
Review History

First round of review
Reviewer 1

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes, and I have assessed the statistics in my report.

Comments to author: 

Wang et al provided a comprehensive single-cell multiomic analysis of major cell types of the 
human retina. They mapped eQTL and caQTLs which were well supported by allele-specific 
expression and chromatin accessibility, and discovered new QTLs missed by earlier studies 
using bulk sequencing. Importantly, they observed many cell type-specific genetic regulatory 
effects and presented thought-provoking analyses implicating a sophisticated transcription factor 
network underlying cell type specificity. Lastly, they performed a well-designed fine-mapping 
analysis to identify potential causal variants and relevant cell types. Even though some details 
were currently missing, the statistical analyses were appropriate and supported the authors 
conclusions. This work is highly relevant and very appropriate for Genome Biology. I have the 
following comments and questions for the authors. 

- The authors omitted some important details on the identification of QTL in their data. In 
particular, why did they choose to include N = 3 PEER factors and 1 genotype PC? Did top 
PEER factors correspond to known technical covariates? What would happen to the power to 
detect eQTL if more PEER factors were included? How about other demographic variables such 
as sex and age? 

- In addition, for caQTL mapping, what is the window for SNPs to be considered for each peak? 
Did the authors distinguish caQTLs where the SNP overlap with the peak, and those that are 
outside? (Maybe that's the "distal caQTLs" they mentioned in line 248, page 10, but the 
description of this distinction was not easily found). 

- The authors observed that variants in wider OCRs have local effects, while the variants in 
narrow OCRs are more likely to affect accessibility of the entire OCR. This is interesting, 
although a confounding observation can be that the wider peaks called are less accurate (may be 
a union of multiple smaller peaks). What is the distribution of peak lengths in this dataset? An 
alternative approach for caQTL calling is to use the "tiled" peaks (defined as 500bp windows 
genome-wide in ArchR) and then map significant caQTLs to OCRs. Have the authors tried this 
approach of mapping caQTLs? 

- The authors made the interesting observation that some cell-type specific caQTLs are 
associated with caPeaks which are accessible across multiple cell types. How did the authors 
address the possibility that there may be cases where the SNP is actually a caQTL in multiple 
cell types but did not pass statistical threshold because of differences in power, as a result of cell 
type abundance differences? 

- The calculation of LD was not clearly presented. Given that this cohort has individuals from 
diverse ancestries, which reference panel was used to assess LD? 



- In Figure 3F, the authors noted that the expression levels of TFs disrupted by eQTLs in the 
relevant cell types have higher expression than non-eQTL cell types. This is a very interesting 
observation and a convincing analysis to justify their arguments that trans factors may drive cell 
type-specific caQTLs. How many TFs were included in this analysis (predicted to have motifs 
perturbed?) Is there evidence from published studies supporting some of the TFs in establishing 
cell type specificity? 

- The enrichment test of caQTLs associated with dependent OCRs in Figure 6A is interesting. 
How were the background "all tested variants" defined? It seems that the authors identified 
variants which are not caQTLs in the master peak but still are associated with distal OCRs (e.g. 
~10% in Rod). Could the authors provide insights on this class of QTLs? 

- In Figure 6C, please indicate what statistical tests were performed (compared to all tested 
OCRs or comparing between master and dependent OCRs). Similarly, the p-values should be 
reported in the text when comparing master and dependent OCRs in active chromatin (H3K27ac 
and H3K4me2). 

- As a related question, could the authors provide more information on the relationship between 
master and dependent OCRs? Are they likely co-accessible peaks from scATAC, or is there 
relevant Hi-C data supporting their interactions? 

- It is very interesting to compare the caQTLs affecting multiple peaks in concordant and 
opposite directions, and the authors presented convincing data supporting compensatory roles of 
OCRs in leading to cis-eQTLs. Again, is there evidence (from co-accessibility or Hi-C, for 
example) supporting their interactions in case they jointly determine a cis-eQTL? 

- Among a total of 818 fine-mapped variants from three GWAS, the authors identified 27 QTLs 
in their dataset. Is this fraction higher than expected? (What fraction of GWAS SNPs were tested 
for QTLs in this study?) Further, could the authors provide a comparison of fine-mapping using 
existing data from bulk eQTL and annotated cis-regulatory regions, and demonstrate the gain in 
power to nominate potential causal variants in these traits, using single-cell multiomics and 
single-cell QTL mapping? 

- The authors may consider clarifying the concept of "hierarchical transcription factor" network 
they proposed in this work, as it is not obvious what they refer to. Did they want to highlight the 
potential role of pioneer transcription factors, which establish chromatin accessibility and recruit 
other cell-type specific factors? 

- I would suggest that the authors make changes to some figure legends to describe the data 
rather than interpret them. For example, in Figure 2g, what are the columns and rows of the 
heatmap? As another example, in Figure 4f-g, please describe the axes in figure legends and 
move the interpretation to the main text. 

- The authors should consider using language more consistent with the current framework for 
describing population characteristics; for example, the use of the term "Caucasian" should be 
carefully avoided based on recommendations by the National Academies 
(https://nap.nationalacademies.org/catalog/26902/using-population-descriptors-in-genetics-and-
genomics-research-a-new) 



- Some references were not not correctly labeled. For example, in page 14, the authors wrote that 
"We incorporated functional annotation (including OCR and LCRE derived from single cell 
multiomics data) of variants to prioritize GWAS loci[48]56" but neither of the references 
matched their described methods. 

Reviewer 2

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? No, I do not feel adequately qualified to assess the statistics.

