Supplementary Information

Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening

Priyanka Parijat¹, Seetharamaiah Atilli¹, Zoe Hoare², Michael Shattock², Victor Kenyon³ and Thomas Kampourakis^{1,*}

¹Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom

²School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom

³Atomwise Inc., San Francisco, California, USA

Supplementary Information Figures and Figure Legends

```
SP|P12883|MYH7_HUMAN_AETEYGKTVTVKEDQVMQQNPPKFDKIEDMAMLTFLHEPAVLYNLKDRYGSWMIYTYSGL_120
SP|Q9BE39|MYH7_BOVIN AETEHGKTVTVKEDQVLQQNPPKFDKIEDMAMLTFLHEPAVLYNLKERYASWMIYTYSGL 120
SP|P02563|MYH6_RAT AETENGKTVTVKEDQVMQQNPPKFDKIEDMAMLTFLHEPAVLYNLKERYAAWMIYTYSGL 119
                 SP|P12883|MYH7_HUMAN FCVTVNPYKWLPVYTPEVVAAYRGKKRSEAPPHIFSISDNAYQYMLTDRENQSILITGES 180
SP|Q9BE39|MYH7_BOVIN FCVTINPYKWLPVYNAEVVAAYRGKKRSEAPPHIFSISDNAYQYMLTDRENQSILITGES 180
SP|P02563|MYH6_RAT FCVTVNPYKWLPVYNAEVVAAYRGKKRSEAPPHIFSISDNAYQYMLTDRENQSILITGES 179
                 SP|P12883|MYH7 HUMAN FTNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFGMDLQACIDLIEKPMGIMSILEEECM 539
SP|Q9BE39|MYH7_BOVIN FTNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLQACIDLIEKPMGIMSILEEECM 539
SP|P02563|MYH6_RAT FTNEKLQQFFNHHMFVLEQEEYKKEGIEWEFIDFGMDLQACIDLIEKPMGIMSILEEECM 539
                 SP|P12883|MYH7 HUMAN MTNLRSTHPHFVRCIIPNETKSPGVMDNPLVMHQLRCNGVLEGIRICRKGFPNRILYGDF 718
SP|Q9BE39|MYH7_BOVIN MTNLRSTHPHFVRCIIPNETKSPGVIDNPLVMHQLRCNGVLEGIRICRKGFPNRILYGDF 718
SP|P02563|MYH6_RAT MTNLRTTHPHFVRCIIPNERKAPGVMDNPLVMHQLRCNGVLEGIRICRKGFPNRILYGDF 719
                SP|P12883|MYH7 HUMAN RQRYRILNPAAIPEGQFIDSRKGAEKLLSSLDIDHNQYKFGHTKVFFKAGLLGLLEEMRD 778
SP|Q9BE39|MYH7 BOVIN RQRYRILNPAAIPEGQFIDSRKGAEKLLGSLDIDHNQYKFGHTKVFFKAGLLGLLEEMRD 778
SP|P02563|MYH6 RAT RQRYRILNPAAIPEGQFIDSGKGAEKLLGSLDIDHNQYKFGHTKVFFKAGLLGLLEEMRD 779
```

Supplementary Figure 1. Sequence alignment of human, bovine and rat cardiac myosin motor domain spanning residues 1-779. Residues forming the Omecamtiv Mecarbil-binding site in PDB 4PA0 are highlighted in orange.

Supplementary Figure 2. Structural clustering of known small molecule myosin modulators using multi-dimensional scaling in ChemMineTools¹. RA – retinoic acid; Dani – Danicamtiv; OM – Omecamtiv Mercarbil; Blebb – Blebbistatin; Afi – Aficamten; BTS - N-benzyl-p-toluene sulphonamide; Mava – Mavacamten; PCP – Pentaclorpseudiline; BHC - -((N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BDM – 2,3 – Butadione monoxime.

