescriptions often influence subsequent prescribing
28 29	44	decisions as patients are less willing to switch biological medication therapy.
30 31 32	45	• This study was the first to assess determinants of initial prescriptions in the context of
33 34	46	biosimilars.
35 36	47	• Some demand-related factors (patients' health status, beliefs, and experiences) and
37 38 39	48	supply-related factors (physicians' incentives and beliefs) about biosimilars could not
39 40 41	49	be accounted using the claims data.
42 43		
44 45	50	BACKGROUND
46 47 48 49	51	Biological products increased the spectrum of available treatment options considerably in the
50 51	52	treatment of many cancers and autoimmune diseases. However, these medications are more
52 53	53	expensive compared to many conventional synthetic drugs as they are produced by living cells
54 55	54	and, thus, require a more complex manufacturing process. Currently, there are a considerable

number of biologics in the final stages of development and approval [1, 2]. The healthcare systems are likely to incur substantial costs even if just a small proportion of these biologics is Page 5 of 37 Confidential

BMJ Open

57 granted market approval. One lever to curb rising drug costs is the replacement of biologics 58 after patent expiration with less expensive imitator products, also known as biosimilars. Due to 59 the biotechnological manufacturing process, exact copies of the biological products are not 60 achievable. As a result, minor structural deviations in the biosimilar are unavoidable [3, 4], and 61 regulatory authorities accept them for market approval [5, 6].

In Switzerland, a Swiss report has estimated a cost saving potential of over 60 million Swiss francs for the complete replacement of reference products with biosimilars in 2019 [7]. In the coming years, cost saving potential will increase as several top-selling biologics will lose their patent protection in Switzerland [7, 8] and corresponding biosimilars have already been approved in the European Union (EU) [2, 9, 10]. However, the realization of the cost saving potential us is assumed to be curbed because of skepticism about biosimilars from both the patient and physician side [11–14]. At the same time, patients and their health care providers seem to be less willing to switch biological products when therapy has already been started [15]. Consequently, the choice of initial prescription (IP) at therapy initiation is the decisive factor for following medication prescriptions. Despite the significant role of IP in shaping subsequent treatment pathways, research on the prescription behavior of biological products at therapy initiation and the impact of IP is limited. Existing studies have only demonstrated that patients tend to remain on their initial biological treatment product once medication treatment has been initiated. Thus, there is a need for further investigation into the influencing factors of IP and their influence on the choice of medication path. Thus, this study aims to assess biosimilars' prescriptions at treatment initiation and their determinants, as well as biological therapy switches.

METHODS

Study design and study population

We analyzed administrative claims data from adult patients (≥ 18 years) enrolled in mandatory health insurance at Helsana Group, a leading health insurance provider in Switzerland, and who had at least one biological product claim between 2016 and 2021 (Table A1). The Helsana database covers 15% of the Swiss population (1.2 million Swiss residents). Previous studies have shown that this database can be considered fairly representative of the Swiss general population, as the results showed only minor discrepancies between raw and adjusted results [16, 17].

In Switzerland, medication reimbursement is governed by the Federal Law on Health Insurance, which mandates that basic health insurance must cover the costs of essential medications. Swissmedic regulates the market entry of medications, while the Federal Office of Public Health oversees the establishment of the reimbursement list, which determines the extent to which a medication is reimbursed. Switzerland's medication reimbursement system aims to balance access to essential medications with cost control: To be eligible for reimbursement, medications must demonstrate efficacy, safety, and cost-effectiveness compared to standard treatments. As such, all of the biological products included in this study are presumed to have fulfilled these requirements.

97 The study population for this research consisted of a total of 68'310 individuals who had at least
98 one prescription of a biological or biosimilar medication between the years 2016 and 2021.
99 Among this population, there were 53'379 individuals who had full mandatory health insurance
100 coverage during the observation period. Furthermore, within this group, there were 17'654
101 individuals (or 18'953 IPs, respectively) who specifically received biological medications for
102 which a biosimilar alternative was available at the time of dispensing.

Measures

The study included all patients who had at least one biosimilar available on the market at the time of IP of a biologic product. IP were defined for each patient as claims that were not preceded by other prescriptions in the same medication category within the previous 24 months. The following prescriptions were labeled as "follow-up prescriptions" (FP). We considered all claims of biological products within 12 months after IP. By restricting the follow-up period to 12 months, we were able to focus on the medications that were prescribed as a result of the initial prescription rather than medications that were prescribed for unrelated reasons. This approach allowed us to evaluate the impact of the initial prescription more accurately on subsequent medication use, and to draw meaningful conclusions about prescribing patterns over time. We selected 117 biological products approved by Swissmedic from a list (Table A1) derived from the Swiss Drug Compendium that details all unique reference products and the corresponding imitator medications (based on matching, unique combinations of active ingredient, dose, and package size). We considered patient characteristics as covariates. They included sex, age group (<50, 50-64, 65-74, >74) and language region (German, French, Italian). Furthermore, information on comorbidity was assessed using the number of Pharmaceutical Cost Groups (PCG) per patient (0,1,2,>2). This metric serves as a proxy for the presence of chronic disease [18]. The Swiss healthcare system offers different cost-sharing options to patients, including low (CHF 500, 1'000) or high deductibles (i.e., CHF 1'500, 2'000, or 2'500), and integrated care models, which aim to improve patient outcomes and reduce healthcare costs by coordinating care across different healthcare providers and settings. In Switzerland, patients who participate in integrated care models receive a premium rebate in exchange for limited healthcare provider options. Thus, having a low (CHF 500, 1'000) or high deductible (i.e., CHF 1'500, 2'000, or 2'500 vs. CHF 300), and being enrolled in a managed care model were used in the analysis. A comprehensive set of variables characterized the

Confidential

BMJ Open

prescribed medications: Prescriptions were described by category (fusion proteins, hormones, monoclonal antibodies, low-molecular-weight [LMW] heparins and growth factors), whether there were multiple packaging sizes, the cost per package of the reference product (in CHF, 100, 100-599, >600) and the relative price difference of the reference product to the corresponding biosimilar (10, 10-19, >20). We also assessed the number of available imitator drugs (1, 2, >2) on the market at the date of prescription. The analysis adds the aspect of healthcare provider by including information on the supply channel (general practitioner, outpatient hospital, specialist, traditional pharmacy).

Since biological products are the focus of our analysis and they include various subgroups, it seems appropriate to address the wording of these medications to ensure consistent terminology: Throughout the manuscript, we refer to the totality of all biologically manufactured drugs by using the term "biological products", while the originator drugs are referred to as "biologics" or as "reference products". "Biosimilars" are the imitator drugs of inen reference products.

Statistical analysis

All research participants' baseline characteristics are shown as counts and percentages, or as mean and standard deviation for continuous variables. We compared patient characteristics for all individuals with and without biosimilar IP. For bivariate comparisons between patients with and without biosimilar IP, Fisher exact and Chi-Square tests were used accordingly. Statistical significance was defined as a two-sided p-value of 0.05. We determined the biosimilar prevalence by distinguishing between IP and FP and the prevalence of biological therapy switches (number of prescriptions and patients) for each year (2016-2021). Chi-squared tests were used to determine whether the prevalence was equivalent across the years. To assess the determinants of biosimilar prescriptions, we used logistic regression models in which the

BMJ Open

dependent variable was whether a biosimilar was prescribed as IP (0 or 1). Three different logistic models with different sets of variables were computed (Table A8). Both, Model B and C, show similar results and a better fit of the estimates compared to Model A based on the goodness-of-fit criteria (AIC, BIC). For the manuscript, we proceed with Model C because we are mainly interested in the associations with biosimilar prescriptions from all three points of view (patient, medication, physician). Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated for each regression coefficient. The success rate in the binomial model was denoted by the term "occurrence" to improve the results' readability. All analyses were performed using R version 4.2.1.

RESULTS

The study sample consisted of 18'953 patients with at least one prescription of biological products. Patient characteristics of the study population at the time of IP, stratified by type of IP (reference product 81.5%, biosimilar 18.5%), are presented in Table 1. Female patients more frequently received biosimilars than males (60.6%). The mean age was slightly higher in men (61.7 years) compared to women (59.0 years). LMW heparins were the most prescribed reference products (54.2%), with growth hormones constituting the largest group of biosimilars (57.9%).

Table 1. Comparison of pat	ent characteristics	at IP	between	patients	with	reference
product and biosimilar as IP						

Variables, n (%)	Total	Patients with	Patients with	p-value
		IP = Reference	IP = Biosimilar	
		product		
Observations	18'953	15'453 (81.5%)	3'500 (18.5%)	
Female sex	11'678 (61.6%)	9'558 (61.9%)	2'120 (60.6%)	1
Age group				*** 2
<50	5'501 (29.0%)	4'613 (29.9%)	888 (25.4%)	
50-64	4'720 (24.9%)	3'764 (24.4%)	956 (27.3%)	
65-74	3'963 (20.9%)	3'001 (19.4%)	962 (27.5%)	
>74	4'769 (25.2%)	4'075 (26.4%)	694 (19.8%)	
Language region				*** 2

	1	1		
German	12'719 (67.1%)	· · · · ·	2'761 (78.9%)	
French	4'324 (22.8%)	3'777 (24.4%)	547 (15.6%)	
Italian	1'910 (10.1%)	1'718 (11.1%)	192 (5.5%)	
Number of comorbidities				** 2
0	4'738 (25.0%)	3'901 (25.2%)	837 (23.9%)	
1	3'295 (17.4%)	2'664 (17.2%)	631 (18.0%)	
2	3'072 (16.2%)	2'448 (15.8%)	624 (17.8%)	
>2	7'848 (41.4%)	6'440 (41.7%)	1'408 (40.2%)	
Deductible				*** 2
Low	15'765 (83.2%)	12'846 (83.1%)	2'919 (83.4%)	
Managed care	11'921 (62.9%)	9'790 (63.4%)	2'131 (60.9%)	** 1
Category				*** 2
Fusion proteins	360 (1.9%)	178 (1.2%)	182 (5.2%)	
Hormones	2'112 (11.1%)	1'697 (11.0%)	415 (11.9%)	
Monoclonal antibodies	2'908 (15.3%)	2'107 (13.6%)	801 (22.9%)	
LMW heparins	10'272 (54.2%)	10'196 (66.0%)	76 (2.2%)	
Growth factors	3'301 (17.4%)	1'275 (8.3%)	2'026 (57.9%)	
Multiple package size	16°432 (86.7%)	13,532 (87.6%)		*** 2
Cost per package of reference	ì		, , ,	*** 2
product (in CHF)				
<100	9'866 (52.1%)	9'652 (62.5%)	214 (6.1%)	
100-599	5'066 (26.7%)	3'179 (20.6%)	1'887 (53.9%)	
>600	4'021 (21.2%)	2'622 (17.0%)	1'399 (40.0%)	
Relative price difference (%)		, , ,	· · · ·	*** 2
<10	13'807 (72.8%)	11'546 (74.7%)	2'261 (64.6%)	
10-19	2'386 (12.6%)	1'871 (12.1%)	515 (14.7%)	
>20	2'760 (14.6%)	2'036 (13.2%)	724 (20.7%)	
Number of available			, , , , , , , , , , , , , , , , , , ,	*** 2
imitator drugs				
0	_	4	-	
1	12'490 (65 9%)	12'012 (77.7%)	478 (13 7%)	
2	2'741 (14.5%)	1'911 (12.4%)	830 (23.7%)	
>2	3'722 (19.6%)	1'530 (9.9%)	2'192 (62.6%)	
supply channel of first	5 722 (19.070)	1 550 (5.570)	2172 (02.070)	*** 2
prescription				
General practitioner	1'185 (6.3%)	1'097 (7.1%)	88 (2.5%)	
Outpatient hospital	6'224 (32.8%)	4'359 (28.2%)	1'865 (53.3%)	
Specialist	3'606 (19.0%)	2'674 (17.3%)	932 (26.6%)	
Traditional pharmacy	7'564 (39.9%)	6'981 (45.2%)	583 (16.7%)	
Rest	374 (2.0%)	342 (2.2%)	32 (0.9%)	
¹) Fisher exact test, ²) Chi-Square		542 (2.270)	52 (0.770)	
Signif. codes: '***' 0.001				
Signii: codes. 0.001				
	5 A A C A	•1 1 .	1 / 1 · 1	. 1 1
169 The study found that a total of 17'6	54 patients wer	e prescribed at	least one biolog	gical produc
170 with 56.9% of them (10'046 patie	ents) receiving	multiple preser	intions Only ?	0 3% (3'60
1,5 with 50.970 of them (10 0+0 pare	into, receiving		iptions. Only 2	0.570 (5.00
171 patients) of those receiving biologi	cal products we	ere prescribed a	t least one bios	imilar durir
1 / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1		

BMJ Open

the observation period. Among the patients who were prescribed biosimilars, 15.1% (2'672 patients) received multiple biosimilars.

Table 2 describes the overall frequency of biologicals products over the observation period including the absolute and relative frequency of biosimilars in comparison to all biological prescriptions. Of all biological products (IP and FP), 28.6% were biosimilar prescriptions. In absolute values, the prescription rate of biosimilars increased over time (from 1'016 in 2016 to 6'976 in 2021). However, there is no discernible trend in the relative share of biosimilars in all prescriptions of biological products (35.5% in 2016, 39.2% in 2017, 45.2% in 2018, 41.6% in 2019, 26.3% in 2020 and 22.5% in 2021). Furthermore, the share of biosimilars in FPs was higher than in IPs in every year. The growth factor Filgrastim was the most frequently prescribed active substance of biosimilars in IPs and FPs (53.1% and 36.2% respectively), while enoxaparin was the most frequently prescribed active substance of reference products in IPs and FPs (65.3% and 25.5%, respectively) (Table A2-A6).

Table 2. All prescriptions for which a biosimilar was approved at the time of the prescription

-1.7								
- <u>3</u> 8	total	2016	2017	2018	2019	2020	2021	
3 B 40 n 41 Biosimilars 42 (n, % of N)	- 18'953 3'500 (18.5%)	815 262 (32.1%)	888 343 (38.6%)	1'037 391 (37.7%)	1'520 612 (40.3%)	5'313 813 (15.3%)	9'380 1'079 (11.5%)	*** 1
49 44 n 45 Biosimilar 46 (n, % of N) 47 Chi-Square test	50'251 16'293 (32.4%) t, Signif. codes: '*:	2'047 754 (36.8%) **' <0.001	2'716 1'071 (39.4%)	3'314 1'578 (47.6%)	6'306 2'644 (41.9%)	14'288 4'349 (30.4%)	21'580 5'897 (27.3%)	***1

Of the study population, only a small subset (n=1'492, 8.5%) experienced at least one medication switch (Table 3). Most patients had switches between reference products (n=867, 58.1%), followed by switches from reference product to biosimilar (n=331, 22.2%), from biosimilar to reference product (n=297, 19.9%) and switches between biosimilars (n=286,

19.2%). The number of patients with at least one switch increased between 2016 and 2021 (from 28 to 662), whereby the numbers of patients with switches between reference products increased most prominently (from 25.0% in 2016 to 62.1% in 2021). Switches between reference products and between biosimilars occurred most often for Enoxaparin and Rituximab, respectively (Table A7). The most common switches from reference product to biosimilar and from biosimilar to reference products were most often observed for Filgrastim and Enoxaparin.

Table 3. Patients v	with	biologic	therapy	switches
---------------------	------	----------	---------	----------

19witches, 20=patients	Total	2016	2017	2018	2019	2020	2021	p-value
$\frac{21}{3}$ t least one, n	1'492	28	42	77	249	434	662	
Beference Prod to								
Reference Prod,	867 (58.1%)	7 (25.0%)	15 (35.7%)	37 (48.1%)	146 (58.6%)	251 (57.8%)	411 (62.1%)	***1
<u></u> 25(%)								
Biosimilar to								
Biosimilar,	286 (19.2%)	9 (32.1%)	10 (23.8%)	14 (18.2%)	51 (20.5%)	74 (17.1%)	128 (19.3%)	1
Beference Prod to Biosimilar, (%) Biosimilar to								
Reference Prod to		((21, 40))	11 (2(20/)		(0 (04 10/)	102 (22 70/)	120 (10 (0/)	1
$30_{(0)}$ Biosimilar,	331 (22.2%)	6 (21.4%)	11 (26.2%)	21 (27.3%)	60 (24.1%)	103 (23.7%)	130 (19.6%)	1
$\frac{11}{3} \frac{(\%)}{3}$								
Reference Prod,	207(10.00/)	10 (25 70/)	9 (10 00/)	15 (10 50/)	40 (10 70/)	0((22,10/))	110 (19 00/)	1
$33_{(0/)}$	297 (19.9%)	10 (35.7%)	8 (19.0%)	15 (19.5%)	49 (19.7%)	96 (22.1%)	119 (18.0%)	
33 n(%) 34								
3^{1} Chi-Square test								
36 gnif. codes: '***'	< 0.001							
27								

As far as the regression results are concerned, the odds of prescribing biosimilars at IP have been increasing over the years (Fig.1, Table A8). Male sex was associated with 13.2% higher odds of receiving biosimilar IP, whereas residence in a French or Italian-speaking region had a 38.9% and 23.9%, respectively, lower occurrence of a biosimilar IP. None of the insurance-related variables showed a significant association with biosimilars IPs. In terms of pharmaceutical variables, monoclonal antibodies, LMW heparins and growth factors were associated with substantially lower biosimilar IP occurrences (-88.5%, -99.9% and -84.2%) than fusion proteins. The availability of multiple packaging sizes was associated with 4.6-fold higher odds of biosimilar IP compared to medications with solely one packaging size. For the absolute package price, no consistent pattern was observed, as medications with prices between

BMJ Open

100 and 599 francs per pack decreased the odds by 79.8% compared to the baseline (<100 CHF), whereas the odds in the highest prize category (>600 CHF) were lower by 34.3%. However, compared to products with a <10% price difference between reference product and biosimilar, higher price reductions were associated with decreased occurrence of biosimilar IP: medications with 10-19% price difference had 92.4% lower odds and medications with more than 20% had even 93.3% lower odds. On the contrary, increasing the number of available imitator medications of prescription (2 and >2) had substantially higher (2.36-fold and 9.65-fold) odds of biosimilar IP compared to prescriptions with only one available biosimilar. As far as provider variables are concerned, physicians in the outpatient hospital setting prescribed far more biosimilars compared to general practitioners (2.48-fold higher odds). The occurrence of biosimilar IP was also 41.7% higher in patients who had been prescribed biological products by a specialist than in patients who had received the equivalent medications from a general e.e. practitioner.

DISCUSSION

The growing market for biosimilars can explain the observed increase in the number of biosimilar prescriptions over time: from 15 approved biosimilars in 2016 the market for biosimilars has grown (15 in 2017; 22 in 2018; 42 in 2019; 70 in 2020) up to 78 biosimilars in 2021 (Table A1) [7, 19]. A longer time on the market gives the biosimilar a better chance to establish itself and gain market share. Despite the increase, the biosimilars quota remained relatively low. In the literature, this low share in Switzerland has already been documented: in 2019, market sales of all biological products with available biosimilars totaled CHF 449 million in 2019, of which biosimilars accounted for only CHF 42 million (9.4%) [7]. Furthermore, market share of biosimilars seems to be low compared to other countries. For example, biosimilars account for 80% of the biological product market in Norway [20]. In Germany, two

Confidential

BMJ Open

studies reported an average biosimilar ratio between 40.5% and 51.9% in 2019 [21, 22]. In the present study we observed substantially lower average biosimilar quota of 28.0%. Infliximab is a particularly compelling example, with the biosimilar share reaching 26% in Germany after only 12 months on the market (2017) and rising to 64-68% of the biosimilar market in 2019. By contrast, infliximab achieved a market share of only 22% in Switzerland in 2019 [7]. The low market share of biosimilars in Switzerland may be due to various reasons: Studies have shown that knowledge deficits among physicians and among patients may lead to reluctance regarding the use of biosimilars [11–14]. According to survey studies [23–27], between 15-30% of the population is thought to have a negative perception of these imitator drugs. This distrust may be driven by a perceived weakness in the evidence base concerning efficacy and safety of biosimilars, as only bioequivalence needs to be demonstrated for biosimilar approval. However, there is increasing evidence of equivalent safety and efficacy of biosimilars, along with evidence of bioequivalence [28-30]. Furthermore, a challenge for newly approved biosimilars is the difficulty in extending conclusions from RCTs to the broader population that will use the biosimilar. This is because RCTs typically enroll a more homogeneous population, and certain patient groups, such as pediatric, elderly, and comorbid populations, as well as patients with polypharmacy, are often underrepresented in these trials [31–33]. As a result, prescribers may be skeptical about the use of biosimilars in these patient populations because of the lack of data. Moreover, the current incentive system discourages the prescription of biosimilars for self-dispensing doctors and pharmacies as they are rewarded for prescribing the more expensive product by a bigger profit margin [7]. On the other side, under a capitation payment model, managed care physicians may have a financial incentive to prescribe lowercost biosimilars in order to maximize profits. However, if physicians are not properly educated about the safety and efficacy of biosimilars, they may be hesitant to prescribe them.