Comments to author:

In the manuscript by Wang et al., the Authors utilize single-cell RNA-sequencing, separate 
single-cell ATAC-sequencing, and whole genome sequencing of 20 healthy patient retinas to 
examine how genetic sequence variability affects chromatin structure and gene transcription 
within individual retinal cells. This large body of work provides a significant dataset where 
precise genetic information can be correlated with epigenetic and transcriptomic features within 
the mature retina, providing hypothesis-driving insights for mechanisms by which genetic 
variability results in phenotypic consequences. 

The manuscript presents a heroic integration of a mountain of data, but suffers from major 
deficiencies. 

1) The manuscript in its current form is an accumulation of correlated results between genetics, 
chromatin accessibility, and transcription, resulting in a broad survey of results listed as '% X of 
Y shows enrichment of Z'. The Authors do show specific examples of results (Figure 3d-e; 5a-b; 
6d-7d) but the biological significance of any of these findings is not examined. The model 
(Figure 8) is built on the assumptions that transcription factor affinity is changed. While this may 
in fact be the correct conclusion, any reference to binding affinities of transcription factors is 
inferred based on canonical motifs, but not actual data. 

2) The use of acronyms throughout the manuscript makes the dialog almost impossible to follow. 
This reviewer struggled to read most of the document, needing a reference table of acronyms to 
try an decipher what the Authors were trying to analyze and resulting conclusions from the 
analyses. 

3) Concerns about the significance of analyses utilizing snRNA-seq with snATAC-seq 
a. Ideally this would have been done in the SAME cells using the multiome kit so that chromatin 
accessibility, and allelic expression could be matched within individual cells. It is recognized 
that these experiments, however, were started prior to the availability of the multiome kit. 
Authors should state the limitations of the analysis because of this, especially when differences 
major differences in cell type proportions captured from individual patients (see point b) are 
significant. 



b. Throughout the manuscript, the authors examine cell-type specific patterns of 
expression/accessibility, but fail to include the retinal ganglion cells (RGCs). This is likely 
because capture rate of the RGCs is extremely low in the snATAC (Figure 1). All conclusions of 
cell-type specificity are therefore limited because a major and disease-relevant cell type is not 
included. There is no mention of the limitations and/or biases of the analysis when missing this 
cell type. Conversely, when the Authors examine relevant diseases (Figure 7), the RGCs are now 
included because primary open angle glaucoma is a disease where RGCs are affected. As the 
dataset is likely under-powered for RGC analyses, it seems disingenuous to state that RGCs don't 
have genetic features (accessibility/expression) that are likely to contribute to POAG. 

c. snRNA-seq seems to show multiple rod populations, including a mixing of rods with many 
other cell types (bipolars, Mullers, others?). Potential causes of this variability is high amounts of 
ambient RNA (concern of snRNA-seq) and/or doublets. The methods state that 'SoupX' and 
'DoubletFinder' were applied to remove doublets, but a low doublet threshold was utilized (0.01). 
The standard doublet rate for capturing 10,000 cells/run on a 10x Genomics v3.1 3' is 8% (0.08 
doublet threshold). 

d. Would be helpful to have UMAPs of scRNA and scATAC colored by sample to observe 
potential batch effects 

4) Figure Legends - Most figure legends are interpretations of the data, not an actual description 
of the graphs, presented data. Here are two examples, but this is how the legends of a 
MAJORITY of the figures read. 
Example 1: 
Figure 5b legend (Figure 5c is also labeled as 5b) - "The variant rs6859300 is a Rod-specific sc-
caWTL of its residing OCR, and resides in an OCR accessible in ROD, Cone, and BC. This 
variant is predicted to enhance binding of EPAs1, increasing chromatin accessibility of its 
residing OCR in Rod. EPAS1 is highly expressed in Rod buy lowly in Cone and BC. This OCR 
is a predicted LCRE of WWC1." 

Figure 5b figure panels (reviewer's interpretations): 
boxplots of expression of WWC1 expression in cells with different nucleotide sequences of 
rs6859300 in Rods, cones, and bipolar cells 
EPAS1 position weight matrix aligned to reference and alternative allele sequences at rs6859300 
violin plots of cellular expression of EPAS1 
Genome track of WWV1 locus showing cell type specific chromatin accessibility and 
positioning of rs6859300 within called scATAC peaks 

Example 2: 
Figure 3b legend - "sc-eQTLS of the same sc-eGene are often different across cell types" 

Figure 3b panel (reviewer's interpretations): 
Bar graph showing proportion of eQTLs that associated with genes (sc-eGenes) expressed in one 
of more cell types, colored by the number of cell types that the sc-eQTL is significantly 
associated with. 



Additionally, few of the boxplots or violin plots have descriptions of error bars (are these error 
bars), descriptions of median or mean, or descriptions of the 'n' and statistical test used in the 
analysis. 

Minor points: 
1. Line 124-125 "Lower correlations are observed in other cell types, particularly rare cell types, 
for example, a Pearson correlation of 0.41 for RGC. RGCs are not rare populations in the 
macula, where some of these samples were taken. 
2. Line 128 - Supplementary Table 2 should be Supplementary table 3 
3. Unclear which samples/cells are from macula and which are from periphery - Table 1 should 
be updated to include whether macula or periphery was used, including number of sequencing 
samples, and total number of cells. 
4. Supplemental Table 2 is not useful, organize the table as sample x cell type 
5. Line 143-145 - Histone marks - unclear as to where this data comes from as this is not 
referenced or included in any part of the Methods. If this comes from ENCODE, this is not retina 
tissue, so the significance of these correlations is questionable. Many of these histone marks 
were examined within the retina (Al Diri et al, 2017) including annotation of cis-regulatory 
elements and intersection with cCRE registries 
6. a. Use of Wilcoxon Rank sum across most analyses - not sure if this is appropriate in all 
contexts used. Additionally, significance of Wilcoxon Rank Sum p-values is questionable in 
figures like 2d-2e and 3f (Bipolar cells versus Rods) as the plots look essentially identical. 
7. Figure 7 - Concerned that Muller glia and astrocytes show 'significance' for all diseases. This 
is especially important when tissues affected are not included in the dataset (choroid/sclera, lens, 
cornea for diseases including myopia, refractive error, and disorders of the choroid). 
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Dear Editor and Reviewers, 
 
