				···· · · · · · · · · · · · · · · · · ·		
Species (tissue, acclimation temperature) and habitat climate	Estimated acute upper thermal tolerance limit (Assay type)	State III (Break point, or Max T _{assay})	Coupling ratio (RCR, ACR or P/O) (T _{Decline})	Mito. membrane potential (T _{Decline})	ATP synthesizing capacity (T _{Decline})	ROS production (Respiratory state) (T _{increase})
<i>Alvinella pompejana</i> (Gill, wild- caught) Hydrothermal vent ^{Dahlhoff et al., 1991}	55 °C (T _{lethal} , wild- caught) ^{Ravaux et al., 2013}	<u>48.6 °C</u> (ABT- CII)	NM	NM	NM	NM
<i>Boreogadus saida</i> (Heart fibre, 5 °C) Polar ^{Leo et al., 2017}	15.7 °C (CT _{max} , T _{acclimation} = 3.5 °C) ^{Drost et al., 2016}	<u>3 °C</u> (plateau- CI, CII)	<u>6 °C</u> (coupling efficiency-CI, CII) ^{see} Gnaiger et al., 2015	NM	NM	NM
Bythograea thermydon (Hepatopancreas, wild-caught) Hydrothermal vent ^{Dahlhoff et al., 1991}	37.5 °C (T _{lethal} , wild- caught = 5 °C) ^{Childress et al., 1982}	<u>46.3 °C</u> (ABT- CII)	NM	NM	NM	NM
<i>Chaenocephalus aceratus</i> (Heart mito 0 °C) Polar ^{Urschel} and O'Brien, 2009	13.9 °C (CT _{max} , T _{acclimation} - 0 °C) ^{Beers} and Sidell, 2011	<u>28.7 °C</u> (ABT-	<u>26 °C</u> (RCR-CI)	NM	NM	NM
<i>Chionodraco rastrospinosus</i> (Heart, mito, 0 °C) Polar ^{Urschel and} O'Brien, 2009	13.3 °C (CT_{max} , $T_{acclimation}$ - 0 °C) Beers and Sidell, 2011	<u>31.5 °C</u> (ABT-	<u>26 °C</u> (RCR-CI)	NM	NM	NM
Drosophila simulans (Perm. whole animal, 24 °C) Tropical ^{Pichaud} et al., 2010	40.9 °C ($T_{knockdown}$, $T_{acclimation} = 27$ °C) ^{Overgaard} et al., 2011	$24 ^{\circ}C$ (decline)	<u>24 °C</u> (P/O)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Heart fibre, 5 °C) Subtropical ^{Chung et} al., 2017	30.8 °C (CT _{max} , T _{acclimation} = 2.3 °C) Fangue et al., 2006	ND (37 °C)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Heart fibre, 15 °C) Subtropical ^{Chung} et al., 2018	34.9 °C (CT _{max} , T _{acclimation} = 12.4 °C) Fangue et al., 2006	<u>33 °C</u> (plateau)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Heart fibre, 33 °C) Subtropical ^{Chung} et al., 2018	42.5 °C (CT _{max} , T _{acclimation} = 34 °C) Fangue et al., 2006	33 °C (plateau)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Liver mito., 5 °C) Subtropical ^{Chung et} al., 2018	30.8 °C (CT _{max} , T _{acclimation} = 2.3 °C) Fangue et al., 2006	33 °C (plateau)	33 °C (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Liver mito., 15 °C) Subtropical ^{Chung} et al., 2018	34.9 °C (CT _{max} , T _{acclimation} = 12.4 °C) Fangue et al., 2006	ND (37 °C)	<u>33 °C</u> (RCR)	NM	NM	NM