BMJ Open

That only a small subset (n=1'492, 8.5%) experienced at least one medication switch can be explained by the reluctance of patients to switch to a biosimilar medication due to the fear of experiencing new and unknown side effects. Patients who have been using a particular medication for a long time and have become accustomed to its efficacy and safety profile may be hesitant to switch to a biosimilar, which they perceive as being different and possibly inferior. Nevertheless, efficacy of biosimilar switching has been observed [7, 28–30, 34, 35]. According to a systematic literature review based on 90 published studies, the great majority of the publications did not report differences in immunogenicity, safety, or efficacy when patients switched to biosimilars. Three large studies did not show differences in efficacy or safety after multiple switches between reference product and biosimilar [36–38]. Only two publications reported a loss of efficacy or increased dropout rates [39, 40]. Often, this very knowledge and awareness about the safety and efficacy of switching to new treatment options lack for prescribing physicians who rely on solid, evidence-based data to make treatment decisions [41– 43].

The regression results revealed that biosimilar IP rates were lower in French-speaking cantons. These regional variations may be caused by a variety of variables, including a higher concentration of medical services in urban regions, various patient characteristics, and cultural variations between cantons [44, 45]. The strongest barrier for biosimilar prescriptions was the increasing relative price difference between biosimilar and reference product. A possible explanation is that healthcare providers may have less experience with biosimilars with a higher price difference or may perceive them as less established and less proven than biosimilars with a lower price difference. This lack of familiarity or perceived risk may contribute to reluctance in prescribing biosimilars with a higher price difference. It is also important to consider the role of financial incentives and reimbursement policies in biosimilar prescribing: Currently, dispensation channels receive a larger profit margin when distributing the more expensive Confidential

BMJ Open

reference product under the present price-dependent margin [19]. This incentive system seems to be characteristic for Switzerland, as studies conducted in European countries did not find a relationship between price difference and biosimilar dissemination [46-48]. This might be attributed to several factors that differentiate Switzerland from other European countries: Cantonal differences in self-dispensing regulation, the country's different prescribing cultures and guidelines across its language regions, and capitation is implemented only in relatively few cases in Switzerland. In our analysis, male patients had more biosimilar IP. According to studies, women were often more skeptical of imitator drugs [23, 49-52] and they more frequently believe that they are more responsive to medications than men [53–55]. This can have an impact on their confidence in biosimilars, making female patients more aware of potential side effects or lack thereof. Biosimilar IPs were prescribed more frequently for fusion proteins compared to other categories which indicates an increased acceptance of imitator products in this drug class. This is supported by the relatively early market entry (2018) and by a meta-analysis showing comparable results in terms of efficacy and safety between reference product and biosimilars [56]. The strongest facilitator of biosimilar prescriptions was the amount of available biosimilars, which is in line with the findings of a prior study [46, 57]. Thus, the replacement of reference products by biosimilars seems to be better accepted in market segments with many imitator products. This finding is probably associated with the larger collective promotional effort from multiple players involved in the field to favor biosimilars; it is noteworthy that the largest adoption of biosimilars (Filgrastim) has been partially attributable to the fact that numerous biosimilar producers have commercialized different products, whereas there is only one company branding the reference product [58]. We found more biosimilar IPs for specialists and outpatient hospital physicians than GP. These findings are in line with existing literature that showed more biosimilars from specialists who reported a higher confidence in the comparability of biosimilars than GPs [59, 60]. Differences

```
Page 17 of 37
Confidential
```

BMJ Open

in care providers may be due to a variety of reasons: some healthcare providers may not be interested in stockpiling too many different medications and additional biosimilars, as they sometimes have large storage requirements (cooling, expiration date) and, thus, are associated with a significant financial risk [19]. In addition, it has been demonstrated that the dissemination of knowledge about new prescription options is heterogeneous because there are large learning costs associated with the treatment effects of new therapy options, which rely on the training and experience of the doctor [61]. Despite the fact that a previous study conducted in the context of generic drugs showed that older people are less likely to use imitator products when offered a choice [23, 57], we did not observe an age-dependency of biosimilar prescriptions.

The most valuable strength of this study is the extensive dataset of biosimilar prescriptions and potential influencing factors including sociodemographic, pharmaceutical and healthcare provider variables that were gathered from a representative sample of the Swiss population. The main limitation is the dearth of clinical data in our database (e.g., disease severity, clinical diagnosis, and reason for biosimilar utilization). However, we attempted to mitigate this by utilizing comorbidity measures based on reimbursed prescriptions to control for potential confounders. Another limitation of our study is that the follow-up period for the prescriptions was limited to 12 months. This time frame may have led to the exclusion of some prescriptions, potentially introducing bias into our results. Nevertheless, we observed that a significant number of patients (7'608, which accounts for 43.1% of the total) were given only one prescription, indicating that any bias arising from this limitation is expected to be insignificant. The relatively low market share of biosimilars compared to other EU countries highlighted in our research paper has important implications for the adoption and utilization of these products in Switzerland. Patients and physicians should be better and objectively informed about biosimilars in order to increase the acceptance [47, 48]. Also, for example, a clear and conspicuous indication of the prescribed active substance on the medication package for both

BMJ Open

the reference product and the imitator drug, for instance, could enhance patient confidence [42]. To address the perceived uncertainty and mistrust in imitator products, the evidence base should be further strengthened: direct evidence to help explain some of the practical aspects related to the use of biosimilars can be provided by retrospective studies, national databases and registries that track the long-term immunogenicity and safety of biosimilars [62–67]. In addition, the incentive system for healthcare providers seems to be designed in such a way that fewer biosimilars are prescribed. Thus, these incentives should be eliminated, for example by introducing a fixed margin that always remunerates the medication supplier the same regardless of the prescribed product (reference product or biosimilar). In order to exploit the cost saving potential of biosimilars, the aforementioned measures should be targeted to biosimilars with a noticeable price difference compared to their reference products, and that still possess relatively low biosimilar market share. Taking into account the findings presented in Table A6, notable examples of these biosimilars include Bevacizumab, Follitropin alfa, and Pegfilgrastim. However, the decision to prescribe an imitator drug should not merely be motivated by the cost-saving potential but should ensure appropriate health care provision for the patients. Therefore, it is crucial for healthcare providers to engage in shared-decision making with their patients to determine the most appropriate treatment option based on their individual medical situation.

a 347 CONCLUSION

348 Despite an increase of available biosimilars in Switzerland between 2016 and 2021, the 349 biosimilars market share remained relatively low over time. In addition, biological therapy 350 switches were rarely observed, highlighting the importance of IPs. Our study suggests that 351 greater acceptance and higher utilization of biosimilars may be associated with the availability

~		
3		
4		
5		
6		
7		
8		
9		
9	_	
1	0	
1	1	
1	2	
1	3	
1	0 1 2 3 4 5 6	
1	-	
1	2	
1	6	
1	7	
1	8	
	9	
2	ი	
2	1	
2 ~	1	
2	2	
2	3	
2	4	
2	23456789	
- ว	6	
2 ว	7	
2	/	
2	8	
2	9	
3	0	
3	1	
3	2	
3		
3	4	
3	5	
3	6	
3	7	
3	8	
2	9	
	0	
4		
4		
4	3	
4	4	
4	5	
4		
-	_	
4		
4	_	
4	9	
5	0	
5	1	
5	י כ	
5		
5	4	
5	5	
5	6	
5	7	
5	8	
ן ב	9	
د	9	

60

of different package sizes and lower price differences between biosimilars and their reference products. Patients and providers should be informed about biosimilars in a timely and appropriate manner, and outdated incentive structures have to be changed to increase the use of biosimilars.

[please insert Appendix here]

Funding This research received no specific grant from any funding agency in the public,commercial or not-for-profit sectors

358 **Competing interests** The authors declare that they have no conflicts of interest. Helsana Group 359 provided support in the form of salaries for authors (KM, MN, CH, EB), without having any 360 additional role in the study design, data collection and analysis, decision to publish, or 361 preparation of the manuscript.

362 Author contributions KW, MN and CH designed the study. MN did data preparation and data 363 management. MN and KW performed the statistical analyses, with the contribution of SB, CH 364 and EB. KW drafted the main manuscript text. All authors assisted in the interpretation of the 365 results and critically revised the manuscript. All authors have read and approved the manuscript.

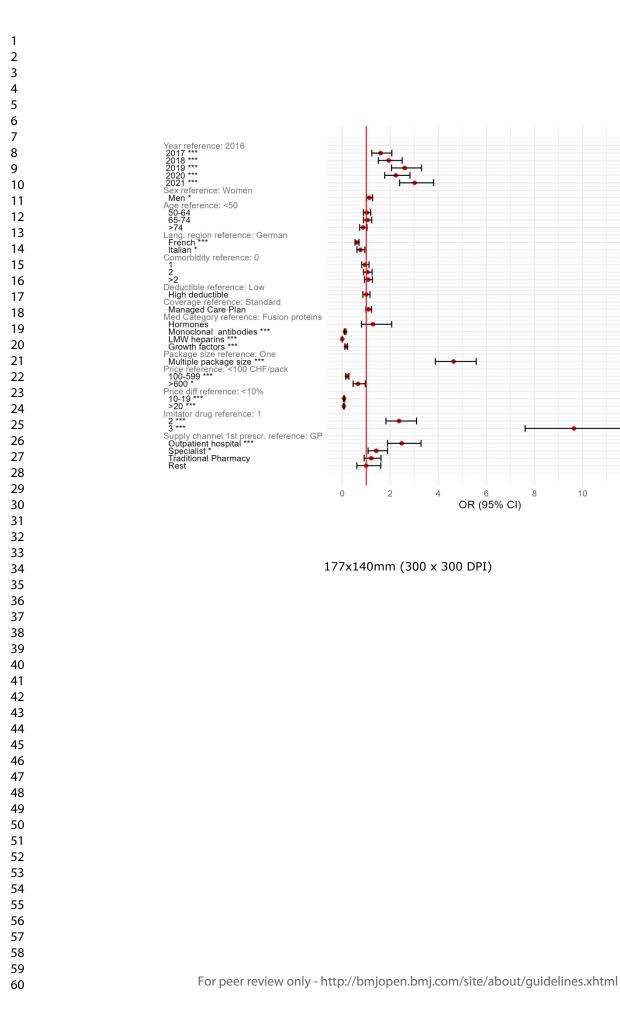
Data availability Helsana provides the data that support up the findings of this research. (<u>https://www.helsana.ch/en/helsana-group</u>). These data, which were used under license for the present study and are not accessible to the general public, are subject to restrictions. But with Helsana's consent and upon reasonable request, data are available from the authors (gesundheitskompetenz@helsana.ch).

3
4
5
6
7
, 8
o 9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
43 44
45
46
47
48
49

371	Ethics approval The data used in this study were retrospective, pre-existing, de-identified, and
372	anonymous in accordance with privacy laws and regulations. This study was free from the
373	provisions of the Swiss Federal Law on Human Research because it used retrospective, de-
374	identified, and anonymized data (Humanforschungsgesetz) [68] and was thus exempted from
375	receiving clearance from the regional ethics committee (the ethical committee of the Canton of
376	Zurich) as well as from obtaining the patients' informed consent.
377	Consent to participate Not applicable.
378	Consent to publish Not applicable.
570	
270	
379	Acknowledgements Not applicable.
200	Deferences
380	References
381	1. Doughman E. Number of drugs in global R&D pipeline projected to reach record high in
382	2019. 2019. https://www.rdmag.com/article/2019/05/number-drugs-global-r-d-pipeline-
383	projected-reach-record-high-2019.
384 385	2. Walsh G. Biopharmaceutical benchmarks 2018. Nature Biotechnology. 2018;36:1136–45. doi:10.1038/nbt.4305.
385	3. Farhat F, Torres A, Park W, Lima Lopes G de, Mudad R, Ikpeazu C, Abi Aad S. The
387	Concept of Biosimilars: From Characterization to Evolution-A Narrative Review.
388	Oncologist. 2018;23:346–52. doi:10.1634/theoncologist.2017-0126.
389	4. Kresse G-B. Biosimilarsscience, status, and strategic perspective. Eur J Pharm
390	Biopharm. 2009;72:479–86. doi:10.1016/j.ejpb.2009.02.014.
391 392	5. FDA. Biosimilar and interchangeable products. 2019.
392 393	http://www.fda.gov/drugs/biosimilars/biosimilar-and-inter-changeable-products.6. Interpharma. Positionspapier zu Biosimilars. 2013.
394	https://www.interpharma.ch/sites/default/files/positionspa-pier_biosimilars_juni-
	2013.pdf.
395	7. Schur N., Twerenbold S., Reinau D., Schwenkglenks M., Meier C.R. Helsana-
395 396	Arzneimittelreport für die Schweiz 2020. 2020. https://www.helsana.ch/de/helsana-
396 397	gruppe/medien-publikationen/helsana-reports/arzneimittelreport.html.
396 397 398	• • • • • •
396 397 398 399	8. Schur N., Twerenbold S., Reinau D., Schwenkglenks M., Meier C.R. Helsana-
396 397 398	• • • • • •

2			
3	402	9.	GaBI Journal Editor, GaBI Online Editor. Patent expiry dates for biologicals: 2017
4	403		update. GaBI Journal. 2017:29–35.
5 6	404	10.	EMA. European Medicines Agency. 2019. https://www.ema.europa.eu/en.
0 7	405		Frantzen L, Cohen J-D, Tropé S, Beck M, Munos A, Sittler M-A, et al. Patients'
8	406		information and perspectives on biosimilars in rheumatology: A French nation-wide
9	407		survey. Joint Bone Spine. 2019;86:491–6. doi:10.1016/j.jbspin.2019.01.001.
10	408	12.	Halimi V, Daci A, Ancevska Netkovska K, Suturkova L, Babar Z-U-D, Grozdanova A.
11	409		Clinical and Regulatory Concerns of Biosimilars: A Review of Literature. Int J Environ
12	410		Res Public Health 2020. doi:10.3390/ijerph17165800.
13	411	13	Armuzzi A, Avedano L, Greveson K, Kang T. Nurses are Critical in Aiding Patients
14 15	412	10.	Transitioning to Biosimilars in Inflammatory Bowel Disease: Education and
15 16	413		Communication Strategies. J Crohns Colitis. 2019;13:259–66. doi:10.1093/ecco-
17	414		jcc/jjy150.
18	415	14	Leonard E, Wascovich M, Oskouei S, Gurz P, Carpenter D. Factors Affecting Health
19	416	17.	Care Provider Knowledge and Acceptance of Biosimilar Medicines: A Systematic
20	417		Review. J Manag Care Spec Pharm. 2019;25:102–12. doi:10.18553/jmcp.2019.25.1.102.
21	418	15	Cohen HP, Blauvelt A, Rifkin RM, Danese S, Gokhale SB, Woollett G. Switching
22	419	15.	Reference Medicines to Biosimilars: A Systematic Literature Review of Clinical
23 24	420		Outcomes. Drugs. 2018;78:463–78. doi:10.1007/s40265-018-0881-y.
24 25	420	16	Haller E, Watzke B, Blozik E, Rosemann T, Reich O, Huber CA, Wolf M. Antidepressant
26	421	10.	prescription practice and related factors in Switzerland: a cross-sectional analysis of
27	422		health claims data. BMC Psychiatry. 2019;19:196. doi:10.1186/s12888-019-2178-4.
28	423	17	
29		1/.	Huber CA, Schwenkglenks M, Rapold R, Reich O. Epidemiology and costs of diabetes
30	425		mellitus in Switzerland: an analysis of health care claims data, 2006 and 2011. BMC
31	426	10	Endocrine Disorders. 2014;14:44. doi:10.1186/1472-6823-14-44.
32 33	427	18.	Huber CA, Szucs TD, Rapold R, Reich O. Identifying patients with chronic conditions
33 34	428		using pharmacy data in Switzerland: an updated mapping approach to the classification of
35	429	10	medications. BMC Public Health. 2013;13:1030. doi:10.1186/1471-2458-13-1030.
36	430	19.	Irene Kobler, Golda Lenzin, Florian Liberatore, Johannes Pöhlmann, Marion Schmidt,
37	431		Simon Wieser. Biosimilars in der Schweiz: Medizin gegen die steigenden
38	432	20	Gesundheitskosten? 2020.
39	433	20.	EY. Global biosimilar policy comparison. 2017. https://docplayer.net/100090337-Global-
40 41	434		biosimilar-policy-comparison-overview-of-biosimilar-policies-across-nine-major-
41 42	435	0.1	markets-in-the-battle-to-control-health-care-sustainability.html.
43	436		Daniel Grandt, Veronika Lappe, Ingrid Schubert. BARMER Arzneimittelreport. 2021.
44	437	22.	Pro Biosimilars. Biosimilars in Zahlen 2019: Wie Biosimilars die deutsche
45	438		Versorgungslandschaft verändern. 2019.
46	439		https://probiosimilars.de/app/uploads/2022/06/Biosimilars-in-Zahlen-2019_DS.pdf.
47	440		Accessed 11 Oct 2022.
48	441	23.	Shrank WH, Cox ER, Fischer MA, Mehta J, Choudhry NK. Patients' perceptions of
49 50	442		generic medications. Health Aff (Millwood). 2009;28:546–56.
50	443		doi:10.1377/hlthaff.28.2.546.
52	444	24.	Himmel W, Simmenroth-Nayda A, Niebling W, Ledig T, Jansen RD, Kochen MM, et al.
53	445		What do primary care patients think about generic drugs? Int J Clin Pharmacol Ther.
54	446		2005;43:472–9. doi:10.5414/cpp43472.
55	447	25.	Kjoenniksen I, Lindbaek M, Granas AG. Patients' attitudes towards and experiences of
56	448		generic drug substitution in Norway. Pharm World Sci. 2006;28:284–9.
57 58	449		doi:10.1007/s11096-006-9043-5.
58 59			
60			

1			
2 3	450	26	
4	450	26.	Rathe J, Larsen P, Andersen M, Paulsen M, Jarbøl D, Thomsen J, Soendergaard J.
5	451		Associations between generic substitution and patients' attitudes, beliefs and experiences.
6	452	27	Eur J Clin Pharmacol. 2013;69:1827–36. doi:10.1007/s00228-013-1539-z.
7	453	27.	Daly MJ, Guignard B, Nendaz M. Generic and biosimilar drug substitution: a panacea?
8	454		[Médicaments génériques et biosimilaires: une panacée?]. Rev Med Suisse.
9 10	455	20	2015;11:1909-12, 1914.
11	456	28.	Cesaro S, Tintori V, Nesi F, Schiavello E, Calore E, Dallorso S, et al. A prospective study
12	457		on the efficacy of mobilization of autologous peripheral stem cells in pediatric
13	458		oncohematology patients. Transfusion. 2013;53:1501–9. doi:10.1111/j.1537-
14	459	20	2995.2012.03911.x.
15	460	29.	Manko J, Walter-Croneck A, Jawniak D, Grzasko N, Gorska-Kosicka M, Cioch M,
16	461		Dmoszynska A. A clinical comparison of the efficacy and safety of biosimilar G-CSF and
17 18	462		originator G-CSF in haematopoietic stem cell mobilization. Pharmacol Rep.
19	463	20	2014;66:239–42. doi:10.1016/j.pharep.2013.09.005.
20	464	30.	Michallet M, Luporsi E, Soubeyran P, Amar NA, Boulanger V, Carreiro M, et al.
21	465		BiOsimilaRs in the management of anaemia secondary to chemotherapy in HaEmatology
22	466		and Oncology: results of the ORHEO observational study. BMC Cancer. 2014;14:503.
23	467	21	doi:10.1186/1471-2407-14-503.
24 25	468	31.	Mysler E, Azevedo VF, Danese S, Alvarez D, Iikuni N, Ingram B, et al. Biosimilar-to-
25 26	469		Biosimilar Switching: What is the Rationale and Current Experience? Drugs.
27	470	22	2021;81:1859–79. doi:10.1007/s40265-021-01610-1.
28	471	32.	Moots R, Azevedo V, Coindreau JL, Dörner T, Mahgoub E, Mysler E, et al. Switching
29	472		Between Reference Biologics and Biosimilars for the Treatment of Rheumatology,
30	473		Gastroenterology, and Dermatology Inflammatory Conditions: Considerations for the
31	474	22	Clinician. Curr Rheumatol Rep. 2017;19:37. doi:10.1007/s11926-017-0658-4.
32 33	475	33.	Danese S, Fiorino G, Raine T, Ferrante M, Kemp K, Kierkus J, et al. ECCO Position
34	476		Statement on the Use of Biosimilars for Inflammatory Bowel Disease-An Update. J
35	477	24	Crohns Colitis. 2017;11:26–34. doi:10.1093/ecco-jcc/jjw198.
36	478	34.	Cohen HP, Blauvelt A, Rifkin RM, Danese S, Gokhale SB, Woollett G. Switching
37	479		Reference Medicines to Biosimilars: A Systematic Literature Review of Clinical
38	480	25	Outcomes. Drugs. 2018;78:463–78. doi:10.1007/s40265-018-0881-y.
39 40	481	33.	Håkonsen H, Eilertsen M, Borge H, Toverud E-L. Generic substitution: additional
40 41	482		challenge for adherence in hypertensive patients? Curr Med Res Opin. 2009;25:2515–21.
42	483	26	doi:10.1185/03007990903192223.
43	484 485	30.	Blackwell K, Semiglazov V, Krasnozhon D, Davidenko I, Nelyubina L, Nakov R, et al.
44	485		Comparison of EP2006, a filgrastim biosimilar, to the reference: a phase III, randomized, double-blind clinical study in the prevention of severe neutropenia in patients with breast
45	480		cancer receiving myelosuppressive chemotherapy. Ann Oncol. 2015;26:1948–53.
46	487		doi:10.1093/annonc/mdv281.
47 48	488 489	27	Blauvelt A, Lacour J-P, Fowler JF, Schuck E, Jauch-Lembach J, editor. A phase III
49	489	57.	confirmatory study comparing GP2017 with reference adalimumab in patients with
50	490 491		moderate-tosevere chronic plaque psoriasis: 51 week results from the ADACCESS study;
51	492		2017.
52	492	20	Griffiths CEM, Thaçi D, Gerdes S, Arenberger P, Pulka G, Kingo K, et al. The
53	493	50.	EGALITY study: a confirmatory, randomized, double-blind study comparing the
54 55	494 495		efficacy, safety and immunogenicity of GP2015, a proposed etanercept biosimilar, vs. the
55 56	493 496		originator product in patients with moderate-to-severe chronic plaque-type psoriasis. Br J
57	490 497		Dermatol. 2017;176:928–38. doi:10.1111/bjd.15152.
58	497	30	Yazici Y, Xie L, Ogbomo A, Parenti D, Goyal K, Teeple A. A descriptive analysis of
59	498	59.	real-world treatment patterns in a Turkish rheumatology population that continued
60	コノブ		iour worre treatment patients in a rutkish meumatology population that continucu