We are submitting the revision of our manuscript entitled “Single-cell multiomics of the human 
retina reveals hierarchical transcription factor collaboration in mediating cell type-specific effects 
of genetic variants on gene regulation” (GBIO-D-22-01656). We are grateful for your valuable 
time and effort in reviewing our manuscript. We greatly appreciate the insightful and constructive 
comments from reviewers for the improvement of our manuscript. Taking all comments into 
careful consideration, we conducted additional experiments and analyses, and revised the 
manuscript. We provided the responses to the comments point by point in the following 
sections. We hope that this revision is now suitable for publication in Genome Biology. 
 
Thank you for your consideration and we are looking forward to your positive response. 
 
Sincerely, 
 
Rui Chen, PhD 
Professor of Molecular and Human Genetics 
Baylor College of Medicine 
 

 
Kindly note that due to the presence of tracked changes, the line numbers in the main text may 
not be continuous. Therefore, when referring to specific line numbers, the reviewers may need 
to consider the nearby lines for accurate reference and context. 
 
 
Editor Comments: 
 
As you will see from the reports, the referees find the manuscript of potential interest, but they 
raise serious concerns that additional details and analyses are needed. In particular, Referee 1 
has questions about the QTL analyses. Referee 2 requests additional support for the model and 
also has some concerns about the lack of detection of retinal ganglion cells. Referee 2 also 
suggests some additional statistical testing.  It seems to us to be essential that all of the 
referees’ concerns are fully addressed, in the form of a revised manuscript, before we can reach 
a final decision on publication. We will only send the manuscript back out for re-review if we feel 
that the concerns highlighted above have been sufficiently addressed. 
 
Response 
 
Thanks Editor for the comments. We have carefully considered all comments of the referees, 
conducted additional experiments and analyses, and revised the manuscript. We provided the 
responses to the comments point by point in the following sections. In response to Referee 1’s 
comments, we conducted QTL analyses with a variety of parameters/settings, which yielded 
consistent conclusions that align with our initial findings. To address the concerns raised by 
Referee 2, we performed high-throughput reporter assays to validate the cis-regulatory 
elements and integrated the result with bulk ChIP-seq data of transcription factors and histone 
modifications from the human retina. A section titled “Massive Parallel Reporter Assays of the 
cis regulatory elements harboring sc-eQTLs” along with a corresponding figure panel were 
added to the manuscript. This integration of experimental evidence provides further support for 
our proposed model. Furthermore, we have provided a detailed explanation regarding the 
impact of low capture rate of retinal ganglion cells, as well as clarified the interpretation of the 
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statistical testing mentioned by Referee 2. With these additional analyses, experimental 
evidence, and clarifications, we believe that this revised version of the manuscript is now 
suitable for publication in Genome Biology.  
 
 
Reviewer reports: 
 
Reviewer #1: Wang et al provided a comprehensive single-cell multiomic analysis of major cell 
types of the human retina. They mapped eQTL and caQTLs which were well supported by 
allele-specific expression and chromatin accessibility, and discovered new QTLs missed by 
earlier studies using bulk sequencing. Importantly, they observed many cell type-specific 
genetic regulatory effects and presented thought-provoking analyses implicating a sophisticated 
transcription factor network underlying cell type specificity. Lastly, they performed a well-
designed fine-mapping analysis to identify potential causal variants and relevant cell types. 
Even though some details were currently missing, the statistical analyses were appropriate and 
supported the authors conclusions. This work is highly relevant and very appropriate for 
Genome Biology. I have the following comments and questions for the authors.  
 
Response: 
 
We are grateful for the encouraging and positive comments by Reviewer #1. 
 
- The authors omitted some important details on the identification of QTL in their data. In 
particular, why did they choose to include N = 3 PEER factors and 1 genotype PC? Did top 
PEER factors correspond to known technical covariates? What would happen to the power to 
detect eQTL if more PEER factors were included? How about other demographic variables such 
as sex and age?  
 
Response: 
 
Thanks Reviewer #1 for the constructive comments. We added the following clarification to the 
section “The selection of covariates for eQTL mapping” in the Supplementary Information page 
14. 
 
“Given our relatively small cohort of N=20, we made a careful decision to include N=3 PEER 
factors and 1 genotype principal component (PC) as covariates. This choice was made to 
ensure sufficient statistical power, account for the systematic confounding effects in gene 
expression with the PEER factors, and prevent overfitting through enabling accurate estimation 
of each variable in the linear regression (specifically, each variable in the linear regression can 
be estimated with 20/5=4 subjects)1.  
 
The observed correlations between the top PEER factors and the quality control metrics of 
snRNA-seq suggested that these PEER factors correspond to known technical covariates. 
Specifically, in the case of rod cells, the 1st PEER factor is positively correlated with percent of 
reads mapped antisense to gene (Pearson correlation r= 0.51, p=0.02); the 2nd PEER factor is 
positively correlated to median UMI counts per cell (r= 0.47, p=0.04); and the 3rd PEER factor is 
positively correlated to fraction of reads in cells (r=0.77, p= 7.14e-05).  
 
