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Supplementary Table 1. Progress in the development of universal cell donor lines 

Study 

Year  

Gene/s 

Deleted  

Gene/s 

Induced  

Model 

Tested  

Conclusion  

1990  β2M    Mouse  Mice homozygous for β2M deletion had no detectable class I 

antigens and were deficient in CD8+ T cells responsible for cell 

mediated cytotoxicity (Koller et al., 2010; Zijlstra et al., 2010)  

1992  TAP1    Mouse  Mice with TAP1 deficiency have reduced MHC class I surface 

expression due to impaired molecular assembly and transportation 

leading to impaired cytotoxic immune response (Van Kaer et al., 

1992)  

1996  CIITA    Mouse  No expression of conventional MHC class II on cell surface of CIITA-

deficient mice shown by reduced CD4 T cell numbers in the 

periphery leading to impaired MHC class II mediated responses 

(Chang et al., 1996)  

2000  TAPBP    Mouse  Defective MHC class I assembly and expression and CD8+ T cell 

development (Grandea et al., 2000)  

2013  β2M    Human ESCs  HLA class I-negative cells targeted by homozygous disruption of 

β2M demonstrated reduced CD8+ T cell responses upon 

differentiation in embryoid bodies (Riolobos et al., 2013)  

2014    CTLA-4, PD-

L1  

Human ESCs, 

humanised 

mice  

Knock in hESCs expressing CTLA-Ig and PD-L1 confers immune 

protection in humanised mice. Allogeneic hESC-derived teratomas, 

fibroblasts and cardiomyocytes avoided immune rejection; cells 

from parental hESCs were rejected (Rong et al., 2014)  

2015  β2M    Human ESCs  Deletion of exons 2 and 3 of β2M alleles in hESCs led to HLA-I 

deficiency on the surface of cells and resistance to CD8+ T cell-

mediated responses (D. Wang et al., 2015)  

2016  TAP1, TAPBP    Human ESCs  TAP1- and TAPBP-deificent hESC lines demonstrated MHC class I 

deficiency on cell surface with a two-fold reduction in accumulation 

of T lymphocytes and NK cells. Cell lines maintained karyotypes, 

pluripotency and differentiation ability (Cui et al., 2016)  
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2017  β2M  HLA-E  Human 

iPSCs  

Knock-in HLA-E at the β2M locus in human iPSCs confers regulated 

expression of HLA-E. Edited cells and differentiated derivatives are 

not recognised as allogeneic by CD8+ T cells and are resistant to NK 

mediated lysis (Gornalusse et al., 2017)  

2017    HLA-G  Human ESCs  hESCs over-expressing HLA-G1 and differentiated neural progenitor 

cells retain pluripotency characteristics of stem cells with enhanced 

immunological tolerance (Zhao et al., 2017)  

2018  β2M, CIITA    Human 

iPSCs  

Knock-out of β2M and CIITA in hiPSCs does not alter the electrical 

properties of differentiated cardiomyocytes while inducing minimal 

in human immune cells (Mattapally et al., 2018)   

2019  β2M, CIITA  CD47  Mouse & 

human 

iPSCs  

Both mouse and human iPSCs lose immunogenicity when MHC class 

I and II genes are inactivated and CD47 is overexpressed while 

retaining pluripotency. Differentiated cells derived from the iPSC 

lines evade immune rejection in MHC-mismatched allogeneic 

recipients without immunosuppression (Deuse et al., 2019)  

2019  HLA-A, HLA-B, 

HLA-C, CIITA  

PD-L1, HLA-G, 

CD47  

Human 

iPSCs  

Ablation of HLA-A/B/C and HLA class I molecules in hiPSCs and 

expression of immunomodulatory factors blunted T cell responses, 

NK killing and macrophage engulfment (Han et al., 2019)  

2019    CC21, PD-L1, 

CD47, CD200 

Serpinb9, H2-

M3, FasL, 

MFGE8  

Mouse and 

mouse ESCs  

Expression of eight immunomodulatory transgenes in mESCs and 

derivatives prevents immune rejection in immunocompetent, 

allogeneic recipients. The cells generated ectopic tissues that 

maintained high expression of immunomodulatory transgenes 

(Harding et al., 2019.)  

2021  B2M, CIITA, 

CD155  

HLA-E  Mouse  In CD20-expressing leukaemia/lymphoma mouse models, CD20 CAR 

T cells evaded recognition by NKG2A+ and DNAM1+ NK cells as well 

as CD4 and CD8 T cell responses (Wang et al., 2021)  

2023  B2M, CIITA    Mouse  OPCs were developed from healthy donor cells that resulted in 

rescue of the major phenotypic features of Canavan disease in 

disease-specific mouse model (Feng et al., 2023)  
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Supplementary Table 2. Overview of cell safety switches in cell-based therapies   

Switch  Type of 

Switch  

Mechanism  Considerations  Reference/s  

FITC  On  Formation of pseudoimmunological synapse 

by combining with antigen receptors on 

CAR-T cell surface.  

  (Cao et al., 2016; 

Lee et al., 2019; 

Ma et al., 2016)  

Rapamycin  On  Assembles antigen binding and intracellular 

signalling subunits into complete construct.  

  (Bayle et al., 2006; 

Duong et al., 

2019)  

Dasatinib  Off  Directly prevents CAR-T cell activation.    (Weber et al., 

2019)  

HSV-TK  Off  Upon administration of ganciclovir, kills any 

dividing cell co-expressing CDK and HSV-TK 

gene system.  

  

  

  

  

Cell death can take up to 

several days  

  

Virally derived protein 

has higher risk of 

immunogenicity  

(Tiberghien et al., 

2001)  

Inducible 

Caspase9 

(iCasp9)  

Off  Activation of caspase-9 apoptotic pathways 

upon administration of chemical inducer of 

dimerisation (CID) AP1903.  

Human derived thus, 

lower risk of 

immunogenicity  

(Di Stasi et al., 

2011; Sahillioglu & 

Schumacher, 2022; 

Straathof et al., 

2005)  
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