<i>Fundulus heteroclitus heteroclitus</i> (Liver mito., 25 °C) Subtropical ^{Fangue} et al., 2009	41.4 °C (CT _{max} , T _{acclimation} = 26.5 °C) Fangue et al., 2006	30 °C (plateau)	30 °C (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Liver mito., 33 °C) Subtropical ^{Chung} et al., 2018	42.5 °C (CT _{max} , T _{acclimation} = 34 °C) Fangue et al., 2006	15 °C (plateau)	33 °C (RCR)	NM	NM	NM

Table S1. Summary of estimated acute thermal tolerance and assay temperatures that induce declines in mitochondrial parameters predicted to limit thermal tolerance. Mitochondrial parameter

Fundulus heteroclitus heteroclitus (Perm. brain, 5 °C) Subtropical ^{Chung et} al., 2017	30.8 °C (CT _{max} , T _{acclimation} = 2.3 °C) Fangue et al., 2006	33 °C (plateau)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus heteroclitus (Perm. brain, 15 °C) Subtropical ^{Chung} et al., 2017	34.9 °C (CT_{max} , $T_{acclimation}$ = 12.4 °C) Fangue et al., 2006	<u>33 °C</u> (plateau)	ND (RCR)	NM	NM	NM
<i>Fundulus heteroclitus heteroclitus</i> (Perm. brain, 33 °C) Subtropical ^{Chung} et al., 2017	42.5 °C (CT _{max} , T _{acclimation} = 34 °C) Fangue et al., 2006	33 °C (plateau)	ND (RCR)	NM	NM	NM
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Heart fibre, 5 °C) Temperate ^{Chung et al., 2017}	28.6 °C (CT_{max} , $T_{acclimation}$ = 2.3 °C) Fangue et al., 2006	ND (37 °C)	ND (RCR)	NM	NM	NM
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Heart fibre, 15 °C) Temperate ^{Chung et al., 2018}	33.6 °C (CT _{max} , T _{acclimation} = 12.4 °C) Fangue et al., 2006	<u>33 °C</u> (plateau)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus macrolepidotus (Heart fibre, 33 °C) Temperate ^{Chung et al., 2018}	41.3 °C (CT _{max} , T _{acclimation} = 34 °C) Fangue et al., 2006	ND (37 °C)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus macrolepidotus (Liver mito., 5 °C) Temperate ^{Chung et al., 2018}	28.6 °C (CT _{max} , T _{acclimation} = 2.3 °C) Fangue et al., 2006	33 °C (plateau)	33 °C (RCR)	33 °C (State III- CI) Chung and Schulte, 2015	NM	33 °C (State IV- CII) Chung and Schulte, 2015
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Liver mito., 15 °C) Temperate ^{Chung et al., 2018}	33.6 °C (CT _{max} , T _{acclimation} = 12.4 °C) Fangue et al., 2006	<u>33 °C</u> (plateau)	<u>33 °C</u> (RCR)	33 °C (State III- CI) Chung and Schulte, 2015	NM	33 °C (State IV- CII) Chung and Schulte, 2015
Fundulus heteroclitus macrolepidotus (Liver mito., 25 °C) Temperate ^{Fangue et al., 2009}	40.4 °C (CT_{max} , $T_{acclimation}$ = 26.5 °C) Fangue et al., 2006	30 °C, (plateau)	35 °C (RCR)	NM	NM	NM
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Liver mito., 33 °C) Temperate ^{Chung et al., 2018}	41.3 °C (CT _{max} , T _{acclimation} = 34 °C) Fangue et al., 2006	33 °C (plateau)	33 °C (RCR)	33 °C (State III- CI) Chung and Schulte, 2015	NM	33 °C (State IV- CII) Chung and Schulte, 2015