To assess the impact of including additional PEER factors in eQTL analysis, we conducted 
eQTL analysis including N=7 PEER factors and 1 genotype principal component (PC) as 
covariates. Surprisingly, we observed a significant reduction in detection power, as the number 
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of gene-level significant eQTLs decreased from 14,377 to 3,714. This finding suggests that 
including a higher number of PEER factors for a small sample cohort might introduce excessive 
correction and inadvertently suppress true eQTL signals. Furthermore, we performed another 
eQTL analysis incorporating 3 PEER factors, 1 genotype PC, age, and sex as covariates. 
Interestingly, this analysis also resulted in a reduced power to detect eQTLs, with the number of 
gene-level significant eQTLs decreasing from 14,377 to 12,567. Notably, we observed a 
negative correlation between the 3rd PEER factor and the age of the samples (Pearson 
correlation r=-0.50, p=0.02). This finding suggests that the 3rd PEER factor partially captures 
the age effect in the data. 
 
Considering these results, we have made the decision to utilize the current set of covariates, 
which includes 3 PEER factors and 1 genotype PC. This choice balances the need for 
confounding correction while preserving the detection power for eQTL analysis."  
 
 
- In addition, for caQTL mapping, what is the window for SNPs to be considered for each peak? 
Did the authors distinguish caQTLs where the SNP overlap with the peak, and those that are 
outside? (Maybe that's the "distal caQTLs" they mentioned in line 248, page 10, but the 
description of this distinction was not easily found).  
 
Response: 
 
Thanks Reviewer #1 for the question. Given the small cohort of N=20, to mitigate the reduction 
in caQTL detection power caused by multiple testing correction, we focused the caQTL 
detection on the SNPs located within each peak. The rationale is that the snATAC-peaks are 
enriched with potential cis regulatory elements, and SNPs residing within a peak are most likely 
to impact the accessibility of the corresponding peak2. Specifically, we calculated the 
association between each SNP within a peak and the corresponding peak. We mentioned that 
in the section “Significant proportion of sc-caQTLs are cell type specific in retina” Page 8 line 
456-457.  
 
We apologized for any confusion regarding the term “distal caQTLs”. We referred this type of 
caQTLs to the sc-caQTL identified by the above approach but located in the non-promoter 
snATAC-peaks. To clarify, we revised the sentence as “Notably, for sc-caQTLs located in non-
promoter OCRs, those shared among multiple cell types displayed significantly greater effect 
than those unique to one cell type (e.g., Rod, one-sided Wilcoxon rank sum test, 𝑝 <
2.2	 × 10!"#, Fig. 4d, Supplementary Table 9).” Page 8 line 468-498. 
  
However, in the later section “Interaction among OCRs”, for each common variant within 
snATAC-peaks, we tested the association between the variant and the accessibility of snATAC-
peaks in -/+250kb surrounding the variant. The detailed can be found in the Methods section 
Page 25 line 1403-1405.  
 
 
- The authors observed that variants in wider OCRs have local effects, while the variants in 
narrow OCRs are more likely to affect accessibility of the entire OCR. This is interesting, 
although a confounding observation can be that the wider peaks called are less accurate (may 
be a union of multiple smaller peaks). What is the distribution of peak lengths in this dataset? An 
alternative approach for caQTL calling is to use the "tiled" peaks (defined as 500bp windows 
genome-wide in ArchR) and then map significant caQTLs to OCRs. Have the authors tried this 
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approach of mapping caQTLs?  
 
Response: 
 
Thanks Reviewer #1 for the constructive comments. The medians of peak lengths are around 
1kb. The distribution of peak lengths was shown in the figure below.  
 

  
 
To address the potential confounding effect caused by wider peaks that may be called less 
accurately, we revised the analysis by considering only the peaks with a length of less than 2kb. 
This selection criterion ensures that we focus on narrower, more precise peaks that are less 
likely to encompass multiple distinct regulatory regions. As a result, we still observed that 
variants in wider OCRs exerted local effects, while the variants in narrow OCRs were more 
likely to impact the accessibility of the entire OCR (Supplementary Figure 3d, Rod, p-
value=7.7e-13). 
 

 
 
Additionally, an independent study, utilizing bulk ATAC-seq on cell line and applying different 
approaches for peak calling, caQTL and ASCA analyses compared to ours, arrived at the same 
conclusion as our study, providing further evidence to support this result (Extended Data Fig. 
6a. in their paper)2. 
 
Furthermore, in our preliminary analysis, we explored the approach of conducting caQTL 
analysis based on the peaks called by MACS2 through ArchR with a fixed length of 501bp for all 
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peaks. The number of caQTLs detected per cell type is comparable to the numbers identified by 
our current approach. Given the variation in the length of ATAC-seq peaks, which can reflect 
biological phenomena such as transcription factor collaboration (e.g., multiple TFs binding to an 
enhancer), we utilized our current approach in our study, which allows variable peak length. 
 
 
- The authors made the interesting observation that some cell-type specific caQTLs are 
associated with caPeaks which are accessible across multiple cell types. How did the authors 
address the possibility that there may be cases where the SNP is actually a caQTL in multiple 
cell types but did not pass statistical threshold because of differences in power, as a result of 
cell type abundance differences?  
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. To assess the impact of cell type abundance 
differences on the caQTL analysis, we randomly sampled 400 cells per cell type per individual 
to repeat the caQTL analysis. As a result, we found the consistent trends that aligned with our 
initial findings based on the original dataset. We added the following section “Assessing the 
potential bias in caQTL detection introduced by cell type abundance differences by down-
sampling” in Supplementary Information Page 15 line 287-303. 
 