2			
3	500		innovator infliximab (Remicade) therapy or switched to biosimilar infliximab. Arthritis
4	501		Rheumatol. 2016;68.
5	502	40	Kang Y-S, Moon HH, Lee SE, Lim YJ, Kang HW. Clinical Experience of the Use of CT-
6	503	10.	P13, a Biosimilar to Infliximab in Patients with Inflammatory Bowel Disease: A Case
7 8	504		Series. Digestive Diseases and Sciences. 2015;60:951–6. doi:10.1007/s10620-014-3392-
9	505		Z.
10	506	41	NHS England and NHS improvement. What is a biosimilar medicine? 2019.
11	507		https://www.england.nhs.uk/wp-content/uploads/2019/05/what-is-a-biosimilar-medicine-
12	508		guide-v2.pdf. Accessed 5 Oct 2022.
13	500	42	Mayoral-Zavala A, Esquivel-Aguilar A, Del Real-Calzada CM, Gutiérrez-Grobe Y,
14	510	72.	Ramos-García J, Rocha-Ramírez JL, et al. Update on biosimilars in inflammatory bowel
15 16	511		disease: Position and recommendations in Mexico. [Actualización sobre los
17	512		medicamentos biocomparables en la enfermedad inflamatoria intestinal: posición y
18	512		recomendación en México]. Rev Gastroenterol Mex (Engl Ed). 2018;83:414–23.
19	515		doi:10.1016/j.rgmx.2018.03.003.
20	515	13	Cantini F, Benucci M. Focus on biosimilar etanercept - bioequivalence and
21	516	чЭ.	interchangeability. Biologics. 2018;12:87–95. doi:10.2147/BTT.S126854.
22	517	11	Busato A, Matter P, Künzi B, Goodman D. Geographic variation in the cost of
23 24	518	44.	ambulatory care in Switzerland. J Health Serv Res Policy. 2012;17:18–23.
24	518		doi:10.1258/jhsrp.2011.010056.
26	520	15	Panczak R, Luta X, Maessen M, Stuck AE, Berlin C, Schmidlin K, et al. Regional
27	520 521	45.	Variation of Cost of Care in the Last 12 Months of Life in Switzerland: Small-area
28	521		Analysis Using Insurance Claims Data. Med Care. 2017;55:155–63.
29	522 523		doi:10.1097/MLR.000000000000634.
30	525 524	16	Rémuzat C, Dorey J, Cristeau O, Ionescu D, Radière G, Toumi M. Key drivers for market
31 32	524 525	40.	penetration of biosimilars in Europe. J Mark Access Health Policy. 2017;5:1272308.
33	525 526		doi:10.1080/20016689.2016.1272308.
34	520 527	17	Bocquet F, Paubel P, Fusier I, Cordonnier A-L, Le Pen C, Sinègre M. Biosimilar
35	528	47.	granulocyte colony-stimulating factor uptakes in the EU-5 markets: a descriptive analysis.
36	528 529		Appl Health Econ Health Policy. 2014;12:315–26. doi:10.1007/s40258-014-0087-8.
37	530	18	Bocquet F, Paubel P, Fusier I, Cordonnier A-L, Sinègre M, Le Pen C. Biosimilar versus
38 39	531	т 0.	patented erythropoietins: learning from 5 years of European and Japanese experience.
39 40	532		Appl Health Econ Health Policy. 2015;13:47–59. doi:10.1007/s40258-014-0125-6.
41	533	49	Drozdowska A, Hermanowski T. Exploring the opinions and experiences of patients with
42	534	т).	generic substitution: a representative study of Polish society. Int J Clin Pharm.
43	535		2015;37:68–75. doi:10.1007/s11096-014-0041-8.
44	536	50	Heikkilä R, Mäntyselkä P, Ahonen R. Price, familiarity, and availability determine the
45	537	50.	choice of drug - a population-based survey five years after generic substitution was
46 47	538		introduced in Finland. BMC Clin Pharmacol. 2011;11:20. doi:10.1186/1472-6904-11-20.
47 48	539	51	Rathe J, Søndergaard J, Jarbøl DE, Hallas J, Andersen M. Patients' concern about their
49	540	51.	medicine after a generic switch: a combined cross-sectional questionnaire and register
50	540 541		study. Pharmacoepidemiol Drug Saf. 2014;23:965–73. doi:10.1002/pds.3671.
51	542	52	Shrank WH, Cadarette SM, Cox E, Fischer MA, Mehta J, Brookhart AM, et al. Is there a
52	543	54.	relationship between patient beliefs or communication about generic drugs and
53 54	544		medication utilization? Med Care. 2009;47:319–25.
54 55	545		doi:10.1097/MLR.0b013e31818af850.
56	546	53	Olsson E, Svensberg K, Wallach-Kildemoes H, Carlsson E, Hällkvist C, Kaae S,
57	547	55.	Sporrong SK. Swedish patients' trust in the bioequivalence of interchangeable generics.
58	548		What factors are important for low trust? Pharm Pract (Granada). 2018;16:1298.
59	549		doi:10.18549/PharmPract.2018.04.1298.
60	2.17		

1			
2 3	550	51	Chanman SCE Hama D. Chatan A. Hulting D. Smithaan WII. Detiontal normanatives on
4	550	54.	Chapman SCE, Horne R, Chater A, Hukins D, Smithson WH. Patients' perspectives on
5	551 552		antiepileptic medication: relationships between beliefs about medicines and adherence
6	552		among patients with epilepsy in UK primary care. Epilepsy Behav. 2014;31:312–20.
7	553		doi:10.1016/j.yebeh.2013.10.016.
8	554	33.	Faasse K, Grey A, Horne R, Petrie KJ. High perceived sensitivity to medicines is
9 10	555		associated with higher medical care utilisation, increased symptom reporting and greater
10 11	556		information-seeking about medication. Pharmacoepidemiol Drug Saf. 2015;24:592–9.
12	557		doi:10.1002/pds.3751.
13	558	56.	Lee YH, Song GG. Comparative efficacy and safety of etanercept biosimilars in
14	559		comparison with etanercept in patients with rheumatoid arthritis who have insufficient
15	560		response to methotrexate: A network meta-analysis. Int J Clin Pharmacol Ther.
16	561		2021;59:760–7. doi:10.5414/CP204049.
17	562	57.	Decollogny A, Eggli Y, Halfon P, Lufkin TM. Determinants of generic drug substitution
18 10	563		in Switzerland. BMC Health Serv Res. 2011;11:17. doi:10.1186/1472-6963-11-17.
19 20	564	58.	Daubenfeld T, Dassow J, Keßler M, Schulze J. Understanding the market dynamics of
20	565		biosimilars. Journal of Business Chemistry. 2016.
22	566	59.	Shannon Coughlin. Market Research for the Pharmaceutical Benefits Schedule (PBS) and
23	567		Biosimilar Medicines. 2016. https://docsbay.net/market-research-for-the-pharmaceutical-
24	568		benefits-schedule-pbs-and-biosimilar-medicines.
25	569	60.	O'Callaghan J, Bermingham M, Leonard M, Hallinan F, Morris JM, Moore U, Griffin BT.
26	570		Assessing awareness and attitudes of healthcare professionals on the use of biosimilar
27 28	571		medicines: A survey of physicians and pharmacists in Ireland. Regul Toxicol Pharmacol.
28 29	572		2017;88:252–61. doi:10.1016/j.yrtph.2017.06.013.
30	573	61.	Currie J, MacLeod WB, van Parys J. Provider practice style and patient health outcomes:
31	574		The case of heart attacks. Journal of Health Economics. 2016;47:64–80.
32	575		doi:10.1016/j.jhealeco.2016.01.013.
33	576	62.	Ebbers HC, Muenzberg M, Schellekens H. The safety of switching between therapeutic
34	577		proteins. Expert Opin Biol Ther. 2012;12:1473-85. doi:10.1517/14712598.2012.711308.
35	578	63.	El Zorkany B, Al Ani N, Al Emadi S, Al Saleh J, Uthman I, El Dershaby Y, et al.
36	579		Biosimilars in rheumatology: recommendations for regulation and use in Middle Eastern
37 38	580		countries. Clin Rheumatol. 2018;37:1143–52. doi:10.1007/s10067-018-3982-9.
30 39	581	64	Fiorino G, Caprioli F, Daperno M, Mocciaro F, Principi M, Viscido A, et al. Use of
40	582	0	biosimilars in inflammatory bowel disease: a position update of the Italian Group for the
41	583		Study of Inflammatory Bowel Disease (IG-IBD). Dig Liver Dis. 2019;51:632–9.
42	584		doi:10.1016/j.dld.2019.02.004.
43	585	65	Kay J, Dörner T, Emery P, Kvien TK, Breedveld FC. Clinical trial and 'real-world' data
44	586	00.	support switching from a bio-originator to its biosimilar. Ann Rheum Dis. 2020;79:e44.
45	587		doi:10.1136/annrheumdis-2018-214994.
46 47	588	66	Wiland P, Batko B, Brzosko M, Kucharz EJ, Samborski W, Świerkot J, et al. Biosimilar
47	589	00.	switching - current state of knowledge. Reumatologia. 2018;56:234–42.
49	590		doi:10.5114/reum.2018.77975.
50	590 591	67	Sigurdardottir V, Svärd A. Repeated switches between reference product etanercept and
51		07.	
52	592		biosimilar do not affect disease activity or retention rate of etanercept over 24 months - a
53	593		cohort study with historical controls. Joint Bone Spine. 2019;86:529–30.
54	594	(0	doi:10.1016/j.jbspin.2018.12.003.
55 56	595	68.	Federal act of 30 September 2011 on research involving human beings (human research
56 57	596		act, HRA). 2019. https://www.admin.ch/opc/en/classified-
58	597		compilation/20061313/index.html. Accessed 15 Jul 2022.
59			
60			

1 2 3 4 5 6 7 8 9 10 11 12	598	Figure title legend Figure 1 Determinants of biosimilar initial prescription (logistic regression)
13 14 15 16 17 18 19 20 21 22 23 24 25		
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		

BMJ Open

10

 BMJ Open

		Reference Product			Bios	similar	
ATC	medication	Dose (mg) / unit	cost (in CHF)	medication	Reimburment date	Dose (mg) / unit	cost (in CHF)
Low-molecular-weig	ht heparins				I		
B01	Clexane	20 / 10	41	Inhixa	01.08.2020	20 / 10	38.55
B01	Clexane	20 / 50	139.55	Inhixa	01.08.2020	20 / 50	127.25
B01	Clexane	40 / 2	17.35	Inhixa	01.08.2020	40 / 2	16.45
B01	Clexane	40 / 10	62.45	Inhixa	01.08.2020	40 / 10	57.85
B01	Clexane	40 / 50	246.75	Inhixa	01.08.2020	40 / 50	223.7
B01	Clexane	60 / 10	76.65	Inhixa	01.08.2020	60 / 10	70.6
B01	Clexane	80 / 10	102.3	Inhixa	01.08.2020	80 / 10	93.7
B01	Clexane	100 / 10	123.75	Inhixa	01.08.2020	100 / 10	113
B01	Clexane	120 / 10	134.9	Inhixa	01.08.2020	120 / 10	123.05
B01	Clexane	150 / 10	161.3	Inhixa	01.08.2020	150 / 10	146.8
B01	Clexane	300 / 1	41.3	Inhixa	01.08.2020	300 / 1	38.8
Growth factors	·						
L03	Neupogen	0.3 / 5	531.1	Accofil	01.11.2019	0.3 / 5	479.65
				Filgrastim-Teva	01.03.2010	0.3 / 5	479.65
				Zarzio	01.05.2010	0.3 / 5	479.65
L03	Neupogen	0.48 / 5	740.9	Accofil	01.11.2019	0.48 / 5	668.45
				Filgrastim-Teva	01.03.2010	0.48 / 5	668.45
				Zarzio	01.05.2010	0.48 / 5	668.45
L03	Neulasta	6 / 1	1668.75	Grasustek	01.09.2021	6 / 1	1266.95
				Pelgraz	01.11.2019	6 / 1	1266.85
				Pelgraz	01.11.2019	6 / 1	1266.85
				Pelmeg	01.01.2020	6 / 1	857.55
				Ziextenzo	01.03.2020	6 / 1	1266.95
				Fulphila	01.06.2020	6 / 1	1266.85
B03	Eprex	0.008 / 6	71.5	Binocrit	01.10.2009	0.008 / 6	66.15
B03	Eprex	0.017 / 6	126.55	Binocrit	01.10.2009	0.017 / 6	115.7
B03	Eprex	0.025 / 6	181.65	Binocrit	01.10.2009	0.025 / 6	165.25
B03	Eprex	0.037 / 6	236.75	Binocrit	01.10.2009	0.037 / 6	214.7
B03	Eprex	0.046 / 6	291.8	Binocrit	01.10.2009	0.046 / 6	264.5
B03	Eprex	0.092 / 6	567.2	Binocrit	01.10.2009	0.092 / 6	512.1
Hormones							
A10	Lantus	10.9 / 5	81.85	Abasaglar	01.09.2015	10.9 / 5	68.4
G03	GONAL-F	0.022 / 1	156.4	Ovaleap	01.11.2018	0.022 / 1	122.05
G03	GONAL-F	0.033 / 1	226.45	Ovaleap	01.11.2018	0.033 / 1	174.95

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

G03	GONAL-F	0.066 / 1	430.65	Ovaleap	01.11.2018	0.066 / 1	329.1
H01	Genotropin	5 / 1	221.65	Omnitrope	01.11.2010	5 / 1	201.1
H01	Genotropin	5 / 5	1041.9	Omnitrope	01.11.2010	5 / 5	940
H05	Forsteo	0.25 / 1	412.75	Movymia	01.09.2019	0.25 / 1	340.75
				Terrosa	01.09.2019	0.25 / 1	340.75
				Terrosa	01.09.2019	0.25 / 1	340.75
Fusion proteins							
L01	MabThera	100 / 2	627.3	Rixathon	01.09.2018	100 / 2	505.5
				Truxima	01.01.2019	100 / 2	505.5
L01	MabThera	500 / 1	1515.65	Rixathon	01.09.2018	500 / 1	1225.7
				Truxima	01.01.2019	500 / 1	1225.7
L01	Herceptin	150 / 1	686.4	Herzuma	01.12.2021	150 / 1	562.45
	•			Trazimera	01.10.2019	150 / 1	562.45
				Kanjinti	01.02.2020	150 / 1	562.45
				Ogivri	01.09.2020	150 / 1	562.45
L01	Herceptin	440 / 1	1932.85	Herzuma	01.12.2021	150 / 1	1586.7
	k			Trazimera	01.10.2019	150 / 1	1586.7
				Kanjinti	01.02.2020	150 / 1	1586.7
				Ogivri	01.09.2020	150 / 1	1586.7
L01	Avastin	100 / 1	410.65	Oyavas	01.08.2021	100 / 1	312.1
				Bevacizumab-Teva	01.07.2021	100 / 1	312.1
				MVASI	01.07.2020	100 / 1	312.1
				Zirabev	01.08.2020	100 / 1	312.1
L01	Avastin	400 / 1	1469.5	Oyavas	01.08.2021	400 / 1	1117.5
				Bevacizumab-Teva	01.07.2021	400 / 1	1117.5
				MVASI	01.07.2020	400 / 1	1117.5
				Zirabev	01.08.2020	400 / 1	1117.5
L04	Enbrel	25 / 4	682.35	Benepali	01.04.2019	25 / 4	515.8
				Erelzi	01.07.2018	25 / 4	515.8
L04	Enbrel	50 / 2	669.05	Benepali	01.04.2019	50 / 2	504.3
				Erelzi	01.07.2018	50 / 2	505.9
L04	Remicade	100 / 1	695.75	Inflectra	01.08.2016	100 / 1	627.25
				Remsima	01.01.2016	100 / 1	627.25
L04	Humira	20 / 2	661.8	Hyrimoz	01.11.2019	20 / 2	500.45
L04	Humira	40 / 1	661.8	Abrilada	01.06.2021	40 / 1	500.45
				Amgevita	01.11.2019	40 / 1	500.45
				Hyrimoz	01.11.2019	40 / 1	500.45
				Idacio	01.08.2020	40 / 1	500.45
				Imraldi	01.07.2020	40 / 1	498.55
				Hulio	01.08.2020	40 / 1	500.45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5 Tab l	e A2 First Presc	riptions: Refer	ence Product	s (active subs	tance)		
Active substance	total	2016	2017	2018	2019	2020	2021
9 n	14'987	433 (2.9%)	394 (2.6%)	501 (3.3%)	861 (5.7%)	4'525 (30.2%)	8'273 (55.2%)
10 Adalimumab	369 (2.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	24 (2.8%)	182 (4.0%)	163 (2.0%)
11 Bevacizumab	267 (1.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	96 (2.1%)	171 (2.1%)
12 Enoxaparin	9'785 (65.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	3'047 (67.3%)	6'738 (81.4%)
¹³ Epoetin alfa	136 (0.9%)	20 (4.6%)	30 (7.6%)	19 (3.8%)	23 (2.7%)	24 (0.5%)	20 (0.2%)
14 Etanercept	176 (1.2%)	0 (0.0%)	0 (0.0%)	37 (7.4%)	55 (6.4%)	38 (0.8%)	46 (0.6%)
15 Filgrastim	658 (4.4%)	158 (36.5%)	134 (34.0%)	107 (21.4%)	85 (9.9%)	104 (2.3%)	70 (0.8%)
17 Follitropin alfa	747 (5.0%)	0 (0.0%)	0 (0.0%)	41 (8.2%)	182 (21.1%)	226 (5.0%)	298 (3.6%)
18 Infliximab	530 (3.5%)	141 (32.6%)	103 (26.1%)	74 (14.8%)	68 (7.9%)	68 (1.5%)	76 (0.9%)
19 Insulin glargin	640 (4.3%)	113 (26.1%)	127 (32.2%)	126 (25.1%)	102 (11.8%)	88 (1.9%)	84 (1.0%)
²⁰ Pegfilgrastim	457 (3.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	35 (4.1%)	225 (5.0%)	197 (2.4%)
²¹ Rituximab	661 (4.4%)	0 (0.0%)	0 (0.0%)	97 (19.4%)	203 (23.6%)	178 (3.9%)	183 (2.2%)
22 23 Somatropin	5 (0.0%)	1 (0.2%)	0 (0.0%)	0 (0.0%)	2 (0.2%)	2 (0.0%)	0 (0.0%)
23 Teriparatid	304 (2.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	55 (6.4%)	134 (3.0%)	115 (1.4%)
24 Trastuzumab	252 (1.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	27 (3.1%)	113 (2.5%)	112 (1.4%)

Table A3 First Prescriptions: Biosimilars (active substance)

22								
32 33	Active substance	total	2016	2017	2018	2019	2020	2021
34	n	3'489	261 (7.5%)	344 (9.9%)	393 (11.3%)	616 (17.7%)	809 (23.2%)	1'066 (30.6%)
35	Adalimumab	165 (4.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	7 (1.1%)	63 (7.8%)	95 (8.9%)
36	Bevacizumab	28 (0.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	5 (0.6%)	23 (2.2%)
37	Enoxaparin	76 (2.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	7 (0.9%)	69 (6.5%)
38	Epoetin alfa	34 (1.0%)	8 (3.1%)	2 (0.6%)	7 (1.8%)	9 (1.5%)	3 (0.4%)	5 (0.5%)
39	Etanercept	185 (5.3%)	0 (0.0%)	0 (0.0%)	10 (2.5%)	49 (8.0%)	69 (8.5%)	57 (5.3%)
40	Filgrastim	1'854 (53.1%)	243 (93.1%)	271 (78.8%)	295 (75.1%)	342 (55.5%)	336 (41.5%)	367 (34.4%)
41	Follitropin alfa	219 (6.3%)	0 (0.0%)	0 (0.0%)	1 (0.3%)	40 (6.5%)	71 (8.8%)	107 (10.0%)
42	Infliximab	281 (8.1%)	7 (2.7%)	31 (9.0%)	49 (12.5%)	54 (8.8%)	61 (7.5%)	79 (7.4%)
43	Insulin glargin	141 (4.0%)	0 (0.0%)	39 (11.3%)	29 (7.4%)	33 (5.4%)	21 (2.6%)	19 (1.8%)
44	Pegfilgrastim	129 (3.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	32 (4.0%)	97 (9.1%)
45	Rituximab	318 (9.1%)	0 (0.0%)	0 (0.0%)	1 (0.3%)	78 (12.7%)	120 (14.8%)	119 (11.2%)
46	Somatropin	5 (0.1%)	3 (1.1%)	1 (0.3%)	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
47	Teriparatid	47 (1.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	4 (0.6%)	20 (2.5%)	23 (2.2%)
48	Trastuzumab	7 (0.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	1 (0.1%)	6 (0.6%)

