
Conclusions 

We have developed two thaw methods for archival PBMCs, either using the proprietary 

MarrowMax™ medium or an RPMI based media with high FBS content. Statistical analysis 

showed that both methods were comparable, but with a possible preference for MarrowMax™. 

We demonstrated that these thawed cells were able to undergo DNA repair in a manner 

comparable to freshly drawn WB.  To our knowledge, this is the first phenotypic assay of DNA 

repair functionality in cryopreserved PBMCs and represents a significant step forward for high 

impact, large-scale, demographic studies using cohorts such as the BCFR. Future work: This 

thawing protocol can be applied for any metabolic phenotypic assay using multi-color panels 

including γ-H2AX and a nuclear stain, as the image stream platform can accommodate 4-9 

fluorescent channels. This assay technique and validated machine learning classifiers was 

developed to be scaled up in a large (>400) paired case-control cohort of breast cancer patients. 

Using this larger cohort, proper model testing could be done to further validate these machine 

learning classifiers and determine if the differences between apoptotic events (as classified by 

the edge staining and pan-nuclear staining) are significantly different at different time points or 

radiation doses. Ultimately, this cohort will be used to test for a correlation between DRC and 

breast cancer risk.  

Supplemental Figures 

Supplemental Table 1. Epidemiological data for cryogenically preserved PBMCs used in this 

study 



 

Donor# Donation Date Age at Interview BMI Race/Ethnicity Smoking Status

1 6/1/1998 43 24.9 Other Non-Smoker

2 8/13/1999 36 20.5 Other Non-Smoker

3 8/24/1999 47 30.1 Other Smoker

4 9/15/1999 33 25.8 White Smoker

5 9/23/1999 45 23.9 White Non-Smoker

6 9/28/1999 42 29.2 White Non-Smoker

7 3/13/2001 47 23.2 White Non-Smoker

8 12/29/1999 42 27.3 Other Non-Smoker

9 10/3/2001 67 28.3 White Non-Smoker

10 10/5/2001 57 24.2 Hispanic Non-Smoker

11 10/13/1999 44 23.2 Other Non-Smoker

12 5/26/1999 45 19.5 Other Smoker

13 7/29/1999 67 23.5 Other Non-Smoker

14 5/22/1999 50 20.0 Other Non-Smoker

15 7/27/2001 70 28.8 White Non-Smoker

15 4/22/1999 43 28.9 Other Non-Smoker

16 7/22/1999 47 18.7 Other Smoker

17 10/4/1999 41 23.0 Other Non-Smoker

18 8/19/1999 47 29.8 Other Non-Smoker

19 12/29/1999 68 25.0 Other Smoker



Supplemental Table 2. Net γ-H2AX fluorescence in PBMCs from 19 donors at serial time points 

(1-20h). Fluorescence values (arbitrary units) of cells after gating strategies discussed above 

are based on median fluorescence intensity of each irradiated time point after subtracting its 

appropriate un-irradiated control. Missing values (“NA”) indicate insufficient number of cells 

(<100 cells).  
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