“To assess the impact of cell type abundance on sequencing depth (in cell type level) and 
thereby the number of sc-caQTLs detected per cell type, we performed a random down-
sampling approach. We randomly sampled 400 cells per cell type per individual from the original 
dataset, allowing for sampling with replacement. Through this analysis, we consistently 
observed trends that aligned with our previous findings based on the original dataset. A total of 
2,840 sc-caQTLs were detected, ranging from 98 to 814 per cell type. Notably, the majority of 
these sc-caQTLs were cell type-specific, with 74.5% to 90.1% being unique to a single cell type 
(Supplementary Fig. 4a, b). Furthermore, we still found that the majority (85.7%) of the cell type 
specific sc-caQTLs were associated with caPeaks (namely, the residing peaks of caQTLs) that 
are accessible across multiple cell types (Supplementary Fig. 4c). Overall, by conducting this 
random sampling analysis, we have addressed the potential bias introduced by cell type 
abundance differences, and our results consistently validated the patterns observed in the 
original dataset.” 
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- The calculation of LD was not clearly presented. Given that this cohort has individuals from 
diverse ancestries, which reference panel was used to assess LD?  
 
Response: 
 
The LD was estimated based on the 20-individual dataset using PLINK. Please see 
“Identification of LD-independent sc-caQTL and LD-independent sc-eQTL” in the Methods 
section for details page 25 line 1392-1399. 
 
 
- In Figure 3F, the authors noted that the expression levels of TFs disrupted by eQTLs in the 
relevant cell types have higher expression than non-eQTL cell types. This is a very interesting 
observation and a convincing analysis to justify their arguments that trans factors may drive cell 
type-specific caQTLs. How many TFs were included in this analysis (predicted to have motifs 
perturbed?) Is there evidence from published studies supporting some of the TFs in establishing 
cell type specificity?  
 
Response: 
 
2817 TF motifs (Hsapiens) in the MotifBreakR database were considered in the analysis of 
predicting the motif disrupting effects of SNPs. In Figure 3F, 95-98 of the 2817 TFs were 
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predicted to have motifs perturbed by eQTLs and have gene expression ³ 50 CPM in rod cells 
(Supplementary Table 7). Please see “Predicting the motif disrupting effects of SNPs” in the 
Methods section for details (page 25 line 1372-1390). Furthermore, we revised Figure 3f and 5b 
to only consider the unique transcription factors (previously we counted a TF multiple times, if its 
motif was perturbed by multiple variants in different genomic regions respectively) to avoid 
potential inflation, and labeled the number of TFs in the figures.  
 
Among these TFs with motifs disrupted by eQTLs or caQTLs, some of the TFs were known in 
establishing cell type specificity for retinal cells, for example, OTX2, CRX, NRL, and MEF2D in 
Rod and Cone; OTX2 and VSX2 in BC; ONECUT1 and ONECUT2 in HC; TFAP2A and 
TFAP2B in AC; LHX2 and NFIX in MG3–9.   
 
 
- The enrichment test of caQTLs associated with dependent OCRs in Figure 6A is interesting. 
How were the background "all tested variants" defined? It seems that the authors identified 
variants which are not caQTLs in the master peak but still are associated with distal OCRs (e.g. 
~10% in Rod). Could the authors provide insights on this class of QTLs?  
 
 
Response: 
 
The “all tested variants” are all the variants tested for caQTLs, which are the variants in OCRs 
(snATAC-seq peak) with AF ≥ 0.1. Two types of hypotheses may explain the variants that are 
not caQTLs in the master peak but associated with distal OCRs: 1) This phenomenon may be 
caused by certain biological mechanism. For example, these variants may disrupt the binding of 
a TF in the master peak but not be able to change the chromatin accessibility of the entire 
master peak due to the binding of other TFs in the same peak. However, the disruption of the 
TF binding may cause the change of chromatin accessibility of distal OCRs due to the 
interaction between OCRs. 2) This phenomenon may represent the false positives that the 
variants are associated with distal OCRs by chance but not biological meaningful. Therefore, 
they can be used to estimate background noise and should be considered when determing the 
actual proportion of variants that lead to chromatin change of both the master and distal OCRs 
through a biological mechanism. Since the 1st hypothesis remains unexplored, the 2nd 
hypothesis may be a more suitable explanation for our current analysis.  
 
 
- In Figure 6C, please indicate what statistical tests were performed (compared to all tested 
OCRs or comparing between master and dependent OCRs). Similarly, the p-values should be 
reported in the text when comparing master and dependent OCRs in active chromatin 
(H3K27ac and H3K4me2).  
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. We added the following description to the 
figure legend of Figure 6C: “Two-sided Binomial test was performed to compare the proportion 
of master_OCR or dependent_OCR with the proportion of tested_OCR.”  
 
Additionally, we added the p-values in the main text for comparing master and dependent OCRs 
in DAR and active chromatin: “Furthermore, we observed a slightly higher enrichment in DARs 
in the master regions compared to the dependent regions (one-sided Fisher’s Exact test, 
caPeak: 𝑝 = 7.1 × 10!$; caPeaks associated with LCREs: 𝑝 = 0.082), as well as an enrichment 
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in active enhancer epigenetic modifications (the concurrent H3K27ac and H3K4me2, one-sided 
Fisher’s Exact test, caPeak: 𝑝 = 1.48 × 10!"%; caPeaks associated with LCREs: 𝑝 = 0.10) (Fig. 
6c).” Page 11 line 646-651.  
 
 
- As a related question, could the authors provide more information on the relationship between 
master and dependent OCRs? Are they likely co-accessible peaks from scATAC, or is there 
relevant Hi-C data supporting their interactions?  
 