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Perm. brain, 5 °C) Temperate ^{Chung et al., 2017}	28.6 °C (CT_{max} , $T_{acclimation}$ = 2.3 °C) Fangue et al., 2006	ND (37 °C)	ND (RCR)	NM	NM	NM
<i>Fundulus heteroclitus</i> <i>macrolepidotus</i> (Perm. brain, 15 °C) Temperate ^{Chung} et al., 2017	33.6 °C (CT _{max} , T _{acclimation} = 12.4 °C) Fangue et al., 2006	<u>33 °C</u> (plateau)	ND (RCR)	NM	NM	NM
Fundulus heteroclitus macrolepidotus (Perm. brain, 33 °C) Temperate ^{Chung et al., 2017}	41.3 °C (CT_{max} , $T_{acclimation}$ = 34 °C) Fangue et al., 2006	33 °C (plateau)	ND (RCR)	NM	NM	NM
<i>Gadus morhua</i> (Heart fibre, 5 °C) Subpolar ^{Leo et al., 2017}	21.4 °C (CT _{max} , T _{acclimation} = 8 °C) ^{Norin et al., 2019}	<u>12 °C</u> (plateau- CI, CII)	ND (coupling efficiency-CI, CII) ^{see} Gnaiger et al., 2015	NM	NM	NM
<i>Gobionotothen gibberifrons</i> (Heart mito., 0 °C) Polar ^{Urschel and O'Brien, 2009}	$\begin{array}{l} 15.4 \ ^{\circ}C \ (CT_{max}, T_{acclimation} \\ = 0 \ ^{\circ}C)^{Beers \ and \ Sidell, \ 2011} \end{array}$	<u>31.4 °C</u> (ABT- CI)	<u>26 °C</u> (RCR-CI)	NM	NM	NM

Haliotis corrugata (Hepatopancreas, 20 °C) Mediterranean ^{Dahlhoff and Somero,}	32.0 °C (CT _{max} , T _{acclimation} = 19 °C) ^{Diaz et al., 2006}	<u>44.1 °C</u> (ABT- CII)	NM	NM	NM	NM
Haliotis fulgens (Hepatopancreas, 20	33.6 °C (CT _{max} , T _{acclimation}	<u>40.6 °C</u> (ABT-	NM	NM	NM	NM
Haliotis rufescens (Hepatopancreas, 12 °C) Mediterranean ^{Dahlhoff and Somero,} 1993	$= 19 °C)^{\text{Diazet al, 2000}}$ 27.5 °C (CT _{max} , Tacclimation = 17 °C)^{\text{Diaz et al., 2000}}	CII) <u>34.0 °C</u> (ABT- CII)	NM	NM	NM	NM
Lepidonotothen nudifrons (Liver mito., 0 °C) Polar Hardewig et al., 1999	8 to 11 °C (T _{lethal}), 15.06 °C (CT_{max}) Bilyk and DeVries, 2011	ND (18°C-CI)	<u>9 °C</u> (RCR-CI), ND (P/O-CII)	NM	NM	NM
Manduca sexta (Whole animal mito., 27 °C) Tropical Martinez et al., 2017	44.7 °C (CT_{max} , $T_{acclimation}$ = 28 °C) ^{Kingsolver} et al., 2016	<u>34 °C</u> (plateau- CI, CII)	<u>34 °C</u> (RCR-CI, CII)	NM	NM	NM
<i>Mya arenaria</i> (Mantle mito., 10 °C) Temperate ^{Abele et al., 2002}	31.3 °C (Tlethal, Tacclimation = 10 °C) ^{Compton et al., 2007}	<u>15 °C</u> (ABT)	ND (RCR), 15 °C (P/O)	NM	NM	15 °C (State IV- CI, State III-CI)
Notolabrus celidotus (Heart fibre, 18 °C) Temperate Iftikar and Hickey, 2013	27.5 °C (Theart failure)	ND (32.5 °C- CI)	25 °C (RCR-CI), 27.5 °C (P/O-CI, CII)	NM	27.5 °C	32.5 °C (State III-CI)
Notothenia coriiceps (Liver mito. 1 °C) Polar ^{Mark et al., 2012}	16.17 °C (CT _{max} , $T_{acclimation} = -1.5$ °C) ^{Bilyk} and DeVries, 2011	<u>9 °C</u> (ABT-CI)	ND (RCR-CI)	6 °C (State II-CI)	NM	NM