Table A4 Rest prescriptions: Reference Products (active substance)

6								
7	Active substance	total	2016	2017	2018	2019	2020	2021
8	n	33'958	1'293 (3.8%)	1'645 (4.8%)	1'736 (5.1%)	3'662 (10.8%)	9'939 (29.3%)	15'683 (46.2%)
9 10	Adalimumab	3'070 (9.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	41 (1.1%)	1'354 (13.6%)	1'675 (10.7%)
11	Bevacizumab	2'109 (6.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	481 (4.8%)	1'628 (10.4%)
12	Enoxaparin	8'669 (25.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2'343 (23.6%)	6'326 (40.3%)
13	Epoetin alfa	2'052 (6.0%)	234 (18.1%)	385 (23.4%)	408 (23.5%)	200 (5.5%)	422 (4.2%)	403 (2.6%)
14	Etanercept	791 (2.3%)	0 (0.0%)	0 (0.0%)	90 (5.2%)	310 (8.5%)	198 (2.0%)	193 (1.2%)
15	Filgrastim	2'252 (6.6%)	408 (31.6%)	428 (26.0%)	403 (23.2%)	275 (7.5%)	403 (4.1%)	335 (2.1%)
16	Follitropin alfa	1'914 (5.6%)	0 (0.0%)	0 (0.0%)	19 (1.1%)	502 (13.7%)	561 (5.6%)	832 (5.3%)
17	Infliximab	2'973 (8.8%)	543 (42.0%)	660 (40.1%)	424 (24.4%)	434 (11.9%)	435 (4.4%)	477 (3.0%)
18 19	Insulin glargin	1'036 (3.1%)	108 (8.4%)	170 (10.3%)	134 (7.7%)	443 (12.1%)	112 (1.1%)	69 (0.4%)
20	Pegfilgrastim	1'426 (4.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	78 (2.1%)	699 (7.0%)	649 (4.1%)
21	Rituximab	3'148 (9.3%)	0 (0.0%)	0 (0.0%)	258 (14.9%)	1'177 (32.1%)	814 (8.2%)	899 (5.7%)
22	Somatropin	7 (0.0%)	0 (0.0%)	2 (0.1%)	0 (0.0%)	2 (0.1%)	3 (0.0%)	0 (0.0%)
23	Teriparatid	1'791 (5.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	79 (2.2%)	856 (8.6%)	856 (5.5%)
24	Trastuzumab	2'720 (8.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	121 (3.3%)	1'258 (12.7%)	1'341 (8.6%)
25							· · · ·	

Table A5 Rest prescriptions: Biosimilars (active substance)

Active substance	total	2016	2017	2018	2019	2020	2021
n	16'293	754 (4.6%)	1'071 (6.6%)	1'578 (9.7%)	2'644 (16.2%)	4'349 (26.7%)	5'897 (36.2%)
Adalimumab	3'100 (19.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	64 (2.4%)	1'256 (28.9%)	1'780 (30.2%)
Bevacizumab	306 (1.9%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	21 (0.5%)	285 (4.8%)
Enoxaparin	41 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	3 (0.1%)	38 (0.6%)
Epoetin alfa	844 (5.2%)	32 (4.2%)	114 (10.6%)	257 (16.3%)	369 (14.0%)	55 (1.3%)	17 (0.3%)
Etanercept	930 (5.7%)	0 (0.0%)	0 (0.0%)	23 (1.5%)	247 (9.3%)	377 (8.7%)	283 (4.8%)
Filgrastim	5'894 (36.2%)	695 (92.2%)	752 (70.2%)	897 (56.8%)	1'110 (42.0%)	1'142 (26.3%)	1'298 (22.0%)
Follitropin alfa	583 (3.6%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	74 (2.8%)	210 (4.8%)	299 (5.1%)
Infliximab	1'507 (9.2%)	23 (3.1%)	115 (10.7%)	274 (17.4%)	278 (10.5%)	374 (8.6%)	443 (7.5%)
Insulin glargin	509 (3.1%)	0 (0.0%)	80 (7.5%)	126 (8.0%)	143 (5.4%)	98 (2.3%)	62 (1.1%)
Pegfilgrastim	406 (2.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	125 (2.9%)	281 (4.8%)
Rituximab	1'763 (10.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	356 (13.5%)	564 (13.0%)	843 (14.3%)
Somatropin	16 (0.1%)	4 (0.5%)	10 (0.9%)	1 (0.1%)	1 (0.0%)	0 (0.0%)	0 (0.0%)
Teriparatid	297 (1.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2 (0.1%)	114 (2.6%)	181 (3.1%)
Trastuzumab	97 (0.6%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	10 (0.2%)	87 (1.5%)

Table A6 Biosimilars quota by active substance

		Biosimilars quota (IP+RP)					
Active substance	Avg. relative Price difference	2016	2017	2018	2019	2020	2021
Adalimumab	24.63	-	-	-	52.21	46.2	50.5
Bevacizumab	23.98	-	-	-	-	4.31	14.62
Enoxaparin	7.77	-	-	-	-	<1	<1
Epoetin alfa	8.91	3.1	21.85	38.21	62.9	11.51	4.94
Etanercept	24.52	-	-	20.63	44.78	65.4	58.72

Filgrastim	9.73	62.37	64.54	70.04	80.13	74.46	80.4
Follitropin alfa	22.76	-	-	1.64	14.29	26.31	26.4
Infliximab	9.85	4.2	15.53	39.34	39.81	46.38	48.5
Insulin glargin	16.43	-	33.62	37.35	24.41	37.3	34.6
Pegfilgrastim	48.61	-	-	-	-	14.52	30.8
Rituximab	19.27	-	-	<1	23.93	40.81	47.0
Somatropin	9.53	87.5	84.62	100	20	0	-
Teriparatid	17.44	-	-	-	4.29	11.84	17.3
Trastuzumab	17.98	-	-	-	-	<1	6.02

Table A7 Frequency of medication switches by active substance

Category	Active	Proportion to all switches (%)				
	substance	RP to RP	RP to B	B to B	B to RI	
Fusion proteins	Etanercept	0.27	4.4	0.29	1.59	
Hormones	Follitropin alfa	9.41	5.35	8.1	5.84	
Hormones	Insulin glargin	0.27	2.95	0.17	2.72	
Hormones	Somatropin	0.02	0.07	0	0	
Hormones	Teriparatid	0.21	1.42	1.34	2.51	
Monoclonal antibodies	Adalimumab	4.52	4.04	1.75	4.63	
Monoclonal antibodies	Bevacizumab	11.38	1.67	4.31	5.98	
Monoclonal antibodies	Infliximab 🧹	1.86	8.95	2.33	6.4	
Monoclonal antibodies	Rituximab	21.81	11.75	31.24	13.05	
Monoclonal antibodies	Trastuzumab	6.94	1.02	1.52	7.89	
Low-molecular-weight heparins	Enoxaparin	25.57	0.65	0.06	30.88	
Growth factors	Epoetin alfa	14.22	1.16	24.94	1.17	
Growth factors	Filgrastim	2.4	50.75	21.5	8.07	
Growth factors	Pegfilgrastim	1.13	5.82	2.45	9.27	
	•					

Table A8 Three models (A-C) assessing determinants of biosimilar first prescription (logistic regression)

Variables	Model A: sociodemographic variables	Model B: Model A + medication variables	Model C: Model B + provider variables			
	Coeff. [95%CI]	Coeff. [95%CI]	Coeff. [95%CI]			
Intercept	0.429 [0.355, 0.518]	0.831 [0.49, 1.402]	0.706 [0.399, 1.241]			
Year:						
2016 (reference)						
2017	1.381 [1.129, 1.692]	1.602 [1.246, 2.062]	1.594 [1.233, 2.064]			
2018	1.354 [1.113, 1.648]	1.983 [1.551, 2.539]	1.934 [1.503, 2.492]			
2019	1.493 [1.246, 1.793]	2.64 [2.094, 3.332]	2.602 [2.054, 3.302]			
2020	0.42 [0.356, 0.497]	2.203 [1.755, 2.769]	2.232 [1.769, 2.819]			
2021	0.302 [0.256, 0.355]	3.077 [2.452, 3.867]	3.012 [2.388, 3.806]			
Sex:						
Female (reference)						
Male	0.998 [0.922, 1.081]	1.137 [1.02, 1.267]	1.132 [1.014, 1.263]			

BIC	16'722	10'088	9'986
AIC	16'588	9'868	9'735
Observations	18'953	18'953	18'953
Rest			0.998 [0.609, 1.606]
Traditional pharmacy			1.207 [0.911, 1.611]
Specialist			1.417 [1.075, 1.884]
General practicioner (reference) Outpatient hospital			2.477 [1.887, 3.28]
Suppl			
>2 Sumpl		8.143 [6.502, 10.248]	9.649 [7.614, 12.303
2		2.15 [1.671, 2.785]	2.363 [1.819, 3.093]
1 (reference)			0.0(0.51.010.0.000)
Number of available imitator drug:			
>20		0.067 [0.053, 0.084]	0.067 [0.054, 0.084]
10-19		0.091 [0.072, 0.115]	0.076 [0.059, 0.096]
<10		0.001 [0.072 0.115]	0.076 [0.050, 0.006]
Relative price difference (%)			
>600 Deletion mice difference (0/)		0.853 [0.592, 1.236]	0.657 [0.453, 0.957]
100-599		0.254 [0.185, 0.349]	0.202 [0.145, 0.28]
<100			
product (in CHF)			
Cost per package of reference			
Multiple package size		4.551 [3.808, 5.461]	4.64 [3.876, 5.575]
Growth factors		0.235 [0.168, 0.327]	0.158 [0.112, 0.222]
Low-molecular-weight heparins		0.001 [0.001, 0.001]	0.001 [0, 0.001]
Monoclonal antibodies		0.152 [0.116, 0.199]	0.115 [0.087, 0.152]
Hormones		1.297 [0.816, 2.081]	1.281 [0.803, 2.06]
Fusion proteins (reference)			
Category:			
Managed care	1.029 [0.949, 1.116]	1.103 [0.992, 1.226]	1.095 [0.984, 1.22]
High	1.067 [0.954, 1.192]	1.005 [0.868, 1.163]	0.998 [0.861, 1.155]
Low (reference)			
Deductible:			
>2	0.938 [0.837, 1.051]	1.05 [0.904, 1.22]	1.08 [0.928, 1.256]
2	1.095 [0.963, 1.244]	1.041 [0.88, 1.23]	1.05 [0.886, 1.243]
1	1.054 [0.932, 1.191]	0.934 [0.796, 1.094]	0.95 [0.81, 1.115]
0 (reference)			
Number of comorbidity:			
Italian	0.467 [0.397, 0.546]	0.744 [0.601. 0.918]	0.761 [0.612, 0.942]
French	0.578 [0.521, 0.64]	0.582 [0.51, 0.664]	0.611 [0.532, 0.7]
German (reference)			
Language region			
>74	0.961 [0.849, 1.086]	0.825 [0.694, 0.98]	0.864 [0.725, 1.03]
65-74	1.571 [1.401, 1.761]	1.044 [0.889, 1.227]	1.044 [0.887, 1.228]
	1.502 [1.109, 1.452]	1.005 [0.007, 1.104]	1.022 [0.001, 1.103]
50-64	1.302 [1.169, 1.452]	1.005 [0.867, 1.164]	1.022 [0.881, 1.185]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2 3 4 5	Reportin	g ch	ecklist for cohort study.						
6 7 8 9	Based on the STROBE cohort guidelines.								
10 11 12	Instructions to authors								
13 14 15	Complete this checklist by entering the page numbers from your manuscript where readers will find								
15 16 17	each of the items listed below.								
18 19 20	Your article may not currently address all the items on the checklist. Please modify your text to								
20 21 22	include the missir	include the missing information. If you are certain that an item does not apply, please write "n/a" and							
23 24 25 26 27	provide a short ex	xplanatio	n.						
28 29 30 31			Reporting Item	Page Number					
32 33	Title and								
34 35 36 37	abstract								
38 39	Title	<u>#1a</u>	Indicate the study's design with a commonly	Title page					
40 41 42			used term in the title or the abstract						
43 44	Abstract	<u>#1b</u>	Provide in the abstract an informative and	1					
45 46			balanced summary of what was done and what						
47 48 49			was found						
50 51 52 53	Introduction								
54 55	Background /	<u>#2</u>	Explain the scientific background and rationale	2,3					
56 57 58	rationale		for the investigation being reported						
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

1	Ohiostiuss	#0	Ctate and sifile ship stings, including any	2
2 3	Objectives	<u>#3</u>	State specific objectives, including any	3
4 5			prespecified hypotheses	
5 6 7 8	Methods			
9 10 11	Study design	<u>#4</u>	Present key elements of study design early in the	3,4,5
12 13			paper	
14 15 16	Setting	<u>#5</u>	Describe the setting, locations, and relevant	4,5,6
17 18			dates, including periods of recruitment, exposure,	
19 20 21			follow-up, and data collection	
22 23 24	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and	4
25 26			methods of selection of participants. Describe	
20 27 28 29			methods of follow-up.	
30 31	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and	n/a. The resent study
32 33			number of exposed and unexposed	does not contain
34 35 36				matched studies
37 38 39	Variables	<u>#7</u>	Clearly define all outcomes, exposures,	4,5,6
40 41			predictors, potential confounders, and effect	
42 43 44			modifiers. Give diagnostic criteria, if applicable	
45 46 47	Data sources /	<u>#8</u>	For each variable of interest give sources of data	3,4
48	measurement		and details of methods of assessment	
49 50 51			(measurement). Describe comparability of	
52 53			assessment methods if there is more than one	
54 55 56			group. Give information separately for for	
50 57 58			exposed and unexposed groups if applicable.	

BMJ Open

Page 34 of 37

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Bias <u>#9</u> Describ		Describe any efforts to address potential sources	6,7
3 4 5			of bias	
6 7 8	Study size	<u>#10</u>	Explain how the study size was arrived at	4
9 10 11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled	4,5,6
	variables		in the analyses. If applicable, describe which	
14 15 16			groupings were chosen, and why	
17 18	Statistical	<u>#12a</u>	Describe all statistical methods, including those	5,6
19 20 21	methods		used to control for confounding	
22 23 24	Statistical	<u>#12b</u>	Describe any methods used to examine	5,6
25 26 27	methods		subgroups and interactions	
28 29	Statistical	<u>#12c</u>	Explain how missing data were addressed	5,6 upon request of
30 31 32	methods			reviewer 2
33 34 35	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was	6,7
35 36 37	methods		addressed	
38 39	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
40 41	methods		Describe any sensitivity analyses	
42 43 44	-			
45 46	Results			
47 48	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	3,4, upon request of
49 50 51			study—eg numbers potentially eligible, examined	reviewer 2
51 52 53			for eligibility, confirmed eligible, included in the	
54 55 56 57			study, completing follow-up, and analysed. Give	
58 59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtn	nl

			BMJ Open	Page 36 of 37	
1			information separately for exposed and		
2 3 4			unexposed groups if applicable.		
5 6 7 8 9 10 11 12 13 14 15	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	4	
	Participants	<u>#13c</u>	Consider use of a flow diagram	4	
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	7,8	
			demographic, clinical, social) and information on		
16 17			exposures and potential confounders. Give		
18 19 20			information separately for exposed and		
21 22 23			unexposed groups if applicable.		
24 25	Descriptive data	a <u>#14b</u>	Indicate number of participants with missing data	n/a. We excluded	
26 27			for each variable of interest	missing data before	
28 29 30				descriptively	
31 32				analysing the study	
33 34 35				population	
36 37	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total	7,8,9,10	
38 39 40			amount)		
41 42	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	7,8,9,10	
43 44 45			measures over time. Give information separately		
46 47 48			for exposed and unexposed groups if applicable.		
49 50	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	7,8,9,10,11	
51 52			confounder-adjusted estimates and their		
53 54 55			precision (eg, 95% confidence interval). Make		
56 57 58					
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	I	

Page 37 of 37			BMJ Open	
1			clear which confounders were adjusted for and	
2 3 4			why they were included	
5 6 7	Main results #16		Report category boundaries when continuous	7,8,9,10,11
8 9 10 11 12			variables were categorized	
	Main results	<u>#16c</u>	If relevant, consider translating estimates of	11
13 14			relative risk into absolute risk for a meaningful	
15 16 17			time period	
18 19	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of	n/a
20 21 22			subgroups and interactions, and sensitivity	
23 24			analyses	
25 26	Discussion			
27 28	DISCUSSION			
29 30 31 32 33 34 35 36	Key results <u>#18</u>		Summarise key results with reference to study	12
			objectives	
	Limitations	<u>#19</u>	Discuss limitations of the study, taking into	16
37 38			account sources of potential bias or imprecision.	
39 40			Discuss both direction and magnitude of any	
41 42 43			potential bias.	
44 45 46	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering	12,13,14,15
40 47 48			objectives, limitations, multiplicity of analyses,	
49 50			results from similar studies, and other relevant	
51 52 53			evidence.	
54 55	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of	15,16
56 57 58			the study results	
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

17
17
mmons
th
th

BMJ Open

Initial prescriptions and medication switches of biological products: an analysis of prescription pathways and determinants in the Swiss healthcare setting

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-077454.R1
Article Type:	Original research
Date Submitted by the Author:	09-Oct-2023
Complete List of Authors:	Wirth, Kevin; Helsana Versicherungen AG, Boes, Stefan; University of Lucerne, Department of Health Sciences and Medicine Näpflin, Markus; Helsana Group, Department of Health Sciences Huber, Carola; Helsana Health Insurance Co, ; University Hospital Zurich, Blozik, Eva; University of Zurich, Institute of Primary Care
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Health policy, Medical management
Keywords:	PUBLIC HEALTH, Health Literacy, MEDICAL EDUCATION & TRAINING

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	1	Initial prescriptions and medication switches of biological products: an analysis of
5 6	2	prescription pathways and determinants in the Swiss healthcare setting
7 8 9 10 11 12	3	Kevin Wirth ^{1,2*} , Stefan Boes ² , Markus Näpflin ¹ , Carola A. Huber ^{1,3} , Eva Blozik ³
13 14 15	4	¹ Department of Health Sciences, Helsana Group, Zurich, Switzerland
16 17 18	5	² Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
19 20 21	6	³ Institute of Primary Care, University of Zurich, Zurich, Switzerland
22 23 24	7	*Correspondence to:
25 26	8	Kevin Wirth, Südstrasse 29, 8180 Bülach, Switzerland
27 28	9	kevin.wirth.migliazza@gmail.com
29 30 31 32 33 34	10	Word count: 4100
35 36		
37	11	ABSTRACT Objectives Dialogical products have contributed to extraordinary advances in disease
38 39	12	Objectives Biological products have contributed to extraordinary advances in disease
40 41	13	treatments over the last decade. However, the cost-saving potential of imitator products, so-
42 43	14	called biosimilars, is still under-researched in Switzerland. This study aims to assess
44 45 46	15	biosimilars' prescriptions at treatment initiation and their determinants, as well as biological
40 47 48	16	therapy switches.
49 50	17	Design The study included all patients who had at least one biosimilar available on the market
51 52	18	at the time when they were prescribed a biologic product. We analyzed longitudinal data for
53 54	19	biosimilar prescriptions in Switzerland using descriptive statistics and logistic regression to
55 56 57 58 59 60	20	quantify the associations with individual, pharmaceutical, and provider-related variables.

Page 3 of 37

BMJ Open

Setting The analysis is based on de-identified claims data of patients with mandatory health insurance at Helsana, one of the Swiss health insurances with a substantial enrollee base in mandatory health insurance.

Participants Overall, 18,953 patients receiving at least one biological product between 2016
and 2021 were identified.

Outcome measures: We differentiated between initial prescriptions and follow-up 27 prescriptions. Our regression focused on initial prescriptions due to evidence indicating that 28 patients tend to follow the medication prescribed at therapy initiation.

Results Although biosimilars market share was low (28.6%), the number of prescriptions has increased (from 1016 in 2016 to 6976 in 2021). Few patients with medication switches (n=1492, 8.5%) were detected. Increased relative price difference (difference in the price of available biosimilars relative to price of corresponding reference product) was associated with decreased probability of biosimilar prescriptions, whereas male sex, an increase of available imitator drugs on the market and, larger packaging sizes, and prescriptions from specialists or physicians in outpatient settings were associated with increased biosimilars use.