Response: 
 
Thanks Reviewer #1 for the great suggestion. We added the following analysis to the main text: 
“Furthermore, a significant proportion (59.7%) of the master OCRs are co-accessible with at 
least one of the corresponding dependent OCRs (correlation ³ 0.2, FDR < 0.05), showing a 2.8-
fold enrichment compared to the background (the co-accessibility of two random peaks within 
250kb region, two-sided binomial test 𝑝 = 0), further supporting the interactions between master 
and dependent OCRs.” Page 11, line 639-643.  
 
 
- It is very interesting to compare the caQTLs affecting multiple peaks in concordant and 
opposite directions, and the authors presented convincing data supporting compensatory roles 
of OCRs in leading to cis-eQTLs. Again, is there evidence (from co-accessibility or Hi-C, for 
example) supporting their interactions in case they jointly determine a cis-eQTL?  
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. We added the following analysis to the main 
text: “In addition, the majority (71.4%) of sc-caQTLs that affect multiple peaks and also overlap 
with cis-eQTLs exhibit co-accessibility of the affected peaks, showing 1.23-fold enrichment 
compared to sc-caQTLs that affect multiple peaks but do not overlap with cis-eQTLs (two-sided 
binomial test, 𝑝 = 1.96	 × 10!&). This result provides further evidence supporting the interaction 
of multiple peaks may jointly determine a cis-eQTL” Page 12 line 708-712. 
 
 
- Among a total of 818 fine-mapped variants from three GWAS, the authors identified 27 QTLs 
in their dataset. Is this fraction higher than expected? (What fraction of GWAS SNPs were 
tested for QTLs in this study?) Further, could the authors provide a comparison of fine-mapping 
using existing data from bulk eQTL and annotated cis-regulatory regions, and demonstrate the 
gain in power to nominate potential causal variants in these traits, using single-cell multiomics 
and single-cell QTL mapping?  
 
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. Among a total of 9762 SNPs tested for 
GWAS, 1130 SNPs were also tested for single cell QTLs/ASCAs in our study, and 224 (19.8%) 
of the 1130 SNPs were overlapped with QTLs/ASCAs. In contrast, among a total of 816 fine-
mapped GWAS SNPs (we modified the fine-mapping analysis, so there is minor difference in 
the numbers between two versions, e.g. 816 vs. 818), 261 SNPs were tested for single cell 
QTLs/ASCAs in our study, and 38 (14.6%) of the 261 SNPs were overlapped with single cell 
QTLs/ASCAs. Therefore, we did not observe a higher fraction of the fine-mapped GWAS SNPs 
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overlapped with QTLs/ASCAs (14.6%) than expected (19.8%) (two-sided Fisher’s Exact test, 
𝑝 = 0.053). The potential reasons may be: 1) the small cohort of N=20 may result in reduced 
power for detecting QTL. 2) The examined GWAS loci might have higher overlapping rate with 
the QTLs from other tissue or cell types outside of retina. Specifically, age-related degeneration 
GWAS loci may be enriched in retinal pigment epithelium10,11, myopia/fraction error12 and open-
angle glaucoma loci may be also enriched in the anterior segment of the eye13.     
 
Following Reviewer #1’s suggestion, we performed the fine-mapping of GWAS variants using 
the annotated cis-regulatory regions from the ENCODE cCRE registry (N= 959449 regions)14 
and identified 841 GWAS variants with PIP > 0.1, which is comparable to the number based on 
our single-cell multiomics study (N=816). Out of the 841 fine-mapped GWAS variants, 826 were 
tested for bulk retinal eQTLs15. Among the tested variants, 216 (26.15%) overlap with bulk 
retinal eQTLs, showing 1.79-fold higher mapping rate compared to the single cell QTLs/ASCAs 
(two-sided Fisher’s Exact test, 𝑝 = 7.7 ×	10!& ). Considering that the bulk retinal eQTL study 
was conducted with a cohort of 22.65-fold more individuals (N=453) compared to our single cell 
association study (N=20), our single-cell multiomics and single-cell QTL mapping methods 
exhibit increased power in nominating potential causal variants for these GWAS variants. 
Furthermore, since gene regulation is highly cell type/context dependent, our single cell study 
provides a higher resolution in identifying the relevant cell types where these potential causal 
variants exert their effects.  
 
Given the above analyses, we changed the sentence “Moreover, we showed that integration of 
single cell multiomics and GWAS studies can increase the power to prioritize effective cell 
context, causal variants and genes, and better dissect the underlying regulatory mechanisms.” 
to “Moreover, we showed that integration of single cell multiomics and GWAS studies can 
increase the resolution to nominate effective cell context, causal variants and genes, and better 
dissect the underlying regulatory mechanisms”. Page 16 line 1017-1019. 
 
 
- The authors may consider clarifying the concept of "hierarchical transcription factor" network 
they proposed in this work, as it is not obvious what they refer to. Did they want to highlight the 
potential role of pioneer transcription factors, which establish chromatin accessibility and recruit 
other cell-type specific factors? 
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. Indeed, for “hierarchical transcription factor 
collaboration”, we referred to the process by which the pioneer transcription factors first 
establish chromatin accessibility and then recruit other cell-type specific factors. 
 
We add a description in the Discussion section to clarify the concept of "hierarchical 
transcription factor" network page 16 line 1003-1008. 
 
“Specifically, we hypothesized hierarchical transcription factor collaboration may be crucial in 
gene regulation, whereby the pioneer factors first establish chromatin accessibility of the 
regulatory genomic regions in cells sharing a similar lineage, resulting in different cell types 
sharing common OCRs, then additional cell type specific factors may be recruited to these 
OCRs later in a collaborative manner to regulate gene expression”. 
 