<i>Notothenia rossii</i> (Liver mito. 1°C) Polar ^{Mark et al., 2012}	16.16 °C (CT _{max} , T _{acclimation} = -1.5 °C) ^{Bilyk} and DeVries, 2011	<u>6 °C</u> (ABT-CI)	ND (RCR-CI)	9 °C (State II-CI)	NM	NM
Oreochromis mossambicus (Liver mito., 28 °C) Tropical Weinstein and Somero, 1998	42.22 °C (CT _{max}) King and Sardella, 2017	<u>43.5 °C</u> (ABT- CI, CII)	<u>35 °C</u> (ACR-CI, CII)	NM	NM	NM
Pachycara brachycephalum (Liver mito., 5 °C) Polar Lannig et al., 2005	17.15 °C (CT_{max} , T _{acclimation} = 4 °C) Bilyk and DeVries, 2011	ND (20 °C)	20 °C (RCR)	NM	NM	NM
Pachycara brachycephalum (Liver, 0 °C) Polar Lannig et al., 2005	14.54 °C (CT _{max}) Bilyk and DeVries, 2011	ND (20 °C)	<u>20 °C</u> (RCR)	NM	NM	NM
<i>Romaleon antennarius</i> (Hepatopancreas, wild-caught) Temperate ^{Dahlhoff et al., 1991}	31.5 °C (CTmax, Taccliamtion = 15 °C) ^{Padilla-} Ramírez et al., 2015	<u>31.0 °C</u> (ABT- CII)	NM	NM	NM	NM
Salvelinus alpinus (Heart mito., 10 °C) Polar ^{Christen et al., 2018}	23 °C (CT _{max})	<u>15 °C</u> (plateau)	NM	NM	NM	25 °C (State III- CL CII)
Sebastes mystinus (Liver mito., 13 °C) Mediterranean ^{Weinstein and Somero,} 1998	22.5 °C (T _{lethal} , T _{acclimation} = 12 °C) ^{TENERA Environemtnal} Services, 1988	<u>39.5 °C</u> (ABT- CI, CII)	<u>20 °C</u> (ACR-CI, CII)	NM	NM	NM
Trematomus bernachchii (Liver mito., -1.86 °C) Polar Weinstein and Somero, 1998	13.62 °C (CT _{max}) Bilyk and DeVries, 2011	<u>20.3 °C</u> (ABT- CI, CII)	<u>18 °C</u> (ACR-CI, CII)	NM	NM	NM

Trematomus bernachchii	15.02 °C (CT _{max})	22.3 °C (ABT-	18 °C (ACR-CI, CII)	NM	NM	NM
(Liver mito., 4 °C) Polar	Bilyk and DeVries, 2011	CI, CII)				
Weinstein and Somero, 1998						

ND: No clear acute temperature breakpoint detected, NM: Not measured, ABT: Arrhenius breakpoint temperature, plateau: no increase in function with increasing acute temperature, CI or CII following a mitochondrial parameter indicates the ETS complex being provided substrate, $T_{decline}$ – Acute temperature where a decline in mitochondrial function is observed, a range of acute temperatures is provided in instances where the exact $T_{decline}$ is ambiguous. Bold and underlined mitochondrial parameters are data that met the criteria for inclusion in Figure 2 – see section "Do mitochondria set organismal thermal limits?".

- Abele, D., Heise, K., Pörtner, H. O. and Puntarulo, S. (2002). Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam *Mya arenaria. J. Exp. Biol.* 205, 1831–41.
- Beers, J. M. and Sidell, B. D. (2011). Thermal tolerance of antarctic notothenioid fishes correlates with level of circulating hemoglobin. *Physiol. Biochem. Zool.* 84, 353–362.
- Bilyk, K. T. and DeVries, A. L. (2011). Heat tolerance and its plasticity in Antarctic fishes. *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* **158**, 382–390.