Ħ � \			Water Solubility	
	LIPO	Log S (ESOL) 📀	-3.25	
		Solubility	1.65e-01 mg/ml ; 5.57e-04 mol/l	
	FLEX	Class 😢	Soluble	
<mark>і</mark> н н		Log S (Ali) 😢	-4.62	
	INSATU POLAR	Solubility	7.12e-03 mg/ml ; 2.40e-05 mol/l	
H,C S N		Class 📀	Moderately soluble	
		Log S (SILICOS-IT) 😣	-3.54	
		Solubility	8.53e-02 mg/ml ; 2.88e-04 mol/l	
		Class 📀	Soluble	
	INSOLU		Pharmacokinetics	
SMILES CCc1sc2c(c1)c(=O)n(cn2)NC(=S)NC(C)C		GI absorption 🥹	High	
Ph	ysicochemical Properties	BBB permeant 📀	No	
Formula	C12H16N4OS2	P-gp substrate 📀	No	
Molecular weight	296.41 g/mol	CYP1A2 inhibitor 🛞	Yes	
Num. heavy atoms	19	CYP2C19 inhibitor 📀	Yes	
Num. arom. heavy atoms	9	CYP2C9 inhibitor 😣	Yes	
Fraction Csp3	0.42	CYP2D6 inhibitor 😣	No	
Num. rotatable bonds	5	CYP3A4 inhibitor 📀	No	
Num. H-bond acceptors	2	Log K _n (skin permeation) 📀	-6.35 cm/s	
Num. H-bond donors	m. H-bond donors 2		Druglikeness	
Molar Refractivity	83.71	Lipinski 🤫	Yes: 0 violation	
TPSA 🥹	119.28 A ²	Ghose 🛞	Yes	
	Lipophilicity	Veber 🔞	Yes	
Log P _{o/w} (iLOGP) 🧐	2.53	Fgan (9)	Yes	
Log P _{o/w} (XLOGP3) 😣	2.47	Muegae 8	Yes	
Log P _{o/w} (WLOGP) 📀	1.66	Bioavailability Score 8	0.55	
Log P _{o/w} (MLOGP) 📀	_{2/w} (MLOGP) 😌 1.68		Medicinal Chemistry	
Log P _{o/w} (SILICOS-IT) 📀	3.28	PAINS ()	0 alert	
Consensus Log P _{o/w} 📀	2.32	Brenk 📀	1 alert: thiocarbonyl_group 🧐	
		Leadlikeness 📀	Yes	
		Synthetic accessibility 📀	3.33	

Supplementary Figure 3. Predicted ADMET properties of F10 using SwissADME².

Supplementary Figure 4. Normalized MST binding curves for Alexa647-labelled bovine β cardiac myosin S1 titrated against increasing concentrations of myosin S2 Δ in the absence (grey) and in the presence of either Mava (purple) or F10 (blue). Binding experiments were performed in the presence of 1 mmol L⁻¹ (a) ATP, (b) ADP.AIF₄ or (c) ADP.

Supplementary Figure 5. Normalized dose-response curve for the effect of F10 on active isometric force at pCa 5.9 (corresponding to about 50% maximal activation).

Supplementary Figure 6. Representative traces of left ventricular systolic (LVSP) during (a) perfusion of rat hearts with Krebs-Henseleit solution containing either F10 (red) or Mavacamten (blue), and (b) after washout. Continuous lines represent fit of data points to a Boltzmann sigmoidal function (LVSP=t+(Top-Bottom)/(1+exp((half-time-t)/Slope))). Similar fits were applied to each individual heart and the extracted half-times for the ON and OFF rates were averaged and are shown in (c) and (d), respectively. In this fit, 'Top' was constrained to being equal to the steady-state LVSP immediately prior to drug application. Means \pm s.e.m., n=4 rat hearts. Statistical significance of differences between F10 and Mavacamten were assessed with two-tailed, unpaired student's t-test.

Supplementary Figure 7. Top scoring docking poses predicted by AutoDock Vina for (a) F10derivative R4 (purple), (b) Mavacamten (yellow) and (c) Aficamten (pink) in the OM-binding pocket of human cardiac myosin S1. The N-terminal domain (NTD, green), converter (pink) and lower 50 ka domain (L50D, yellow) are labelled accordingly. (d) Calculated changes in free energy (ΔG) and steady dissociation constant K_d.

Supplementary Information Tables and Table Legends

Supplementary Table S1. Summary of bi-exponential fits to mant-ATP chase experiments in bovine β -cardiac myosin S1, synthetic thick filament and cardiac myofibrils.