 
- I would suggest that the authors make changes to some figure legends to describe the data 
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rather than interpret them. For example, in Figure 2g, what are the columns and rows of the 
heatmap? As another example, in Figure 4f-g, please describe the axes in figure legends and 
move the interpretation to the main text.  
 
Response: 
 
We greatly appreciate the suggestion of Reviewer #1. We revised the figure legends and made 
them as a description of the graphs and the presented data.  
 
 
- The authors should consider using language more consistent with the current framework for 
describing population characteristics; for example, the use of the term "Caucasian" should be 
carefully avoided based on recommendations by the National Academies 
(https://urldefense.proofpoint.com/v2/url?u=https-
3A__nap.nationalacademies.org_catalog_26902_using-2Dpopulation-2Ddescriptors-2Din-
2Dgenetics-2Dand-2Dgenomics-2Dresearch-2Da-2Dnew&d=DwIGaQ&c=ZQs-
KZ8oxEw0p81sqgiaRA&r=dcxpvJ-E4MMZd6unJFaTyA&m=lDIeE0cDRS4IJ-
a7hAqJ5AvSuTK2HbYGqTrCzKpllGhiChDINxuQ7sOaZ63NwsdZ&s=2W27wIPdLpcRnJmleij_Q
hgF9NdKsT9ia920Q0WVwWQ&e= )  
 
Response: 
 
Thanks Reviewer #1 for the suggestion. We changed the term “Caucasian” to “European”, and 
the term “Hispanic” to “Latino”.  
 
 
- Some references were not not correctly labeled. For example, in page 14, the authors wrote 
that "We incorporated functional annotation (including OCR and LCRE derived from single cell 
multiomics data) of variants to prioritize GWAS loci[48]56" but neither of the references matched 
their described methods.  
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. We double checked the reference. We 
deleted the reference 56 which was for an earlier version of the manuscript.  

We followed the fine-mapping approach in the reference [48]: “Transcriptome and regulatory 
maps of decidua-derived stromal cells inform gene discovery in preterm birth”, which were 
described in the “Integrated analysis of GWAS and decidual cell functional annotations improves 
fine mapping of causal variants of gestational duration and identifies putative target genes” in the 
results section and “Fine-mapping GWAS loci associated with gestational length” in the methods 
section of the paper. 

 
 
Reviewer #2: In the manuscript by Wang et al., the Authors utilize single-cell RNA-sequencing, 
separate single-cell ATAC-sequencing, and whole genome sequencing of 20 healthy patient 
retinas to examine how genetic sequence variability affects chromatin structure and gene 
transcription within individual retinal cells. This large body of work provides a significant dataset 
where precise genetic information can be correlated with epigenetic and transcriptomic features 
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within the mature retina, providing hypothesis-driving insights for mechanisms by which genetic 
variability results in phenotypic consequences. 
 
Response: 
 
We greatly appreciate the positive comments and recognition of our work by Reviewer #2. 
 
The manuscript presents a heroic integration of a mountain of data, but suffers from major 
deficiencies.  
 
1) The manuscript in its current form is an accumulation of correlated results between genetics, 
chromatin accessibility, and transcription, resulting in a broad survey of results listed as '% X of 
Y shows enrichment of Z'. The Authors do show specific examples of results (Figure 3d-e; 5a-b; 
6d-7d) but the biological significance of any of these findings is not examined. The model 
(Figure 8) is built on the assumptions that transcription factor affinity is changed. While this may 
in fact be the correct conclusion, any reference to binding affinities of transcription factors is 
inferred based on canonical motifs, but not actual data.  
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. To support our findings, we performed 
additional high-throughput reporter assay to assess the regulatory activities of the open 
chromatin sequences associated with the identified sc-eQTLs,and integrated the results with the 
public ChIP-seq data of transcription factors and histone modifications from the adult human 
retina. 
 
We added the following section “Massive Parallel Reporter Assays of the cis regulatory 
elements harboring sc-eQTLs” in the manuscript page 12 line 714-760: 
 
“To validate the results of our association studies, we conducted Massive Parallel Reporter 
Assays (MPRAs) to assess the regulatory activities of 931 open chromatin sequences 
associated with the index sc-eQTLs identified in human rod cells16. These sequences were 
tested in explanted mouse retinas during postnatal day 0 to 8, which primarily consist of rod 
cells (Fig.7a). The MPRA library was designed with synthesized 224bp oligonucleotides (oligos) 
centered on the peak summit of the 931 open chromatin regions, which were identified through 
snATAC-seq and associated with the index sc-eQTLs, along with positive and negative control 
sequences (Methods). Due to the relatively low conservation in noncoding nucleotides between 
human and mouse genomes, we only included the sequences containing the human genome 
reference nucleotide (hg19) for the MPRA. Following the MPRA, we calculated an activity score 
for each library sequence and normalized it based on the activity of the basal Crx promoter. As 
a result, we identified 258 enhancers and 66 silencers that showed at least a twofold higher or 
lower activity than the basal Crx promoter (q-value < 0.05), as well as 607 inactive sequences 
that exhibited activity within a twofold change of the basal activity or not significant different from 
the basal activity (q-value ³ 0.05) (Fig. 7b,c, Supplementary Table 1). A high fraction of 
sequences identified as inactive could be attributed to several factors: 1) limited sensitivity of the 
experimental system; 2) differential regulatory activity of CREs between human and mouse; and 
3) false positives in identified sc-eQTLs due to a small cohort.   
 