36 Conclusion The low number of biosimilar prescriptions despite the proliferating biosimilar 37 market indicates a high potential for biosimilar diffusion. The findings indicate that patients 38 typically adhere to the therapy options initially chosen and are less inclined to make changes 39 following the initiation of treatment. Our research highlights the need for awareness initiatives 40 to improve understanding among patients and physicians, enabling informed, shared decision-41 making about biosimilar prescriptions.

42 Keywords: biosimilars, biologics, reference products, switches, initial prescription

43 Strengths and limitations of this study

- This study evaluated the prescription of biosimilars using a broad set of sociodemographic, pharmaceutical, and healthcare provider variables and utilizing a nearly representative database in Switzerland.
 - The study divided the medication treatment pathway into initial and follow-up prescriptions, with a specific focus on the initial prescriptions.
 - The study assessed determinants of initial prescriptions in the context of biosimilars.

• Some demand-related factors (patients' health status, beliefs, and experiences) and supply-related factors (physicians' incentives and beliefs) about biosimilars could not be accounted using the claims data.

53 INTRODUCTION

Biological products increased the spectrum of available treatment options considerably in the treatment of many cancers and autoimmune diseases. However, these medications are more expensive compared to many conventional synthetic drugs as they are produced by living cells and, thus, require a more complex manufacturing process. Currently, there are a considerable number of biologics in the final stages of development and approval [1, 2]. The healthcare systems are likely to incur substantial costs even if just a small proportion of these biologics is granted market approval. One lever to curb rising drug costs is the replacement of biologics after patent expiration with less expensive imitator products, also known as biosimilars. Due to the biotechnological manufacturing process, exact copies of the biological products are not achievable. As a result, minor structural deviations in the biosimilar are unavoidable [3, 4], and regulatory authorities accept them for market approval [5, 6].

A study conducted in the United States found that biologics can undergo price reductions
 ranging from -2.4% to -59.3% in response to biosimilar competition, with the extent of these

Page 5 of 37

BMJ Open

reductions correlating with the adoption rate of biosimilars [7]. In Switzerland, a Swiss report has estimated a cost saving potential of over 60 million Swiss francs for the complete replacement of reference products with biosimilars in 2019 [8]. In the coming years, cost saving potential will increase as several top-selling biologics will lose their patent protection in Switzerland [8, 9] and corresponding biosimilars have already been approved in the European Union (EU) [2, 10, 11]. However, the realization of the cost saving potential us is assumed to be curbed because of skepticism about biosimilars from both the patient and physician side [12– 15]. At the same time, patients and their health care providers seem to be less willing to switch biological products when therapy has already been started [16–20]. Consequently, the choice of initial prescription (IP) at therapy initiation is the decisive factor for following medication prescriptions. Despite the significant role of IP in shaping subsequent treatment pathways, research on the prescription behavior of biological products at therapy initiation and the impact of IP is limited. Existing studies have only demonstrated that patients tend to remain on their initial biological treatment product once medication treatment has been initiated [21]. Thus, there is a need for further investigation into the influencing factors of IP and their influence on the choice of medication path. Thus, this study aims to assess biosimilars' prescriptions at treatment initiation and their determinants, as well as biological therapy switches.

84 METHODS

85 Study design and population

We studied adult patients (≥18 years) with at least one biological product claim between 2016
and 2021, insured by Helsana Group, a major Swiss health insurer. (Table A1 in supplementary
file). The Helsana database covers 15% of Switzerland's population (1.2 million residents) and

is regarded as representative, as prior research found minor differences between raw andadjusted results [22, 23].

In Switzerland, medication reimbursement is governed by the Federal Law on Health Insurance, which mandates that basic health insurance must cover the costs of essential medications. Swissmedic regulates the market entry of medications, while the Federal Office of Public Health oversees the establishment of the reimbursement list, which determines the extent to which a medication is reimbursed. Switzerland's medication reimbursement system aims to balance access to essential medications with cost control: To be eligible for reimbursement, medications must demonstrate efficacy, safety, and cost-effectiveness compared to standard treatments. As such, all of the biological products included in this study are presumed to have fulfilled these requirements.

100 Measures

The study included all patients who had at least one biosimilar available on the market at the time of IP of a biologic product. This enabled us to explore the determinants of non-prescription of biosimilars despite their availability. IP were defined for each patient as claims that were not preceded by other prescriptions in the same medication category within the previous 24 months. Prescriptions that followed within 12 months were labeled as "follow-up prescriptions" (FP). By restricting the follow-up period to 12 months, we were able to focus on the medications that were prescribed as a result of the initial prescription rather than medications that were prescribed for unrelated reasons. This approach allowed us to evaluate the impact of the initial prescription more accurately on subsequent medication use. We selected 117 biological products approved by Swissmedic from a list (Table A1 in supplementary file) derived from the Swiss Drug Compendium.

Page 7 of 37

BMJ Open

We considered patient characteristics as covariates, including sex, age group (<50, 50-64, 65-74, >74) and language region (German, French, Italian). We assessed comorbidity using the number of Pharmaceutical Cost Groups (PCG) per patient (0,1,2,>2). PCGs are a recognized proxy for the presence of chronic diseases using data on medications bills that were reimbursed [24]. The Swiss healthcare system offers different cost-sharing options to patients, including low (CHF 500, 1000) or high deductibles (i.e., CHF 1500, 2000, or 2500), and integrated care models, which offer premium rebates in exchange for limited healthcare provider options. Thus, having a low (CHF 500, 1000) or high deductible (i.e., CHF 1500, 2000, or 2500 vs. CHF 300), and being enrolled in a managed care model were used in the analysis. Prescribed medications were characterized by category (fusion proteins, hormones, monoclonal antibodies, low-molecular-weight [LMW] heparins and growth factors), whether there were multiple packaging sizes, the cost per package of the reference product (in CHF, <100, 100-599, >600), relative price difference of the reference product to the corresponding biosimilar (<10, 10-19, >20), and the number of available imitator drugs (1, 2, >2) at the date of prescription. The analysis adds the aspect of healthcare provider by including information on the supply channel (general practitioner, outpatient hospital, specialist, traditional pharmacy).

To ensure consistent terminology, we referred to all biologically manufactured drugs as "biological products", while the originator drugs are referred to as "biologics" or as "reference products", and imitator products as "biosimilars" throughout the manuscript.

131 Statistical analysis

All statistical analysis were performed at the study population that consisted of individuals who
 had at least one biosimilar available on the market at the time of IP of a biologic product. All
 research participants' baseline characteristics are shown as counts and percentages, or as mean
 and standard deviation for continuous variables. We compared patient characteristics for all

individuals with and without biosimilar IP. For bivariate comparisons between patients with and without biosimilar IP, Fisher exact and Chi-Square tests were used accordingly. Statistical significance was defined as a two-sided p-value of 0.05. We determined the biosimilar prevalence by distinguishing between IP and FP and the prevalence of biological therapy switches (number of prescriptions and patients) for each year (2016-2021). Chi-squared tests were used to determine whether the prevalence of biosimilars among all patients using a biological product was equivalent across the years. To assess the determinants of biosimilar prescriptions, we used logistic regression models in which the dependent variable was whether a biosimilar was prescribed as IP (0 or 1). We employed three distinct logistic regression models, each incorporating an additional set of variables, to comprehensively assess the impact of various factors on our study outcomes (Table A8 in supplementary file). This approach allows us to explore multiple dimensions of influence and gain a more nuanced understanding of the relationships at play, enhancing the robustness and depth of our analysis. Both, Model B (sociodemographic + medication variables) and C (sociodemographic + medication + provider variables), show similar results and a better fit of the estimates compared to Model A (sociodemographic variables) based on the goodness-of-fit criteria (AIC, BIC). For the manuscript, we proceed with Model C because we are mainly interested in the associations with biosimilar prescriptions from all three points of view (patient, medication, physician). Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated for each regression coefficient. The success rate in the binomial model was denoted by the term "occurrence" to improve the results' readability. All analyses were performed using R version 4.2.1.

158 Patient and public involvement

159 None.

BMJ Open

3
4
5
6
6 7
/ 0
8
9 10
11
12
13
14
15
16
16 17 18
18
19
20
21
22
23
24
25
25
26 27
28
29
30
31
32
33
34
35
36 37
37
38
39
40
41
42
43
45 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57

58 59 60

160 **RESULTS**

161 This research was conducted using a study population comprising 68,310 individuals who 162 received at least one prescription for a biological or biosimilar medication between 2016 and 163 2021. For our study, we eliminated individuals who did not maintain continuous mandatory 164 health insurance coverage throughout the entire observation period. This exclusion was 165 implemented to mitigate potential bias in our regression analysis, resulting in a remaining 166 sample size of 53,379 patients. Within this subgroup, there were 18,953 instances of initial 167 prescriptions for biological medications that had a biosimilar alternative available at the time 168 of dispensing.

169 In the study sample we observed 18,953 first prescriptions of biological products. Patient 170 characteristics of the study population at the time of IP, stratified by type of IP (reference 171 product 81.5%, biosimilar 18.5%), are presented in Table 1. Female patients more frequently received biosimilars than males (60.6%). The study's overall population demonstrated a 172 173 balanced distribution among age categories (<50, 50-64, 65-74, >74). Notably, individuals 174 prescribed reference products as IP were more prevalent in the highest age group, while those 175 initially prescribed biosimilars were more concentrated in the 50-64 and 65-74 age group. LMW 176 heparins were the most prescribed reference products (54.2%), with growth hormones 177 constituting the largest group of biosimilars (57.9%).

Variables, n (%)	Total	Patients with	Patients with	p-value
		IP = Reference	IP = Biosimilar	
		product		
Observations	18,953	15,453 (81.5%)	3500 (18.5%)	
Sex				
Male	7275 (38.4%)	5895 (38.1%)	1380 (39.4%)	1
Female	11,678 (61.6%)	9558 (61.9%)	2120 (60.6%)	1
Age group				*** 2
<50 years	5501 (29.0%)	4613 (29.9%)	888 (25.4%)	
50-64 years	4720 (24.9%)	3764 (24.4%)	956 (27.3%)	

Table 1. Comparison of patient characteristics at IP between patients with reference product and biosimilar as IP

65-74 years	3963 (20.9%)	3001 (19.4%)	962 (27.5%)	
>74 years	4769 (25.2%)	4075 (26.4%)	694 (19.8%)	
Language region	1709 (23.270)	1075 (20.170)	091 (19.070)	***
German	12,719 (67.1%)	9958 (64.4%)	2761 (78.9%)	
French	4324 (22.8%)	3777 (24.4%)	547 (15.6%)	
Italian	1910 (10.1%)	1718 (11.1%)	192 (5.5%)	
Number of comorbidities				** 2
0	4738 (25.0%)	3901 (25.2%)	837 (23.9%)	
1	3295 (17.4%)	2664 (17.2%)	631 (18.0%)	
2	3072 (16.2%)	2448 (15.8%)	624 (17.8%)	
>2	7848 (41.4%)	6440 (41.7%)	1408 (40.2%)	
Deductible	,		· · · ·	***
Low	15,765 (83.2%)	12,846 (83.1%)	2919 (83.4%)	
High	3188 (16.8%)	2607 (16.9%)	581 (16.6%)	
Managed care	11,921 (62.9%)	```	2131 (60.9%)	**1
Category			、	***
Fusion proteins	360 (1.9%)	178 (1.2%)	182 (5.2%)	
Hormones	2112 (11.1%)	1697 (11.0%)	415 (11.9%)	
Monoclonal antibodies	2908 (15.3%)	2107 (13.6%)	801 (22.9%)	
LMW heparins	10,272 (54.2%)	10,196 (66.0%)	76 (2.2%)	
Growth factors	3301 (17.4%)	1275 (8.3%)	2026 (57.9%)	
Multiple package size	16,432 (86.7%)	13,532 (87.6%)	2900 (82.9%)	***
Cost per package of reference product (in CHF)				***
<100	9866 (52.1%)	9652 (62.5%)	214 (6.1%)	
100-599	5066 (26.7%)	3179 (20.6%)	1887 (53.9%)	
>600	4021 (21.2%)	2622 (17.0%)	1399 (40.0%)	
Relative price difference (%)	, ,		× /	***
<10	13,807 (72.8%)	11,546 (74.7%)	2261 (64.6%)	
10-19	2386 (12.6%)	1871 (12.1%)	515 (14.7%)	
>20	2760 (14.6%)	2036 (13.2%)	724 (20.7%)	
Number of available				***
imitator drugs				
0	-	-		
1	12,490 (65.9%)	12,012 (77.7%)	478 (13.7%)	
2	2741 (14.5%)	1911 (12.4%)	830 (23.7%)	
>2	3722 (19.6%)	1530 (9.9%)	2192 (62.6%)	
supply channel of first prescription				***
General practitioner	1185 (6.3%)	1097 (7.1%)	88 (2.5%)	
Outpatient hospital	6224 (32.8%)	4359 (28.2%)	1865 (53.3%)	
Specialist	3606 (19.0%)	2674 (17.3%)	932 (26.6%)	
Traditional pharmacy	7564 (39.9%)	6981 (45.2%)	583 (16.7%)	
Rest	374 (2.0%)	342 (2.2%)	32 (0.9%)	

BMJ Open

Table 2 describes the overall frequency of biologicals products over the observation period including the absolute and relative frequency of biosimilars in comparison to all biological prescriptions. Of all biological products (IP and FP), 28.6% were biosimilar prescriptions. In absolute values, the prescription rate of biosimilars increased over time (from 1016 in 2016 to 6976 in 2021). However, there is no discernible trend in the relative share of biosimilars in all prescriptions of biological products (35.5% in 2016, 39.2% in 2017, 45.2% in 2018, 41.6% in 2019, 26.3% in 2020 and 22.5% in 2021). Furthermore, the share of biosimilars in FPs was higher than in IPs in every year. The growth factor Filgrastim was the most frequently prescribed active substance of biosimilars in IPs and FPs (53.1% and 36.2% respectively), while enoxaparin was the most frequently prescribed active substance of reference products in IPs and FPs (65.3% and 25.5%, respectively) (Table A2-A6 in supplementary file).

Table 2. All prescriptions for which a biost	milar was approved at	the time of the prescription
---	-----------------------	------------------------------

-21								
32	total	2016	2017	2018	2019	2020	2021	
3 P				<i>L</i> .				
34 n	18,953	815	888	1037	1520	5313	9380	
³ Biosimilars ³ (n, % of N)	3500 (18.5%)	262 (32.1%)	343 (38.6%)	391 (37.7%)	612 (40.3%)	813 (15.3%)	1079 (11.5%)	*** 1
3(h, % of N) 37 38								
	50,251	2047	2716	3314	6306	14,288	21,580	
$\begin{array}{c} 39 \\ 40 \\ 40 \\ 4(n, \% \text{ of } N) \end{array}$	16,293 (32.4%)	754 (36.8%)	1071 (39.4%)	1578 (47.6%)	2644 (41.9%)	4349 (30.4%)	5897 (27.3%)	***1
Aptal (FP+IP))							
43 n	69,204	2862	3604	4351	7826	19,601	30,960	
4 B iosimilars 4(5n, % of N)	19,793 (28.6%)	1016 (35.5%)	1414 (39.23%)	1969 (45.25%)	3256 (41.60%)	5162 (26.34%)	6976 (22.53%)	*** 1
	e test, Signif. codes	s: '***' <0.001						
4/								

Of the study population, only a small subset (n=1492, 8.5%) experienced at least one medication switch (Table 3). Most patients had switches between reference products (n=867, 58.1%), followed by switches from reference product to biosimilar (n=331, 22.2%), from biosimilar to reference product (n=297, 19.9%) and switches between biosimilars (n=286, 19.2%). The number of patients with at least one switch increased between 2016 and 2021

2		
3 4	194	(from 28 to 662), whereby the numbers of patients with switches between reference products
5 6	195	increased most prominently (from 25.0% in 2016 to 62.1% in 2021). Switches between
7 8	196	reference products and between biosimilars occurred most often for Enoxaparin and Rituximab,
9 10 11	197	respectively (Table A7 in supplementary file). The most common switches from reference
12 13	198	product to biosimilar and from biosimilar to reference products were most often observed for
14 15 16	199	Filgrastim and Enoxaparin.

Table 3. Patients with biologic therapy switches

19witches, 20=patients	Total	2016	2017	2018	2019	2020	2021	p-value
$\frac{21}{24}$ t least one, n	1492	28	42	77	249	434	662	
Beference Prod to								
Beference Prod,	867 (58.1%)	7 (25.0%)	15 (35.7%)	37 (48.1%)	146 (58.6%)	251 (57.8%)	411 (62.1%)	***1
我(%)								
Biosimilar to	286 (19.2%)	9 (32.1%)	10 (23.8%)	14 (18.2%)	51 (20.5%)	74 (17.1%)	128 (19.3%)	1
Biosimilar,	200 (19.270)	9 (32.170)	10 (23.876)	14 (10.270)	51 (20.576)	/4 (17.170)	128 (19.370)	-
27 Beference Prod to Biosimilar, 10(%) Biosimilar to								
Biosimilar,	331 (22.2%)	6 (21.4%)	11 (26.2%)	21 (27.3%)	60 (24.1%)	103 (23.7%)	130 (19.6%)	1
30 n(%)		. ,						
Biosimilar to								
Reference Prod,	297 (19.9%)	10 (35.7%)	8 (19.0%)	15 (19.5%)	49 (19.7%)	96 (22.1%)	119 (18.0%)	1
Keference Prod, ³³ ⁿ (%) 34								
¹ Chi-Square test								
Signif. codes: '***' <	<0.001							
27								

As far as the regression results are concerned, the odds of prescribing biosimilars at IP have been increasing over the years (Fig.1, Table A8 in supplementary file). Male sex was associated with 13.2% higher odds of receiving biosimilar IP, whereas residence in a French or Italian-speaking region had a 38.9% and 23.9%, respectively, lower occurrence of a biosimilar IP. None of the insurance-related variables showed a significant association with biosimilars IPs. In terms of pharmaceutical variables, monoclonal antibodies, LMW heparins and growth factors were associated with substantially lower biosimilar IP occurrences (-88.5%, -99.9% and -84.2%) than fusion proteins. The availability of multiple packaging sizes was associated with 4.6-fold higher odds of biosimilar IP compared to medications with solely one packaging size. For the absolute package price, no consistent pattern was observed, as medications with prices

BMJ Open

between 100 and 599 francs per pack decreased the odds by 79.8% compared to the baseline (<100 CHF), whereas the odds in the highest prize category (>600 CHF) were lower by 34.3%. However, compared to products with a <10% price difference between reference product and biosimilar, higher price reductions were associated with decreased occurrence of biosimilar IP: medications with 10-19% price difference had 92.4% lower odds and medications with more than 20% had even 93.3% lower odds. On the contrary, increasing the number of available imitator medications of prescription (2 and >2) had substantially higher (2.36-fold and 9.65-fold) odds of biosimilar IP compared to prescriptions with only one available biosimilar. As far as provider variables are concerned, physicians in the outpatient hospital setting prescribed far more biosimilars compared to general practitioners (2.48-fold higher odds). The occurrence of biosimilar IP was also 41.7% higher in patients who had been prescribed biological products by a specialist than in patients who had received the equivalent medications from a general R. practitioner.

DISCUSSION

The increase in biosimilar prescriptions over time can be attributed to the growing biosimilar market. With 15 approved biosimilars in 2016, this market has expanded significantly, reaching 78 biosimilars in 2021 (Table A1 in supplementary file) [8, 21]. A longer time on the market gives the biosimilar a better chance to establish itself and gain market share. Despite this growth, the biosimilars' claims in Switzerland remained relatively low. In 2021, claims for reference products were four times higher than claims for biosimilars among all available biological products with biosimilars. [8]. Comparatively, other countries like Norway have achieved 80% biosimilar quota of all biologic products[25], while in Germany, studies reported an average biosimilar ratio between 40.5% and 51.9% in 2019[26, 27]. In the present study we observed substantially lower average biosimilar quota of 28.0%. Infliximab is a particularly

compelling example, with the biosimilar share reaching 26% in Germany after only 12 months
on the market (2017) and rising to 64-68% of the biosimilar market in 2019. By contrast,
infliximab achieved a market share of only 22% in Switzerland in 2019 [8].

The low biosimilar market share in Switzerland can be attributed to several factors, including physician and patient knowledge deficits regarding biosimilars, leading to reluctance in their use [12–15]. According to survey studies [20, 28–31], negative perceptions of biosimilars among 15-30% of the population may be rooted in concerns about the evidence base for their efficacy and safety, primarily requiring bioequivalence for approval. However, there is increasing evidence of equivalent safety and efficacy of biosimilars, along with evidence of bioequivalence [32–34]. Furthermore, a challenge for newly approved biosimilars is the difficulty in extending conclusions from RCTs to the broader population that will use the biosimilar. This is because RCTs typically enroll a more homogeneous population, and certain patient groups, such as pediatric, elderly, and comorbid populations, as well as patients with polypharmacy, are often underrepresented in these trials [35–37]. As a result, prescribers may be skeptical about the use of biosimilars in these patient populations because of the lack of data. Moreover, the finding that patients frequently switch from biosimilar to reference products underscores the complex landscape surrounding biosimilar utilization. This phenomenon may, in part, be influenced by the current incentive system discourages the prescription of biosimilars for self-dispensing doctors and pharmacies as they are rewarded with larger profit margins for prescribing the more expensive products [8]. Conversely, under a capitation payment model, managed care physicians may have a financial incentive to prescribe lower-cost biosimilars in order to maximize profits. However, if physicians are not properly educated about the safety and efficacy of biosimilars, they may be hesitant to prescribe them.