- Chen, Z., Snow, M., Lawrence, C. S., Church, A. R., Narum, S. R., Devlin, R. H. and Farrell, A. P. (2015). Selection for upper thermal tolerance in rainbow trout (*Oncorhynchus mykiss* Walbaum). J. Exp. Biol. 218, 803–812.
- Childress, J., Mickel, T. J. and Childress', J. J. (1982). Effects of pressure and temperature on the ekg and heart rate of the hydrothermal vent crab *Bythograea thermydron* (Brachyura). *Ref. Biol Bull* 162,.
- Christen, F., Desrosiers, V., Dupont-Cyr, B. A., Vandenberg, G. W., Le François, N. R., Tardif, J. C., Dufresne, F., Lamarre, S. G. and Blier, P. U. (2018). Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. *Free Radic. Biol. Med.* **116**, 11–18.
- Chung, D. J. and Schulte, P. M. (2015). Mechanisms and costs of mitochondrial thermal acclimation in a eurythermal killifish (*Fundulus heteroclitus*). J. Exp. Biol. 218, 1621–1631.
- Chung, D. J., Bryant, H. J. and Schulte, P. M. (2017). Thermal acclimation and subspeciesspecific effects on heart and brain mitochondrial performance in a eurythermal teleost (*Fundulus heteroclitus*). J. Exp. Biol. 220, 1459–1471.
- Chung, D. J., Sparagna, G. C., Chicco, A. J. and Schulte, P. M. (2018). Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress. J. *Exp. Biol.* 221, jeb174458.
- Compton, T. J., Rijkenberg, M. J. A., Drent, J. and Piersma, T. (2007). Thermal tolerance ranges and climate variability: A comparison between bivalves from differing climates. *J. Exp. Mar. Bio. Ecol.*
- Dahlhoff, E. and Somero, G. N. (1993). Effects of temperature on mitochondria from abalone (genus *Haliotis*): adaptive plasticity and its limits. *J. exp. Biol* 185, 151–168.
- **Dahlhoff, E., O'Brien, J., Somero, G. N. and Vetter, R. D.** (1991). Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. *Physiol. Zool.* **64**, 1490–1508.
- Diaz, F., Re, A. D., Medina, Z., Re, G., Valdez, G. and Valenzuela, F. (2006). Thermal preference and tolerance of green abalone *Haliotis fulgens* (Philippi, 1845) and pink abalone *Haliotis corrugata* (Gray, 1828). *Aquac. Res.* **37**, 877–884.
- Díaz, F., del Río-Portílla, M. A., Sierra, E., Aguilar, M. and Re-Araujo, A. D. (2000). Preferred temperature and critical thermal maxima of red abalone *Haliotis rufescens*. J. *Therm. Biol.* 25, 257–261.

- Drost, H. E., Lo, M., Carmack, E. C. and Farrell, A. P. (2016). Acclimation potential of Arctic cod (*Boreogadus saida*) from the rapidly warming Arctic Ocean. J. Exp. Biol. 219, 3114–3125.
- Fangue, N. A., Hofmeister, M. and Schulte, P. M. (2006). Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, *Fundulus heteroclitus. J. Exp. Biol.* 209, 2859–72.
- Fangue, N. A., Richards, J. G. and Schulte, P. M. (2009). Do mitochondrial properties explain intraspecific variation in thermal tolerance? J. Exp. Biol. 212, 514–522.
- Gnaiger, E., Boushel, R., Søndergaard, H., Munch-Andersen, T., Damsgaard, R., Hagen, C., Díez-Sánchez, C., Ara, I., Wright-Paradis, C., Schrauwen, P., et al. (2015).
 Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter. *Scand. J. Med. Sci. Sports* 25, 126–134.
- Hardewig, I., Peck, L. S. and Pörtner, H. O. (1999). Thermal sensitivity of mitochondrial function in the Antarctic Notothenioid *Lepidonotothen nudifrons*. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 169, 597–604.
- Iftikar, F. I. and Hickey, A. J. R. (2013). Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in *Notolabrus celidotus*. *PLoS One* **8**,.