	Slow Phase [%]	k _{fast} [s ⁻¹]	k _{slow} [s ⁻¹]			
β-cardiac myosin S1						
control (n=5)	21.4 ± 1.8	0.0496 ± 0.0100	0.0058 ± 0.0010			
+Mava (n=6)	71.0 ± 5.5 (*P<0.0001)	0.0251 ± 0.0102 (*P=0.1672)	0.0035 ± 0.0002 (*P=0.0264)			
+F10 (n=6)	69.8 ± 5.1 (*P<0.001)	0.0454 ± 0.0057 (*P=0.9424)	0.0014 ± 0.0002 (*P<0.0001, ^{\$} P=0.0292)			
Synthetic Myosin Filaments						
Control (n=5)	22.9 ± 2.8	0.0769 ± 0.0163	0.0046 ± 0.0007			
+Mava (n=7)	71.2 ± 2.4 (*P<0.0001)	0.0593 ± 0.0188 ^{ns} (*P=0.9270)	0.0033 ± 0.0007 (*P=0.3223)			
+F10 (n=7)	63.2 ± 4.2 (*P<0.0001)	0.0784 ± 0.0208 (*P=0.9528)	0.0027 ± 0.0005 (*P=0.2187)			
Cardiac myofibrils						
control (n=5)	25.4 ± 0.2	0.0719 ± 0.0193	0.0053 ± 0.0009			
+Mava (n=6)	46.6 ± 8.0 (*P<0.0285)	0.0637 ± 0.0271 (*P=0.9529)	0.0027 ± 0.0009 (*P=0.0734)			
+F10 (n=6)	67.8 ± 3.6 (*P<0.0001, \$P=0.0221)	0.0552 ± 0.0106 (*P=0.8080)	0.0021 ± 0.0002 (*P=0.0185)			

Means s.e.m. with the number of independent experiments (n) shown for each condition. Statistical significance of differences between values was assessed with a one-way ANOVA followed by Tukey's post-hoc test. P-values are shown in brackets with *P for F10 or Mava vs control, and ^{\$}P for Mava vs F10. Source data are provided as a Source Data file.

Supplementary Table S2. Summary for the effect of F10 on rat ventricular trabeculae mechanics and fluorescence polarization.

	control	F10	P value
T _{min} (mN mm ⁻²)	3.4 ± 0.5	3.5 ± 0.6	0.8561
T _{max} (mN mm ⁻²)	69.6 ± 2.6	15.6 ± 1.8	<0.0001
< P ₂ > _{min}	0.144 ± 0.003	0.193 ± 0.009	0.0319
< P ₂ > _{max}	0.078 ± 0.008	0.207 ± 0.023	0.0147
pCa₅₀	5.88 ± 0.02	5.69 ± 0.01	0.0137
n _H	7.60 ± 0.05	5.57 ± 0.33	0.0205
k _{tr} [S ⁻¹]	12.0 ± 1.9	35.1 ± 1.3	0.0056

Means s.e.m., n=3-5 trabeculae experiments. Statistical significance of differences between control and F10 treatment was assessed with a two-tailed, paired student's t-test.

	Baseline	20 µmol L ⁻¹ F10	P value
LVSP [mmHg]	168.0 ± 8.5	58.3 ± 2.2	0.0016
LVEDP [mmHg]	1.9 ± 0.2	22.0 ± 1.1	0.0046
dP dt ⁻¹ [mmHg s ⁻¹]	3978.8 ± 108.0	1329.0 ± 153.8	0.0004
dP dt ⁻¹ [mmHg s ⁻¹]	-3352.4 ± 134.4	-1300.0 ± 104.2	0.0014
Heart rate [bpm]	303 ± 8	300 ± 4	0.7277
Coronary flow [ml min ⁻¹]	15.6 ± 1.7	16.7 ± 2.3	0.6643

Supplementary Table S3. Summary for the effects of 20 μ mol L⁻¹ F10 on haemodynamic parameters of Langendorff-perfused rat hearts.

Means \pm s.e.m. for n = 4 rat hearts. Statistical significance of differences between baseline and F10 was assessed with a two-tailed, paired student's t-test.

Supplementary Information References

- 1 Backman, T. W., Cao, Y. & Girke, T. ChemMine tools: an online service for analyzing and clustering small molecules. *Nucleic Acids Res* **39**, W486-491, doi:10.1093/nar/gkr320 (2011).
- 2 Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Sci Rep* **7**, 42717, doi:10.1038/srep42717 (2017).