That only a small subset (n=1492, 8.5%) experienced at least one medication switch can be
explained by the reluctance of patients to switch to a biosimilar medication due to the fear of

Page 15 of 37

BMJ Open

experiencing new and unknown side effects. Patients who have been using a particular medication for a long time and have become accustomed to its efficacy and safety profile may be hesitant to switch to a biosimilar, which they perceive as being different and possibly inferior. Nevertheless, efficacy of biosimilar switching has been observed [8, 32–34, 38, 39]. According to a systematic literature review based on 90 published studies, the great majority of the publications did not report differences in immunogenicity, safety, or efficacy when patients switched to biosimilars. Three large studies did not show differences in efficacy or safety after multiple switches between reference product and biosimilar [40-42]. Only two publications reported a loss of efficacy or increased dropout rates [43, 44]. Often, this very knowledge and awareness about the safety and efficacy of switching to new treatment options lack for prescribing physicians who rely on solid, evidence-based data to make treatment decisions [45– 47]. The substantial transition from biosimilars to reference products observed in our study warrants discussion. While our analysis didn't delve into the specific drivers behind this shift, several factors may contribute to it. These could encompass the beforementioned patient and physician preferences. Further exploration of these factors is essential to gain a comprehensive understanding of the dynamics between biosimilars and reference products in clinical practice, shedding light on the implications for healthcare stakeholders and policymakers.

The regression results revealed that biosimilar IP rates were lower in French-speaking cantons. These regional variations may be caused by a variety of variables, including a higher concentration of medical services in urban regions, various patient characteristics, and cultural variations between cantons [48, 49]. Our findings showed that biosimilars with high relative price difference to reference product were less likely prescribed. Several factors contribute to physicians' reduced prescription rates in association with the lower prices of biosimilars. A possible explanation is that healthcare providers may have less experience with biosimilars with a higher price difference or may perceive them as less established and less proven than

biosimilars with a lower price difference. This lack of familiarity or perceived risk may contribute to reluctance in prescribing biosimilars with a higher price difference. It is also important to consider the role of financial incentives and reimbursement policies in biosimilar prescribing: Currently, dispensation channels receive a larger profit margin when distributing the more expensive reference product under the present price-dependent margin [21]. This incentive system seems to be characteristic for Switzerland, as studies conducted in European countries did not find a relationship between price difference and biosimilar dissemination [50-52]. This might be attributed to several factors that differentiate Switzerland from other European countries: Cantonal differences in self-dispensing regulation, the country's different prescribing cultures and guidelines across its language regions, and capitation is implemented only in relatively few cases in Switzerland. In our analysis, male patients had more biosimilar IP. According to studies, women were often more skeptical of imitator drugs [28, 53–56] and they more frequently believe that they are more responsive to medications than men [57–59]. This can have an impact on their confidence in biosimilars, making female patients more aware of potential side effects or lack thereof. Biosimilar IPs were prescribed more frequently for fusion proteins compared to other categories which indicates an increased acceptance of imitator products in this drug class. This is supported by the relatively early market entry (2018) and by a meta-analysis showing comparable results in terms of efficacy and safety between reference product and biosimilars [60]. The strongest facilitator of biosimilar prescriptions was the amount of available biosimilars, which is in line with the findings of a prior study [50, 61]. Thus, the replacement of reference products by biosimilars seems to be better accepted in market segments with many imitator products. This finding is probably associated with the larger collective promotional effort from multiple players involved in the field to favor biosimilars; it is noteworthy that the largest adoption of biosimilars (Filgrastim) has been partially attributable to the fact that numerous biosimilar producers have commercialized

Page 17 of 37

BMJ Open

different products, whereas there is only one company branding the reference product [62]. We found more biosimilar IPs for specialists and outpatient hospital physicians than GP. These findings are in line with existing literature that showed more biosimilars from specialists who reported a higher confidence in the comparability of biosimilars than GPs [63, 64]. Differences in care providers may be due to a variety of reasons: some healthcare providers may not be interested in stockpiling too many different medications and additional biosimilars, as they sometimes have large storage requirements (cooling, expiration date) and, thus, are associated with a significant financial risk [21]. In addition, it has been demonstrated that the dissemination of knowledge about new prescription options is heterogeneous because there are large learning costs associated with the treatment effects of new therapy options, which rely on the training and experience of the doctor [65]. Despite the fact that a previous study conducted in the context of generic drugs showed that older people are less likely to use imitator products when offered a choice [28, 61], we did not observe an age-dependency of biosimilar prescriptions. The most valuable strength of this study is the extensive dataset of biosimilar prescriptions and

potential influencing factors including sociodemographic, pharmaceutical and healthcare
provider variables that were gathered from a representative sample of the Swiss population.

Hence, earlier research has suggested that this database can be considered reasonably representative of the broader Swiss population, given that the findings revealed only minimal disparities between unadjusted and adjusted results. The main limitation is the dearth of clinical data in our database (e.g., disease severity, clinical diagnosis, and reason for biosimilar utilization). However, we attempted to mitigate this by utilizing comorbidity measures based on reimbursed prescriptions to control for potential confounders. Furthermore, it is possible that invoices from individuals whose annual healthcare expenses did not surpass the annual deductible were not included in the analysis. Nevertheless, internal analyses conducted by Helsana indicated that this proportion accounts for approximately 1.5% of invoices, suggesting

that any potential selection bias is likely minimal. Another limitation of our study is that the follow-up period for the prescriptions was limited to 12 months. This time frame may have led to the exclusion of some prescriptions, potentially introducing bias into our results. Nevertheless, we observed that a significant number of patients (7608, which accounts for 43.1% of the total) were given only one prescription, indicating that any bias arising from this limitation is expected to be insignificant.

It is worth noting that the actual biosimilars quota (proportion of biosimilars claims relative to overall biological product claims), is lower in reality as there are biological products for which no corresponding biosimilars are available on the market. Nevertheless, even when considering this relatively higher observed quota, it remains comparatively low compared to other EU countries. This has important implications for the adoption and utilization of these products in Switzerland. Patients and physicians should be better and objectively informed about biosimilars in order to increase the acceptance [47, 48]. Also, for example, a clear and conspicuous indication of the prescribed active substance on the medication package for both the reference product and the imitator drug, for instance, could enhance patient confidence [42]. To address the perceived uncertainty and mistrust in imitator products, the evidence base should be further strengthened: direct evidence to help explain some of the practical aspects related to the use of biosimilars can be provided by retrospective studies, national databases and registries that track the long-term immunogenicity and safety of biosimilars [66–71]. In addition, the incentive system for healthcare providers seems to be designed in such a way that fewer biosimilars are prescribed. Thus, these incentives should be eliminated, for example by introducing a fixed margin that always remunerates the medication supplier the same regardless of the prescribed product (reference product or biosimilar). In order to exploit the cost saving potential of biosimilars, the aforementioned measures should be targeted to biosimilars with a noticeable price difference compared to their reference products, and that

BMJ Open

still possess relatively low biosimilar market share. Taking into account the findings
presented in Table A6 (in supplementary file), notable examples of these biosimilars include
bevacizumab, follitropin alfa, and pegfilgrastim.

However, the decision to prescribe an imitator drug should not merely be motivated by the
cost-saving potential but should ensure appropriate health care provision for the patients.
Therefore, it is crucial for healthcare providers to engage in shared-decision making with their
patients to determine the most appropriate treatment option based on their individual medical
situation.

367 CONCLUSION

Despite an increase of available biosimilars in Switzerland between 2016 and 2021, the biosimilars market share remained relatively low over time. In addition, biological therapy switches were rarely observed, highlighting the importance of IPs. Our study suggests that greater acceptance and higher utilization of biosimilars may be associated with the availability of different package sizes and lower price differences between biosimilars and their reference products. Patients and providers should be informed about biosimilars in a timely and appropriate manner, and outdated incentive structures have to be changed to increase the use of biosimilars.

*** ***

Funding This research received no specific grant from any funding agency in the public,commercial or not-for-profit sectors

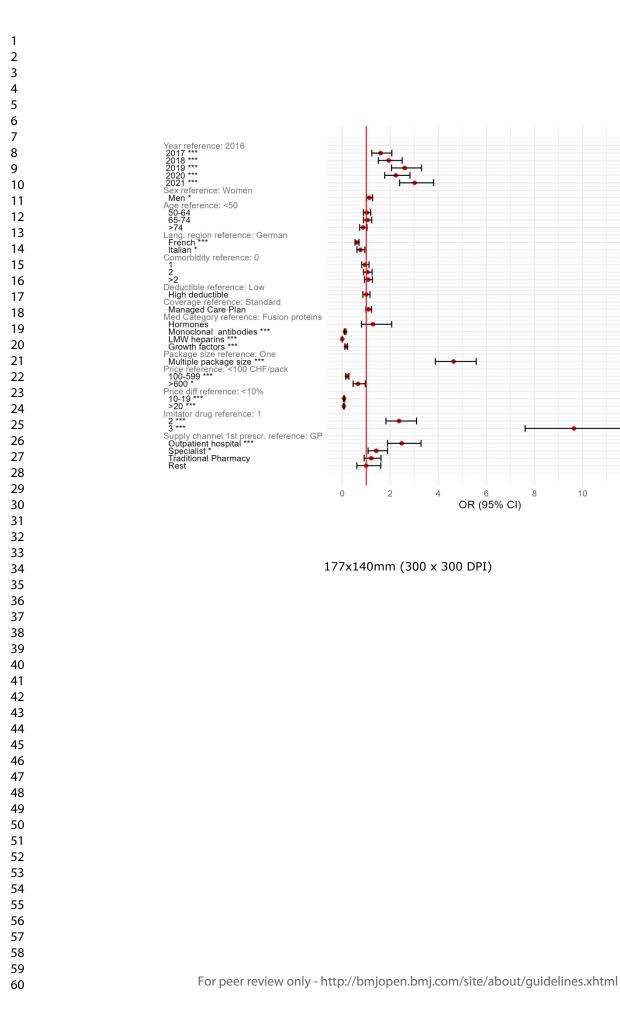
Competing interests The authors declare that they have no conflicts of interest. Helsana Group 379 provided support in the form of salaries for authors (KM, MN, CH, EB), without having any 380 additional role in the study design, data collection and analysis, decision to publish, or 381 preparation of the manuscript.

Contributors KW, MN and CH designed the study. MN did data preparation and data 383 management. MN and KW performed the statistical analyses, with the contribution of SB, CH 384 and EB. KW drafted the main manuscript text. All authors assisted in the interpretation of the 385 results and critically revised the manuscript. All authors have read and approved the manuscript.

Data availability statement Helsana provides the data that support up the findings of this research. (<u>https://www.helsana.ch/en/helsana-group</u>). These data, which were used under license for the present study and are not accessible to the general public, are subject to restrictions. But with Helsana's consent and upon reasonable request, data are available from the authors (gesundheitskompetenz@helsana.ch).

Ethics approval The data used in this study were retrospective, pre-existing, de-identified, and anonymous in accordance with privacy laws and regulations. This study was free from the provisions of the Swiss Federal Law on Human Research because it used retrospective, de-identified, and anonymized data (Humanforschungsgesetz) [72] and was thus exempted from receiving clearance from the regional ethics committee (the ethical committee of the Canton of Zurich) as well as from obtaining the patients' informed consent.

1		
2 3	201	Deference
4	391	References
5 6	392	1. Doughman E. Number of drugs in global R&D pipeline projected to reach record high in
7	393	2019. 2019. https://www.rdmag.com/article/2019/05/number-drugs-global-r-d-pipeline-
8	394	projected-reach-record-high-2019.
9 10	395	2. Walsh G. Biopharmaceutical benchmarks 2018. Nature Biotechnology. 2018;36:1136–45.
11	396 207	doi:10.1038/nbt.4305.
12	397 398	3. Farhat F, Torres A, Park W, Lima Lopes G de, Mudad R, Ikpeazu C, Abi Aad S. The Concept of Biosimilars: From Characterization to Evolution-A Narrative Review.
13	398 399	Oncologist. 2018;23:346–52. doi:10.1634/theoncologist.2017-0126.
14 15	400	 Kresse G-B. Biosimilarsscience, status, and strategic perspective. Eur J Pharm
16	401	Biopharm. 2009;72:479–86. doi:10.1016/j.ejpb.2009.02.014.
17	402	5. FDA. Biosimilar and interchangeable products. 2019.
18	403	http://www.fda.gov/drugs/biosimilars/biosimilar-and-inter-changeable-products.
19 20	404	6. Interpharma. Positionspapier zu Biosimilars. 2013.
20	405	https://www.interpharma.ch/sites/default/files/positionspa-pier_biosimilars_juni-
22	406	2013.pdf.
23	407	7. Maksabedian Hernandez EJ, Graf M, Portelli A, Shafrin J. Estimating the impact of
24 25	408	biosimilar entry on prices and expenditures in rheumatoid arthritis: a case study of
25 26	409 410	targeted immune modulators. Journal of Medical Economics. 2022;25:1118–26. doi:10.1080/13696998.2022.2113252.
27	410	 Schur N., Twerenbold S., Reinau D., Schwenkglenks M., Meier C.R. Helsana-
28	412	Arzneimittelreport für die Schweiz 2020. 2020. https://www.helsana.ch/de/helsana-
29 30	413	gruppe/medien-publikationen/helsana-reports/arzneimittelreport.html.
30 31	414	 Schur N., Twerenbold S., Reinau D., Schwenkglenks M., Meier C.R. Helsana-
32	415	Arzneimittelreport für die Schweiz 2017. 2017. https://www.helsana.ch/de/helsana-
33	416	gruppe/medien-publikationen/helsana-reports/arzneimittelreport.html.
34 35	417	10. GaBI Journal Editor, GaBI Online Editor. Patent expiry dates for biologicals: 2017
36	418	update. GaBI Journal. 2017:29–35.
37	419	11. EMA. European Medicines Agency. 2019. https://www.ema.europa.eu/en.
38	420	12. Frantzen L, Cohen J-D, Tropé S, Beck M, Munos A, Sittler M-A, et al. Patients'
39 40	421 422	information and perspectives on biosimilars in rheumatology: A French nation-wide
40	422	survey. Joint Bone Spine. 2019;86:491–6. doi:10.1016/j.jbspin.2019.01.001. 13. Halimi V, Daci A, Ancevska Netkovska K, Suturkova L, Babar Z-U-D, Grozdanova A.
42	423	Clinical and Regulatory Concerns of Biosimilars: A Review of Literature. Int J Environ
43	425	Res Public Health 2020. doi:10.3390/ijerph17165800.
44 45	426	14. Armuzzi A, Avedano L, Greveson K, Kang T. Nurses are Critical in Aiding Patients
45 46	427	Transitioning to Biosimilars in Inflammatory Bowel Disease: Education and
47	428	Communication Strategies. J Crohns Colitis. 2019;13:259-66. doi:10.1093/ecco-
48	429	jcc/jjy150.
49 50	430	15. Leonard E, Wascovich M, Oskouei S, Gurz P, Carpenter D. Factors Affecting Health
51	431	Care Provider Knowledge and Acceptance of Biosimilar Medicines: A Systematic
52	432	Review. J Manag Care Spec Pharm. 2019;25:102–12. doi:10.18553/jmcp.2019.25.1.102.
53	433 434	16. Rathe J, Andersen M, Jarbøl DE, dePont Christensen R, Hallas J, Søndergaard J. Generic switching and non-persistence among medicine users: a combined population-based
54 55	434 435	questionnaire and register study. PLoS One. 2015;10:e0119688.
56	435	doi:10.1371/journal.pone.0119688.
57	437	17. Rathe J, Larsen P, Andersen M, Paulsen M, Jarbøl D, Thomsen J, Soendergaard J.
58	438	Associations between generic substitution and patients' attitudes, beliefs and experiences.
59 60	439	Eur J Clin Pharmacol. 2013;69:1827–36. doi:10.1007/s00228-013-1539-z.


1			
2			
3 4	440	18.	Cohen HP, Blauvelt A, Rifkin RM, Danese S, Gokhale SB, Woollett G. Switching
5	441		Reference Medicines to Biosimilars: A Systematic Literature Review of Clinical
6	442		Outcomes. Drugs. 2018;78:463-78. doi:10.1007/s40265-018-0881-y.
7	443	19.	Coady D, Parkin L, Fairle L, Smith A. P123 Switching to biosimilars: what do patients
8	444		think? Rheumatology. 2022;61:keac133.122. doi:10.1093/rheumatology/keac133.122.
9	445	20.	Rathe J, Larsen P, Andersen M, Paulsen M, Jarbøl D, Thomsen J, Soendergaard J.
10 11	446		Associations between generic substitution and patients' attitudes, beliefs and experiences.
12	447		Eur J Clin Pharmacol. 2013;69:1827–36. doi:10.1007/s00228-013-1539-z.
13	448	21.	Irene Kobler, Golda Lenzin, Florian Liberatore, Johannes Pöhlmann, Marion Schmidt,
14	449		Simon Wieser. Biosimilars in der Schweiz: Medizin gegen die steigenden
15	450		Gesundheitskosten? 2020.
16	451	22.	Haller E, Watzke B, Blozik E, Rosemann T, Reich O, Huber CA, Wolf M. Antidepressant
17	452		prescription practice and related factors in Switzerland: a cross-sectional analysis of
18 19	453		health claims data. BMC Psychiatry. 2019;19:196. doi:10.1186/s12888-019-2178-4.
20	454	23.	Huber CA, Schwenkglenks M, Rapold R, Reich O. Epidemiology and costs of diabetes
21	455		mellitus in Switzerland: an analysis of health care claims data, 2006 and 2011. BMC
22	456		Endocrine Disorders. 2014;14:44. doi:10.1186/1472-6823-14-44.
23	457	24.	Huber CA, Szucs TD, Rapold R, Reich O. Identifying patients with chronic conditions
24	458		using pharmacy data in Switzerland: an updated mapping approach to the classification of
25	459		medications. BMC Public Health. 2013;13:1030. doi:10.1186/1471-2458-13-1030.
26 27	460	25.	EY. Global biosimilar policy comparison. 2017. https://docplayer.net/100090337-Global-
27	461		biosimilar-policy-comparison-overview-of-biosimilar-policies-across-nine-major-
29	462		markets-in-the-battle-to-control-health-care-sustainability.html.
30	463		Daniel Grandt, Veronika Lappe, Ingrid Schubert. BARMER Arzneimittelreport. 2021.
31	464	27.	Pro Biosimilars. Biosimilars in Zahlen 2019: Wie Biosimilars die deutsche
32	465		Versorgungslandschaft verändern. 2019.
33 24	466		https://probiosimilars.de/app/uploads/2022/06/Biosimilars-in-Zahlen-2019_DS.pdf.
34 35	467		Accessed 11 Oct 2022.
36	468	28.	Shrank WH, Cox ER, Fischer MA, Mehta J, Choudhry NK. Patients' perceptions of
37	469		generic medications. Health Aff (Millwood). 2009;28:546–56.
38	470	• •	doi:10.1377/hlthaff.28.2.546.
39	471	29.	Himmel W, Simmenroth-Nayda A, Niebling W, Ledig T, Jansen RD, Kochen MM, et al.
40	472		What do primary care patients think about generic drugs? Int J Clin Pharmacol Ther.
41 42	473		2005;43:472–9. doi:10.5414/cpp43472.
42 43	474	30.	Kjoenniksen I, Lindbaek M, Granas AG. Patients' attitudes towards and experiences of
44	475		generic drug substitution in Norway. Pharm World Sci. 2006;28:284–9.
45	476		doi:10.1007/s11096-006-9043-5.
46	477	31.	Daly MJ, Guignard B, Nendaz M. Generic and biosimilar drug substitution: a panacea?
47	478		[Médicaments génériques et biosimilaires: une panacée?]. Rev Med Suisse.
48 40	479		2015;11:1909-12, 1914.
49 50	480	32.	Cesaro S, Tintori V, Nesi F, Schiavello E, Calore E, Dallorso S, et al. A prospective study
51	481		on the efficacy of mobilization of autologous peripheral stem cells in pediatric
52	482		oncohematology patients. Transfusion. 2013;53:1501–9. doi:10.1111/j.1537-
53	483		2995.2012.03911.x.
54	484	33.	Manko J, Walter-Croneck A, Jawniak D, Grzasko N, Gorska-Kosicka M, Cioch M,
55	485		Dmoszynska A. A clinical comparison of the efficacy and safety of biosimilar G-CSF and
56 57	486		originator G-CSF in haematopoietic stem cell mobilization. Pharmacol Rep.
57 58	487	<u> </u>	2014;66:239–42. doi:10.1016/j.pharep.2013.09.005.
59	488	34.	Michallet M, Luporsi E, Soubeyran P, Amar NA, Boulanger V, Carreiro M, et al.
60	489		BiOsimilaRs in the management of anaemia secondary to chemotherapy in HaEmatology