- King, M. and Sardella, B. (2017). The effects of acclimation temperature, salinity, and behavior on the thermal tolerance of Mozambique tilapia (*Oreochromis mossambicus*). J. Exp. Zool. Part A Ecol. Integr. Physiol. **327**, 417–422.
- Kingsolver, J. G., MacLean, H. J., Goddin, S. B. and Augustine, K. E. (2016). Plasticity of upper thermal limits to acute and chronic temperature variation in *Manduca sexta* larvae. *J. Exp. Biol.* **219**, 1290–1294.
- Lannig, G., Storch, D. and Pörtner, H.-O. O. (2005). Aerobic mitochondrial capacities in Antarctic and temperate eelpout (*Zoarcidae*) subjected to warm versus cold acclimation. *Polar Biol.* 28, 575–584.
- Leo, E., Kunz, K. L., Schmidt, M., Storch, D., Pörtner, H. O. and Mark, F. C. (2017). Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (*Boreogadus saida*) and Atlantic cod (*Gadus morhua*). *Front. Zool.* 14, 21.
- Mark, F. C., Lucassen, M., Strobel, A., Barrera-Oro, E., Koschnick, N., Zane, L., Patarnello, T., Pörtner, H. O. and Papetti, C. (2012). Mitochondrial function in antarctic nototheniids with ND6 translocation. *PLoS One* 7,.
- Martinez, E., Menze, M. A. and Agosta, S. J. (2017). Reduced mitochondrial efficiency explains mismatched growth and metabolic rate at supraoptimal temperatures. *Physiol. Biochem. Zool.* **90**, 294–298.
- Norin, T., Canada, P., Bailey, J. A. and Gamperl, A. K. (2019). Thermal biology and swimming performance of Atlantic cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*). *PeerJ* **7**, e7784.

Overgaard, J., Kristensen, T. N., Mitchell, K. A. and Hoffmann, A. A. (2011). Thermal

tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? *Am. Nat.* **178**, S80–S96.

- Padilla-Ramírez, S., Díaz, F., Re, A. D., Galindo-Sanchez, C. E., Sanchez-Lizarraga, A. L., Nuñez-Moreno, L. A., Moreno-Sierra, D., Paschke, K. and Rosas, C. (2015). The effects of thermal acclimation on the behavior, thermal tolerance, and respiratory metabolism in a crab inhabiting a wide range of thermal habitats (*Cancer antennarius* Stimpson, 1856, the red shore crab). *Mar. Freshw. Behav. Physiol.* 48, 89–101.
- Pichaud, N., Chatelain, E. H., Ballard, J. W. O., Tanguay, R., Morrow, G. and Blier, P. U. (2010). Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of *Drosophila simulans*: evaluation of mitochondrial plasticity. J. Exp. Biol. 213, 1665–1675.
- Ravaux, J., Hamel, G., Zbinden, M., Tasiemski, A. A., Boutet, I., Léger, N., Tanguy, A., Jollivet, D. and Shillito, B. (2013). Thermal limit for metazoan life in question: in vivo heat tolerance of the pompeii worm. *PLoS One* **8**, e64074.
- **St-Pierre, J., Charest, P. M. and Guderley, H.** (1998). Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout *Oncorhynchus mykiss. J. Exp. Biol.* **201**, 2961–2970.
- **TENERA Environemtnal Services** (1988). Pacific Gas and Electric Company Diablo Canyon Power Plant Final Report Thermal Effects Monitoring Program Volume 1. Berkeley.
- Urschel, M. R. and O'Brien, K. M. (2009). Mitochondrial function in Antarctic notothenioid fishes that differ in the expression of oxygen-binding proteins. *Polar Biol.* **32**, 1323–1330.
- Weinstein, R. B. and Somero, G. N. (1998). Effects of temperature on mitochondrial function in the Antarctic fish *Trematomus bernacchii*. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 168, 190–196.