2			
3	490		and Oncology: results of the ORHEO observational study. BMC Cancer. 2014;14:503.
4	491		doi:10.1186/1471-2407-14-503.
5	492	35	Mysler E, Azevedo VF, Danese S, Alvarez D, Iikuni N, Ingram B, et al. Biosimilar-to-
6	493	50.	Biosimilar Switching: What is the Rationale and Current Experience? Drugs.
7	494		2021;81:1859–79. doi:10.1007/s40265-021-01610-1.
8 9	495	26	
9 10		50.	Moots R, Azevedo V, Coindreau JL, Dörner T, Mahgoub E, Mysler E, et al. Switching
11	496		Between Reference Biologics and Biosimilars for the Treatment of Rheumatology,
12	497		Gastroenterology, and Dermatology Inflammatory Conditions: Considerations for the
13	498		Clinician. Curr Rheumatol Rep. 2017;19:37. doi:10.1007/s11926-017-0658-4.
14	499	37.	Danese S, Fiorino G, Raine T, Ferrante M, Kemp K, Kierkus J, et al. ECCO Position
15	500		Statement on the Use of Biosimilars for Inflammatory Bowel Disease-An Update. J
16	501		Crohns Colitis. 2017;11:26–34. doi:10.1093/ecco-jcc/jjw198.
17	502	38.	Cohen HP, Blauvelt A, Rifkin RM, Danese S, Gokhale SB, Woollett G. Switching
18	503		Reference Medicines to Biosimilars: A Systematic Literature Review of Clinical
19	504		Outcomes. Drugs. 2018;78:463–78. doi:10.1007/s40265-018-0881-y.
20	505	39	Håkonsen H, Eilertsen M, Borge H, Toverud E-L. Generic substitution: additional
21	506	57.	challenge for adherence in hypertensive patients? Curr Med Res Opin. 2009;25:2515–21.
22	507		doi:10.1185/03007990903192223.
23 24	508	40	Blackwell K, Semiglazov V, Krasnozhon D, Davidenko I, Nelyubina L, Nakov R, et al.
24 25		40.	
25 26	509		Comparison of EP2006, a filgrastim biosimilar, to the reference: a phase III, randomized,
27	510		double-blind clinical study in the prevention of severe neutropenia in patients with breast
28	511		cancer receiving myelosuppressive chemotherapy. Ann Oncol. 2015;26:1948-53.
29	512		doi:10.1093/annonc/mdv281.
30	513	41.	Blauvelt A, Lacour J-P, Fowler JF, Schuck E, Jauch-Lembach J, editor. A phase III
31	514		confirmatory study comparing GP2017 with reference adalimumab in patients with
32	515		moderate-tosevere chronic plaque psoriasis: 51 week results from the ADACCESS study;
33	516		2017.
34	517	42.	Griffiths CEM, Thaçi D, Gerdes S, Arenberger P, Pulka G, Kingo K, et al. The
35	518		EGALITY study: a confirmatory, randomized, double-blind study comparing the
36	519		efficacy, safety and immunogenicity of GP2015, a proposed etanercept biosimilar, vs. the
37	520		originator product in patients with moderate-to-severe chronic plaque-type psoriasis. Br J
38 39	521		Dermatol. 2017;176:928–38. doi:10.1111/bjd.15152.
39 40	522	12	
40 41		43.	Yazici Y, Xie L, Ogbomo A, Parenti D, Goyal K, Teeple A. A descriptive analysis of
42	523		real-world treatment patterns in a Turkish rheumatology population that continued
43	524		innovator infliximab (Remicade) therapy or switched to biosimilar infliximab. Arthritis
44	525		Rheumatol. 2016;68.
45	526	44.	Kang Y-S, Moon HH, Lee SE, Lim YJ, Kang HW. Clinical Experience of the Use of CT-
46	527		P13, a Biosimilar to Infliximab in Patients with Inflammatory Bowel Disease: A Case
47	528		Series. Digestive Diseases and Sciences. 2015;60:951-6. doi:10.1007/s10620-014-3392-
48	529		Z.
49	530	45.	NHS England and NHS improvement. What is a biosimilar medicine? 2019.
50	531		https://www.england.nhs.uk/wp-content/uploads/2019/05/what-is-a-biosimilar-medicine-
51	532		guide-v2.pdf. Accessed 5 Oct 2022.
52	533	46	Mayoral-Zavala A, Esquivel-Aguilar A, Del Real-Calzada CM, Gutiérrez-Grobe Y,
53 54	534	10.	Ramos-García J, Rocha-Ramírez JL, et al. Update on biosimilars in inflammatory bowel
54 55	535		disease: Position and recommendations in Mexico. [Actualización sobre los
55 56	535 536		
57			medicamentos biocomparables en la enfermedad inflamatoria intestinal: posición y
58	537		recomendación en México]. Rev Gastroenterol Mex (Engl Ed). 2018;83:414–23.
59	538		doi:10.1016/j.rgmx.2018.03.003.
60			

1			
1 2			
2	539	17	Cantini F, Benucci M. Focus on biosimilar etanercept - bioequivalence and
4	539 540	4/.	interchangeability. Biologics. 2018;12:87–95. doi:10.2147/BTT.S126854.
5		10	
6	541 542	40.	Busato A, Matter P, Künzi B, Goodman D. Geographic variation in the cost of
7	542		ambulatory care in Switzerland. J Health Serv Res Policy. 2012;17:18–23.
8	543	40	doi:10.1258/jhsrp.2011.010056.
9	544	49.	Panczak R, Luta X, Maessen M, Stuck AE, Berlin C, Schmidlin K, et al. Regional
10 11	545		Variation of Cost of Care in the Last 12 Months of Life in Switzerland: Small-area
12	546		Analysis Using Insurance Claims Data. Med Care. 2017;55:155–63.
13	547		doi:10.1097/MLR.0000000000634.
14	548	50.	Rémuzat C, Dorey J, Cristeau O, Ionescu D, Radière G, Toumi M. Key drivers for market
15	549		penetration of biosimilars in Europe. J Mark Access Health Policy. 2017;5:1272308.
16	550		doi:10.1080/20016689.2016.1272308.
17	551	51.	Bocquet F, Paubel P, Fusier I, Cordonnier A-L, Le Pen C, Sinègre M. Biosimilar
18	552		granulocyte colony-stimulating factor uptakes in the EU-5 markets: a descriptive analysis.
19 20	553		Appl Health Econ Health Policy. 2014;12:315–26. doi:10.1007/s40258-014-0087-8.
20	554	52.	Bocquet F, Paubel P, Fusier I, Cordonnier A-L, Sinègre M, Le Pen C. Biosimilar versus
22	555		patented erythropoietins: learning from 5 years of European and Japanese experience.
23	556		Appl Health Econ Health Policy. 2015;13:47–59. doi:10.1007/s40258-014-0125-6.
24	557	53.	Drozdowska A, Hermanowski T. Exploring the opinions and experiences of patients with
25	558		generic substitution: a representative study of Polish society. Int J Clin Pharm.
26	559		2015;37:68-75. doi:10.1007/s11096-014-0041-8.
27	560	54.	Heikkilä R, Mäntyselkä P, Ahonen R. Price, familiarity, and availability determine the
28 29	561		choice of drug - a population-based survey five years after generic substitution was
30	562		introduced in Finland. BMC Clin Pharmacol. 2011;11:20. doi:10.1186/1472-6904-11-20.
31	563	55.	Rathe J, Søndergaard J, Jarbøl DE, Hallas J, Andersen M. Patients' concern about their
32	564		medicine after a generic switch: a combined cross-sectional questionnaire and register
33	565		study. Pharmacoepidemiol Drug Saf. 2014;23:965–73. doi:10.1002/pds.3671.
34	566	56.	Shrank WH, Cadarette SM, Cox E, Fischer MA, Mehta J, Brookhart AM, et al. Is there a
35	567		relationship between patient beliefs or communication about generic drugs and
36	568		medication utilization? Med Care. 2009;47:319–25.
37	569		doi:10.1097/MLR.0b013e31818af850.
38 39	570	57	Olsson E, Svensberg K, Wallach-Kildemoes H, Carlsson E, Hällkvist C, Kaae S,
40	571	07.	Sporrong SK. Swedish patients' trust in the bioequivalence of interchangeable generics.
41	572		What factors are important for low trust? Pharm Pract (Granada). 2018;16:1298.
42	573		doi:10.18549/PharmPract.2018.04.1298.
43	574	58	Chapman SCE, Horne R, Chater A, Hukins D, Smithson WH. Patients' perspectives on
44	575	50.	antiepileptic medication: relationships between beliefs about medicines and adherence
45	576		among patients with epilepsy in UK primary care. Epilepsy Behav. 2014;31:312–20.
46 47	570		doi:10.1016/j.yebeh.2013.10.016.
47 48	578	50	Faasse K, Grey A, Horne R, Petrie KJ. High perceived sensitivity to medicines is
49	578 579	59.	associated with higher medical care utilisation, increased symptom reporting and greater
50	579 580		information-seeking about medication. Pharmacoepidemiol Drug Saf. 2015;24:592–9.
51	580 581		
52	581	۲ ۵	doi:10.1002/pds.3751.
53		00.	Lee YH, Song GG. Comparative efficacy and safety of etanercept biosimilars in
54 57	583		comparison with etanercept in patients with rheumatoid arthritis who have insufficient
55 56	584		response to methotrexate: A network meta-analysis. Int J Clin Pharmacol Ther.
50 57	585 586	<u>(</u> 1	2021;59:760–7. doi:10.5414/CP204049.
58	586	01.	Decollogny A, Eggli Y, Halfon P, Lufkin TM. Determinants of generic drug substitution
59	587		in Switzerland. BMC Health Serv Res. 2011;11:17. doi:10.1186/1472-6963-11-17.
60			

1		
2 3	5 00	
3 4	588	62. Daubenfeld T, Dassow J, Keßler M, Schulze J. Understanding the market dynamics of
5	589	biosimilars. Journal of Business Chemistry. 2016.
6	590	63. Shannon Coughlin. Market Research for the Pharmaceutical Benefits Schedule (PBS) and
7	591	Biosimilar Medicines. 2016. https://docsbay.net/market-research-for-the-pharmaceutical-
8	592	benefits-schedule-pbs-and-biosimilar-medicines.
9	593	64. O'Callaghan J, Bermingham M, Leonard M, Hallinan F, Morris JM, Moore U, Griffin BT.
10	594	Assessing awareness and attitudes of healthcare professionals on the use of biosimilar
11	595	medicines: A survey of physicians and pharmacists in Ireland. Regul Toxicol Pharmacol.
12	596	2017;88:252–61. doi:10.1016/j.yrtph.2017.06.013.
13 14	597	65. Currie J, MacLeod WB, van Parys J. Provider practice style and patient health outcomes:
14	598	The case of heart attacks. Journal of Health Economics. 2016;47:64–80.
16	599	doi:10.1016/j.jhealeco.2016.01.013.
17	600	66. Ebbers HC, Muenzberg M, Schellekens H. The safety of switching between therapeutic
18	601	proteins. Expert Opin Biol Ther. 2012;12:1473–85. doi:10.1517/14712598.2012.711308.
19	602	67. El Zorkany B, Al Ani N, Al Emadi S, Al Saleh J, Uthman I, El Dershaby Y, et al.
20	603	Biosimilars in rheumatology: recommendations for regulation and use in Middle Eastern
21	604	countries. Clin Rheumatol. 2018;37:1143–52. doi:10.1007/s10067-018-3982-9.
22	605	68. Fiorino G, Caprioli F, Daperno M, Mocciaro F, Principi M, Viscido A, et al. Use of
23	606	biosimilars in inflammatory bowel disease: a position update of the Italian Group for the
24 25	607	
26	608	Study of Inflammatory Bowel Disease (IG-IBD). Dig Liver Dis. 2019;51:632–9.
27		doi:10.1016/j.dld.2019.02.004.
28	609	69. Kay J, Dörner T, Emery P, Kvien TK, Breedveld FC. Clinical trial and 'real-world' data
29	610	support switching from a bio-originator to its biosimilar. Ann Rheum Dis. 2020;79:e44.
30	611	doi:10.1136/annrheumdis-2018-214994.
31	612	70. Wiland P, Batko B, Brzosko M, Kucharz EJ, Samborski W, Świerkot J, et al. Biosimilar
32	613	switching - current state of knowledge. Reumatologia. 2018;56:234–42.
33 34	614	doi:10.5114/reum.2018.77975.
34 35	615	71. Sigurdardottir V, Svärd A. Repeated switches between reference product etanercept and
36	616	biosimilar do not affect disease activity or retention rate of etanercept over 24 months - a
37	617	cohort study with historical controls. Joint Bone Spine. 2019;86:529-30.
38	618	doi:10.1016/j.jbspin.2018.12.003.
39	619	72. Federal act of 30 September 2011 on research involving human beings (human research
40	620	act, HRA). 2019. https://www.admin.ch/opc/en/classified-
41	621	compilation/20061313/index.html. Accessed 15 Jul 2022.
42		
43 44		
44 45		
46		FIGURE TITLE
47		
48	(22	
49	622	Figure 1. Determinants of biosimilar initial prescription (logistic regression)
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59		

10

 BMJ Open

		Reference Product			Bios	imilar	
ATC	medication	Dose (mg) / unit	cost (in CHF)	medication	Reimburment date	Dose (mg) / unit	cost (in CHF)
Low-molecular-weig	ht heparins						
B01	Clexane	20 / 10	41	Inhixa	01.08.2020	20 / 10	38.55
B01	Clexane	20 / 50	139.55	Inhixa	01.08.2020	20 / 50	127.25
B01	Clexane	40 / 2	17.35	Inhixa	01.08.2020	40 / 2	16.45
B01	Clexane	40 / 10	62.45	Inhixa	01.08.2020	40 / 10	57.85
B01	Clexane	40 / 50	246.75	Inhixa	01.08.2020	40 / 50	223.7
B01	Clexane	60 / 10	76.65	Inhixa	01.08.2020	60 / 10	70.6
B01	Clexane	80 / 10	102.3	Inhixa	01.08.2020	80 / 10	93.7
B01	Clexane	100 / 10	123.75	Inhixa	01.08.2020	100 / 10	113
B01	Clexane	120 / 10	134.9	Inhixa	01.08.2020	120 / 10	123.05
B01	Clexane	150 / 10	161.3	Inhixa	01.08.2020	150 / 10	146.8
B01	Clexane	300 / 1	41.3	Inhixa	01.08.2020	300 / 1	38.8
Growth factors							
L03	Neupogen	0.3 / 5	531.1	Accofil	01.11.2019	0.3 / 5	479.65
				Filgrastim-Teva	01.03.2010	0.3 / 5	479.65
				Zarzio	01.05.2010	0.3 / 5	479.65
L03	Neupogen	0.48 / 5	740.9	Accofil	01.11.2019	0.48 / 5	668.45
				Filgrastim-Teva	01.03.2010	0.48 / 5	668.45
				Zarzio	01.05.2010	0.48 / 5	668.45
L03	Neulasta	6 / 1	1668.75	Grasustek	01.09.2021	6 / 1	1266.95
				Pelgraz	01.11.2019	6 / 1	1266.85
				Pelgraz	01.11.2019	6 / 1	1266.85
				Pelmeg	01.01.2020	6/1	857.55
				Ziextenzo	01.03.2020	6/1	1266.95
				Fulphila	01.06.2020	6 / 1	1266.85
B03	Eprex	0.008 / 6	71.5	Binocrit	01.10.2009	0.008 / 6	66.15
B03	Eprex	0.017 / 6	126.55	Binocrit	01.10.2009	0.017 / 6	115.7
B03	Eprex	0.025 / 6	181.65	Binocrit	01.10.2009	0.025 / 6	165.25
B03	Eprex	0.037 / 6	236.75	Binocrit	01.10.2009	0.037 / 6	214.7
B03	Eprex	0.046 / 6	291.8	Binocrit	01.10.2009	0.046 / 6	264.5
B03	Eprex	0.092 / 6	567.2	Binocrit	01.10.2009	0.092 / 6	512.1
Hormones	-r						
A10	Lantus	10.9 / 5	81.85	Abasaglar	01.09.2015	10.9 / 5	68.4
G03	GONAL-F	0.022 / 1	156.4	Ovaleap	01.11.2018	0.022 / 1	122.05
G03	GONAL-F	0.033 / 1	226.45	Ovaleap	01.11.2018	0.033 / 1	174.95

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

G03	GONAL-F	0.066 / 1	430.65	Ovaleap	01.11.2018	0.066 / 1	329.1
H01	Genotropin	5 / 1	221.65	Omnitrope	01.11.2010	5 / 1	201.1
H01	Genotropin	5 / 5	1041.9	Omnitrope	01.11.2010	5 / 5	940
H05	Forsteo	0.25 / 1	412.75	Movymia	01.09.2019	0.25 / 1	340.75
				Terrosa	01.09.2019	0.25 / 1	340.75
				Terrosa	01.09.2019	0.25 / 1	340.75
Fusion proteins							
L01	MabThera	100 / 2	627.3	Rixathon	01.09.2018	100 / 2	505.5
				Truxima	01.01.2019	100 / 2	505.5
L01	MabThera	500 / 1	1515.65	Rixathon	01.09.2018	500 / 1	1225.7
				Truxima	01.01.2019	500 / 1	1225.7
L01	Herceptin	150 / 1	686.4	Herzuma	01.12.2021	150 / 1	562.45
				Trazimera	01.10.2019	150 / 1	562.45
				Kanjinti	01.02.2020	150 / 1	562.45
				Ogivri	01.09.2020	150 / 1	562.45
L01	Herceptin	440 / 1	1932.85	Herzuma	01.12.2021	150 / 1	1586.7
				Trazimera	01.10.2019	150 / 1	1586.7
				Kanjinti	01.02.2020	150 / 1	1586.7
				Ogivri	01.09.2020	150 / 1	1586.7
L01	Avastin	100 / 1	410.65	Oyavas	01.08.2021	100 / 1	312.1
				Bevacizumab-Teva	01.07.2021	100 / 1	312.1
				MVASI	01.07.2020	100 / 1	312.1
				Zirabev	01.08.2020	100 / 1	312.1
L01	Avastin	400 / 1	1469.5	Oyavas	01.08.2021	400 / 1	1117.5
				Bevacizumab-Teva	01.07.2021	400 / 1	1117.5
				MVASI	01.07.2020	400 / 1	1117.5
				Zirabev	01.08.2020	400 / 1	1117.5
L04	Enbrel	25 / 4	682.35	Benepali	01.04.2019	25 / 4	515.8
				Erelzi	01.07.2018	25 / 4	515.8
L04	Enbrel	50 / 2	669.05	Benepali	01.04.2019	50 / 2	504.3
				Erelzi	01.07.2018	50 / 2	505.9
L04	Remicade	100 / 1	695.75	Inflectra	01.08.2016	100 / 1	627.25
				Remsima	01.01.2016	100 / 1	627.25
L04	Humira	20 / 2	661.8	Hyrimoz	01.11.2019	20 / 2	500.45
L04	Humira	40 / 1	661.8	Abrilada	01.06.2021	40 / 1	500.45
				Amgevita	01.11.2019	40 / 1	500.45
				Hyrimoz	01.11.2019	40 / 1	500.45
				Idacio	01.08.2020	40 / 1	500.45
				Imraldi	01.07.2020	40 / 1	498.55
				Hulio	01.08.2020	40 / 1	500.45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5

Table A2 First Prescriptions: Reference Products (active substance)

5		-			-		
Active substance	total	2016	2017	2018	2019	2020	2021
9 n	14'987	433 (2.9%)	394 (2.6%)	501 (3.3%)	861 (5.7%)	4'525 (30.2%)	8'273 (55.2%
10 Adalimumab 11 Bevacizumab 12 Enoxaparin	369 (2.5%) 267 (1.8%) 9'785 (65.3%)	0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 0 (0.0%) 0 (0.0%)	24 (2.8%) 0 (0.0%) 0 (0.0%)	182 (4.0%) 96 (2.1%) 3'047 (67.3%)	163 (2.0%) 171 (2.1%) 6'738 (81.4%
 ³ Epoetin alfa ⁴ Etanercept ⁵ Filgrastim 	136 (0.9%) 176 (1.2%) 658 (4.4%)	20 (4.6%) 0 (0.0%) 158 (36.5%)	30 (7.6%) 0 (0.0%) 134 (34.0%)	19 (3.8%) 37 (7.4%) 107 (21.4%)	23 (2.7%) 55 (6.4%) 85 (9.9%)	24 (0.5%) 38 (0.8%) 104 (2.3%)	20 (0.2%) 46 (0.6%) 70 (0.8%)
Follitropin alfa	747 (5.0%)	0 (0.0%)	0 (0.0%)	41 (8.2%)	182 (21.1%)	226 (5.0%)	298 (3.6%)
18 Infliximab	530 (3.5%)	141 (32.6%)	103 (26.1%)	74 (14.8%)	68 (7.9%)	68 (1.5%)	76 (0.9%)
19 Insulin glargin	640 (4.3%)	113 (26.1%)	127 (32.2%)	126 (25.1%)	102 (11.8%)	88 (1.9%)	84 (1.0%)
²⁰ Pegfilgrastim ²¹ Rituximab	457 (3.0%) 661 (4.4%)	0 (0.0%) 0 (0.0%)	0 (0.0%) 0 (0.0%)	0 (0.0%) 97 (19.4%)	35 (4.1%) 203 (23.6%)	225 (5.0%) 178 (3.9%)	197 (2.4%) 183 (2.2%)
22 23 Somatropin 24 Teriparatid 25 Trastuzumab	5 (0.0%) 304 (2.0%) 252 (1.7%)	1 (0.2%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 0 (0.0%) 0 (0.0%)	0 (0.0%) 0 (0.0%) 0 (0.0%)	2 (0.2%) 55 (6.4%) 27 (3.1%)	2 (0.0%) 134 (3.0%) 113 (2.5%)	0 (0.0%) 115 (1.4%) 112 (1.4%)
26 27 28 29			, Ç				

Table A3 First Prescriptions: Biosimilars (active substance)

32								
33	Active substance	total	2016	2017	2018	2019	2020	2021
34	n	3'489	261 (7.5%)	344 (9.9%)	393 (11.3%)	616 (17.7%)	809 (23.2%)	1'066 (30.6%)
35	Adalimumab	165 (4.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	7 (1.1%)	63 (7.8%)	95 (8.9%)
36	Bevacizumab	28 (0.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	5 (0.6%)	23 (2.2%)
37	Enoxaparin	76 (2.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	7 (0.9%)	69 (6.5%)
38	Epoetin alfa	34 (1.0%)	8 (3.1%)	2 (0.6%)	7 (1.8%)	9 (1.5%)	3 (0.4%)	5 (0.5%)
39	Etanercept	185 (5.3%)	0 (0.0%)	0 (0.0%)	10 (2.5%)	49 (8.0%)	69 (8.5%)	57 (5.3%)
40	Filgrastim	1'854 (53.1%)	243 (93.1%)	271 (78.8%)	295 (75.1%)	342 (55.5%)	336 (41.5%)	367 (34.4%)
41	Follitropin alfa	219 (6.3%)	0 (0.0%)	0 (0.0%)	1 (0.3%)	40 (6.5%)	71 (8.8%)	107 (10.0%)
42	Infliximab	281 (8.1%)	7 (2.7%)	31 (9.0%)	49 (12.5%)	54 (8.8%)	61 (7.5%)	79 (7.4%)
43	Insulin glargin	141 (4.0%)	0 (0.0%)	39 (11.3%)	29 (7.4%)	33 (5.4%)	21 (2.6%)	19 (1.8%)
44	Pegfilgrastim	129 (3.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	32 (4.0%)	97 (9.1%)
45	Rituximab	318 (9.1%)	0 (0.0%)	0 (0.0%)	1 (0.3%)	78 (12.7%)	120 (14.8%)	119 (11.2%)
46	Somatropin	5 (0.1%)	3 (1.1%)	1 (0.3%)	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
47	Teriparatid	47 (1.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	4 (0.6%)	20 (2.5%)	23 (2.2%)
48	Trastuzumab	7 (0.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	1 (0.1%)	6 (0.6%)

Table A4 Rest prescriptions: Reference Products (active substance)

6								
7	Active substance	total	2016	2017	2018	2019	2020	2021
8 9	n	33'958	1'293 (3.8%)	1'645 (4.8%)	1'736 (5.1%)	3'662 (10.8%)	9'939 (29.3%)	15'683 (46.2%)
9 10	Adalimumab	3'070 (9.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	41 (1.1%)	1'354 (13.6%)	1'675 (10.7%)
11	Bevacizumab	2'109 (6.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	481 (4.8%)	1'628 (10.4%)
12	Enoxaparin	8'669 (25.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2'343 (23.6%)	6'326 (40.3%)
13	Epoetin alfa	2'052 (6.0%)	234 (18.1%)	385 (23.4%)	408 (23.5%)	200 (5.5%)	422 (4.2%)	403 (2.6%)
14	Etanercept	791 (2.3%)	0 (0.0%)	0 (0.0%)	90 (5.2%)	310 (8.5%)	198 (2.0%)	193 (1.2%)
15	Filgrastim	2'252 (6.6%)	408 (31.6%)	428 (26.0%)	403 (23.2%)	275 (7.5%)	403 (4.1%)	335 (2.1%)
16	Follitropin alfa	1'914 (5.6%)	0 (0.0%)	0 (0.0%)	19 (1.1%)	502 (13.7%)	561 (5.6%)	832 (5.3%)
17	Infliximab	2'973 (8.8%)	543 (42.0%)	660 (40.1%)	424 (24.4%)	434 (11.9%)	435 (4.4%)	477 (3.0%)
18 19	Insulin glargin	1'036 (3.1%)	108 (8.4%)	170 (10.3%)	134 (7.7%)	443 (12.1%)	112 (1.1%)	69 (0.4%)
20	Pegfilgrastim	1'426 (4.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	78 (2.1%)	699 (7.0%)	649 (4.1%)
21	Rituximab	3'148 (9.3%)	0 (0.0%)	0 (0.0%)	258 (14.9%)	1'177 (32.1%)	814 (8.2%)	899 (5.7%)
22	Somatropin	7 (0.0%)	0 (0.0%)	2 (0.1%)	0 (0.0%)	2 (0.1%)	3 (0.0%)	0 (0.0%)
23	Teriparatid	1'791 (5.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	79 (2.2%)	856 (8.6%)	856 (5.5%)
24	Trastuzumab	2'720 (8.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	121 (3.3%)	1'258 (12.7%)	1'341 (8.6%)
25								

Table A5 Rest prescriptions: Biosimilars (active substance)

Active substance	total	2016	2017	2018	2019	2020	2021
n	16'293	754 (4.6%)	1'071 (6.6%)	1'578 (9.7%)	2'644 (16.2%)	4'349 (26.7%)	5'897 (36.2%
Adalimumab	3'100 (19.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	64 (2.4%)	1'256 (28.9%)	1'780 (30.2%
Bevacizumab	306 (1.9%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	21 (0.5%)	285 (4.8%)
Enoxaparin	41 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	3 (0.1%)	38 (0.6%)
Epoetin alfa	844 (5.2%)	32 (4.2%)	114 (10.6%)	257 (16.3%)	369 (14.0%)	55 (1.3%)	17 (0.3%)
Etanercept	930 (5.7%)	0 (0.0%)	0 (0.0%)	23 (1.5%)	247 (9.3%)	377 (8.7%)	283 (4.8%)
Filgrastim	5'894 (36.2%)	695 (92.2%)	752 (70.2%)	897 (56.8%)	1'110 (42.0%)	1'142 (26.3%)	1'298 (22.0%
Follitropin alfa	583 (3.6%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	74 (2.8%)	210 (4.8%)	299 (5.1%)
Infliximab	1'507 (9.2%)	23 (3.1%)	115 (10.7%)	274 (17.4%)	278 (10.5%)	374 (8.6%)	443 (7.5%)
Insulin glargin	509 (3.1%)	0 (0.0%)	80 (7.5%)	126 (8.0%)	143 (5.4%)	98 (2.3%)	62 (1.1%)
Pegfilgrastim	406 (2.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	125 (2.9%)	281 (4.8%)
Rituximab	1'763 (10.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	356 (13.5%)	564 (13.0%)	843 (14.3%)
Somatropin	16 (0.1%)	4 (0.5%)	10 (0.9%)	1 (0.1%)	1 (0.0%)	0 (0.0%)	0 (0.0%)
Teriparatid	297 (1.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2 (0.1%)	114 (2.6%)	181 (3.1%)
Trastuzumab	97 (0.6%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	10 (0.2%)	87 (1.5%)

Table A6 Biosimilars quota by active substance

	Biosimilars quota (IP+RP)							
Active substance	Avg. relative Price difference	2016	2017	2018	2019	2020	202	
Adalimumab	24.63	-	-	-	52.21	46.2	50.5	
Bevacizumab	23.98	-	-	-	-	4.31	14.6	
Enoxaparin	7.77	-	-	-	-	<1	<1	
Epoetin alfa	8.91	3.1	21.85	38.21	62.9	11.51	4.94	
Etanercept	24.52	-	-	20.63	44.78	65.4	58.7	

Filgrastim	9.73	62.37	64.54	70.04	80.13	74.46	80.43
Follitropin alfa	22.76	-	-	1.64	14.29	26.31	26.43
Infliximab	9.85	4.2	15.53	39.34	39.81	46.38	48.56
Insulin glargin	16.43	-	33.62	37.35	24.41	37.3	34.62
Pegfilgrastim	48.61	-	-	-	-	14.52	30.88
Rituximab	19.27	-	-	<1	23.93	40.81	47.06
Somatropin	9.53	87.5	84.62	100	20	0	-
Teriparatid	17.44	-	-	-	4.29	11.84	17.36
Trastuzumab	17.98	-	-	-	-	<1	6.02

Table A7 Frequency of medication switches by active substance

Category	Active	Prop	ortion to al	ll switches	s (%)
	substance	RP to RP	RP to B	B to B	B to RF
Fusion proteins	Etanercept	0.27	4.4	0.29	1.59
Hormones	Follitropin alfa	9.41	5.35	8.1	5.84
Hormones	Insulin glargin	0.27	2.95	0.17	2.72
Hormones	Somatropin	0.02	0.07	0	0
Hormones	Teriparatid	0.21	1.42	1.34	2.51
Monoclonal antibodies	Adalimumab	4.52	4.04	1.75	4.63
Monoclonal antibodies	Bevacizumab	11.38	1.67	4.31	5.98
Monoclonal antibodies	Infliximab	1.86	8.95	2.33	6.4
Monoclonal antibodies	Rituximab	21.81	11.75	31.24	13.05
Monoclonal antibodies	Trastuzumab	6.94	1.02	1.52	7.89
Low-molecular-weight heparins	Enoxaparin	25.57	0.65	0.06	30.88
Growth factors	Epoetin alfa	14.22	1.16	24.94	1.17
Growth factors	Filgrastim	2.4	50.75	21.5	8.07
Growth factors	Pegfilgrastim	1.13	5.82	2.45	9.27

Table A8 Three models (A-C) assessing determinants of biosimilar first prescription (logistic regression)

Variables	Model A: sociodemographic variables OR [95%CI]	Model B: Model A + medication variables OR [95%CI]	Model C: Model B + provider variables OR [95%CI]
Intercept	0.429 [0.355, 0.518]	0.831 [0.49, 1.402]	0.706 [0.399, 1.241]
Year:			
2016 (reference)			
2017	1.381 [1.129, 1.692]	1.602 [1.246, 2.062]	1.594 [1.233, 2.064]
2018	1.354 [1.113, 1.648]	1.983 [1.551, 2.539]	1.934 [1.503, 2.492]
2019	1.493 [1.246, 1.793]	2.64 [2.094, 3.332]	2.602 [2.054, 3.302]
2020	0.42 [0.356, 0.497]	2.203 [1.755, 2.769]	2.232 [1.769, 2.819]
2021	0.302 [0.256, 0.355]	3.077 [2.452, 3.867]	3.012 [2.388, 3.806]
Sex:			
Female (reference)			
Male	0.998 [0.922, 1.081]	1.137 [1.02, 1.267]	1.132 [1.014, 1.263]

AIC	16'588	9 808	9755
1.7.9	1/1500	9'868	9'735
Observations	18'953	18'953	18'953
Rest			0.998 [0.609, 1.606]
Traditional pharmacy			1.207 [0.911, 1.611]
Specialist			1.417 [1.075, 1.884]
Outpatient hospital			2.477 [1.887, 3.28]
Suppl General practicioner (reference)			
		8.143 [6.502, 10.248]	9.649 [7.614, 12.303
2 >2		2.15 [1.671, 2.785]	2.363 [1.819, 3.093]
1 (reference)		0 15 [1 671 0 795]	0 262 [1 010 2 002]
Number of available imitator drug:			
		0.007 [0.035, 0.084]	0.007 [0.034, 0.084]
>20		0.067 [0.053, 0.084]	0.067 [0.054, 0.084]
<10 10-19		0.091 [0.072, 0.115]	0.076 [0.059, 0.096]
Relative price difference (%) <10			
		0.853 [0.592, 1.236]	0.037 [0.433, 0.937]
100-599 >600		0.254 [0.185, 0.349]	0.202 [0.145, 0.28] 0.657 [0.453, 0.957]
<100		0.254 [0.185, 0.240]	0 202 [0 145 0 29]
product (in CHF)			
Cost per package of reference			
Multiple package size		4.551 [3.808, 5.461]	4.64 [3.876, 5.575]
Growth factors		0.235 [0.168, 0.327]	0.158 [0.112, 0.222]
Low-molecular-weight heparins		0.001 [0.001, 0.001]	0.001 [0, 0.001]
		E / 1	0.115 [0.087, 0.152]
Hormones Monoclonal antibodies		1.297 [0.816, 2.081] 0.152 [0.116, 0.199]	1.281 [0.803, 2.06]
Fusion proteins (reference)		1 207 [0 916 2 091]	1 201 [0 002 2 06]
Category:			
Managed care	1.029 [0.949, 1.110]	1.103 [0.992, 1.226]	1.095 [0.984, 1.22]
High Managad ages	1.067 [0.954, 1.192] 1.029 [0.949, 1.116]	1.005 [0.868, 1.163]	0.998 [0.861, 1.155] 1.095 [0.984, 1.22]
Low (reference)	1 067 [0 054 1 102]	1 005 [0 969 1 162]	
>2 Deductible:	0.750 [0.057, 1.051]	1.03 [0.904, 1.22]	1.00 [0.928, 1.230]
2 >2	0.938 [0.837, 1.051]	1.05 [0.904, 1.22]	1.08 [0.928, 1.243]
1 2	1.054 [0.932, 1.191] 1.095 [0.963, 1.244]	0.934 [0.796, 1.094] 1.041 [0.88, 1.23]	0.95 [0.81, 1.115] 1.05 [0.886, 1.243]
0 (reference)	1 054 [0 022 1 101]	0 0 2 4 [0 70 4 1 00 4]	0.05.[0.01 1.115]
Number of comorbidity:			
Italian	0.467 [0.397, 0.546]	0.744 [0.601. 0.918]	0.701 [0.612, 0.942]
	0.578 [0.521, 0.64]	0.582 [0.51, 0.664]	0.611 [0.532, 0.7] 0.761 [0.612, 0.942]
German (reference) French	0 578 [0 521 0 64]	0 592 [0 51 0 664]	0 611 [0 522 0 7]
Language region			
>74	0.961 [0.849, 1.086]	0.825 [0.694, 0.98]	0.864 [0.725, 1.03]
65-74	1.571 [1.401, 1.761]	1.044 [0.889, 1.227]	1.044 [0.887, 1.228]
	1.302 [1.169, 1.452]	1.005 [0.867, 1.164]	1.022 [0.881, 1.185]
50 64			
<50 (reference) 50-64			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5	Reportin	g ch	ecklist for cohort study.					
6 7 8 9	Based on the STI	ROBE co	phort guidelines.					
10 11 12	Instructions to authors							
13 14 15	Complete this che	ecklist by	entering the page numbers from your manuscript where	readers will find				
16 17	each of the items	listed be	elow.					
18 19 20	Your article may i	not curre	ntly address all the items on the checklist. Please modify	your text to				
21 22	include the missir	ng inform	ation. If you are certain that an item does not apply, plea	se write "n/a" and				
23 24 25 26 27	provide a short ex	kplanatio	n.					
28 29 30 31			Reporting Item	Page Number				
32 33	Title and							
34 35 36 27	abstract							
37 38 39	Title	<u>#1a</u>	Indicate the study's design with a commonly	1				
40 41 42			used term in the title or the abstract					
43 44	Abstract	<u>#1b</u>	Provide in the abstract an informative and	2,3				
45 46			balanced summary of what was done and what					
47 48 49			was found					
50 51 52 53	Introduction							
54 55	Background /	<u>#2</u>	Explain the scientific background and rationale	4,5				
56 57 58	rationale		for the investigation being reported					
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

				i uge s i
1 2	Objectives	<u>#3</u>	State specific objectives, including any	4,5
3 4 5			prespecified hypotheses	
6 7 8	Methods			
9 10 11	Study design	<u>#4</u>	Present key elements of study design early in the	5,6,7
12 13 14			paper	
15 16	Setting	<u>#5</u>	Describe the setting, locations, and relevant	5,6,7
17 18			dates, including periods of recruitment, exposure,	
19 20 21			follow-up, and data collection	
22 23 24	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and	5,6
25 26			methods of selection of participants. Describe	
27 28 29			methods of follow-up.	
30 31	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and	n/a. The resent study
32 33			number of exposed and unexposed	does not contain
34 35 36				matched studies
37 38 39	Variables	<u>#7</u>	Clearly define all outcomes, exposures,	5,6,7
40 41			predictors, potential confounders, and effect	
42 43 44			modifiers. Give diagnostic criteria, if applicable	
45 46 47	Data sources /	<u>#8</u>	For each variable of interest give sources of data	3,4
48 49	measurement		and details of methods of assessment	
50 51			(measurement). Describe comparability of	
52 53			assessment methods if there is more than one	
54 55 56			group. Give information separately for for	
57 58			exposed and unexposed groups if applicable.	
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml

Page 34 of 37

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3	Bias	<u>#9</u>	Describe any efforts to address potential sources	6,7
3 4 5			of bias	
6 7 8	Study size	<u>#10</u>	Explain how the study size was arrived at	5,6
9 10 11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled	5,6,7
	variables		in the analyses. If applicable, describe which	
14 15 16			groupings were chosen, and why	
17 18	Statistical	<u>#12a</u>	Describe all statistical methods, including those	7,8
19 20 21 22	methods		used to control for confounding	
23 24	Statistical	<u>#12b</u>	Describe any methods used to examine	7,8
25 26 27	methods		subgroups and interactions	
28 29	Statistical	<u>#12c</u>	Explain how missing data were addressed	8
30 31 32	methods			
33 34	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was	8
35 36 37	methods		addressed	
38 39 40	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
41 42 43	methods			
44 45 46	Results			
47 48	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	8
49 50			study—eg numbers potentially eligible, examined	
51 52			for eligibility, confirmed eligible, included in the	
53 54 55 56 57			study, completing follow-up, and analysed. Give	
58 59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			вир Ореп	Page 30
1			information separately for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
8 9 10	Participants	<u>#13c</u>	Consider use of a flow diagram	n/a, addressed in text
11 12 13				at page 4
14 15	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	8,9
16 17			demographic, clinical, social) and information on	
18 19 20			exposures and potential confounders. Give	
20 21 22			information separately for exposed and	
23 24 25			unexposed groups if applicable.	
26 27	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data	n/a. We excluded
28 29 30			for each variable of interest	missing data before
30 31 32				descriptively
33 34				analysing the study
35 36 37				population
38 39	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total	8,9,10,11
40 41 42			amount)	
43 44 45	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	8,9,10,11
46 47			measures over time. Give information separately	
48 49 50			for exposed and unexposed groups if applicable.	
51 52	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	8,9,10,11
53 54 55			confounder-adjusted estimates and their	
56 57 58			precision (eg, 95% confidence interval). Make	
FΟ				

Page 36 of 37

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3	7 of 37		BMJ Open	
1			clear which confounders were adjusted for and	
2 3 4			why they were included	
5 6 7	Main results	<u>#16b</u>	Report category boundaries when continuous	8,9,10,11
8 9 10			variables were categorized	
11 12	Main results	<u>#16c</u>	If relevant, consider translating estimates of	12
13 14 15			relative risk into absolute risk for a meaningful	
15 16 17			time period	
18 19	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of	n/a
20 21 22			subgroups and interactions, and sensitivity	
23 24			analyses	
25 26 27 28 29 30	Discussion			
	Key results	<u>#18</u>	Summarise key results with reference to study	13
31 32 33			objectives	
34 35	Limitations	<u>#19</u>	Discuss limitations of the study, taking into	17
36 37 38			account sources of potential bias or imprecision.	
39 40			Discuss both direction and magnitude of any	
41 42 43			potential bias.	
44 45 46	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering	13,14,15,16
47 48			objectives, limitations, multiplicity of analyses,	
49 50			results from similar studies, and other relevant	
51 52 53			evidence.	
54 55 56	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of	17
57 58			the study results	
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Other			
3 4 5	Information			
6 7	Funding	<u>#22</u>	Give the source of funding and the role of the	19
8 9 10			funders for the present study and, if applicable,	
11 12			for the original study on which the present article	
13 14			is based	
15 16 17	Notes:			
18 19				
20 21	• 6b: n/a. The	resent st	udy does not contain matched studies	
22 23 24	• 13c: n/a, add	dressed i	n text at page 4	
25 26 27	• 14b: n/a. We	e exclude	d missing data before descriptively analysing the study population	
28 29 30	• 20: 13,14,15	,16 The \$	STROBE checklist is distributed under the terms of the Creative Comm	ions
31 32	Attribution L	icense C	C-BY. This checklist was completed on 06.10.2023 using	
33 34	https://www.	goodrepo	orts.org/, a tool made by the EQUATOR Network in collaboration with	
35 36 27	Penelope.ai			
37 38 39 40				
41 42				
43 44				
45 46				
47 48				
49 50 51				
52 53				
54 55				
56 57				
58 59		F		
60		⊢or pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	