By integrating the MPRA result with bulk ChIP-seq data from the adult human retina, we 
observed that the validated enhancers are significantly enriched of the binding of photoreceptor-
specific transcription factors, such as OTX2 (68.2% vs. 41.4%, one-sided Fisher’s exact test, 
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𝑝 = 2.7 × 10!"$), CRX (35.7% vs. 15.7%, one-sided Fisher’s exact test, 𝑝 = 1.8 × 10!"%) and 
MEF2D (28.7% vs. 12.7%, one-sided Fisher’s exact test, 𝑝 = 3.3 × 10!'), compared to the 
inactive sequences (Fig. 7d). Additionally, these enhancers exhibit a higher presence of active 
enhancer epigenetic markers, the concurrent H3K27ac and H3K4me2, than the inactive 
sequences (76.4% vs. 59.5%, one-sided Fisher’s exact test, 𝑝 = 9.7	 ×	10!( , Fig. 7d). In 
contrast, the validated silencers are enriched of CTCF binding, compared to the inactive 
sequences (one-sided binomial test, 71.2% vs. 55.5%, one-sided Fisher’s exact test, 𝑝 =
9.4 × 10!$, Fig. 7d). These results provide experimental evidence to support that a significant 
proportion of OCRs harboring sc-eQTLs are indeed active cis regulatory elements, suggesting 
that perturbation of these elements by genetic variants may lead to changes in gene expression. 
Interestingly, the validated enhancers are enriched of the co-binding of an early lineage 
determining factor, OTX2, with at least one of cell type/context specific factors, CRX, NEF2D 
and NRL, compared to the inactive elements (62.5% vs. 46.2%, one-sided Fisher’s exact test, 
𝑝 = 6.2 × 10!) ) (Fig. 7e). This result suggests that the collaboration between early lineage 
determining factors and cell type/context specific factors may be crucial for gene regulation, 
supporting our findings.”  
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Fig. 7  

 
 
 
 
2) The use of acronyms throughout the manuscript makes the dialog almost impossible to 
follow. This reviewer struggled to read most of the document, needing a reference table of 
acronyms to try an decipher what the Authors were trying to analyze and resulting conclusions 

CTCF

CRX

MEF2D

H3K4me2

OTX2

H3K27ac

En
ha
nc
er

Si
le
nc
er

In
ac
tiv
e

matrix_1

−1.5
−1
−0.5
0
0.5
1
1.5

0.0

0.2

0.4

0.6

−10 −5 0 5
−Log2FC

D
en

si
ty Sequence type

Control CREs
QTL CREs
Scrambed CREs

a b

c d

e

0.00

0.25

0.50

0.75

1.00

Enhancer Inactive

Pr
op

or
tio

n 
of

 C
RE

s

CRE type
Non−overlap
Overlap

Control CREs QTL CREs Scrambed CREs

−10 −5 0 5 −10 −5 0 5 −10 −5 0 5

1

2

−Log2FC

−
Lo

g 1
0F

D
R

CRE activity
Enhancer
Silencer
Inactive

Proportion 
of CREs



 14 

from the analyses. 
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. We apologized for the inconvenience in 
reading the manuscript, and added a acronyms list in the Supplementary Information Page 16. 
 
 
3) Concerns about the significance of analyses utilizing snRNA-seq with snATAC-seq 
a. Ideally this would have been done in the SAME cells using the multiome kit so that chromatin 
accessibility, and allelic expression could be matched within individual cells. It is recognized that 
these experiments, however, were started prior to the availability of the multiome kit. Authors 
should state the limitations of the analysis because of this, especially when differences major 
differences in cell type proportions captured from individual patients (see point b) are significant. 
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. We appreciated the understanding of 
Reviewer #2 that our single cell sequencing of gene expression and chromatin accessibility 
were performed prior to the availability of the multiome kit. However, not measuring gene 
expression and chromatin accessibility in the same cell simultaneously may have minor impact 
on our current study, because all our genetic association studies (i.e., eQTL, caQTL, ASE, 
ASCA) were performed in cell type level not individual cell level. Specifically, gene expression or 
chromatin accessibility was measured in the pseudo bulk of cells from the same cell type. 
Furthermore, both the snRNA-seq cells and snATAC-seq cells are from the same cohort of 
individuals.  
 
Following Reviewer #2’s suggestion, we added the following sentences to the manuscript:  
 
“Furthermore, differences in cell type proportions can also impact the detection power of genetic 
association studies. This is because accurate measurement of chromatin accessibility and 
allelic-specific effects relies on sufficient sequencing depth, which can be influenced by 
differences in cell type proportions.” Page 17 line 1068-1071. 
 
“Another potential improvement is the utilization of multiome kits, enabling simultaneous 
profiling of chromatin accessibility and gene expression within the same cell. This would allow 
for the matching of chromatin accessibility and allelic expression within individual cells, thereby 
increasing the power to gain insights into gene regulation.” Page 17 line 1078-1081. 
 
Indeed, the differences in cell type proportions may have impact on comparing gene expression 
or chromatin accessibility metrics across different cell types, especially when mapping 
chromatin accessibility QTL or allelic specific chromatin accessibility (ASCA). To address this 
concern, we down-sampled 400 snATAC-seq cells per cell type per individual and repeated 
caQTL analysis. As a result, we found consistent trends that aligned with our initial findings 
based on the original dataset. Please find the details in the “Assessing the potential bias in 
caQTL detection introduced by cell type abundance differences by down-sampling” section in 
the Supplementary Information Page 15 line 287-302. 
   
 
 
b. Throughout the manuscript, the authors examine cell-type specific patterns of 
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expression/accessibility, but fail to include the retinal ganglion cells (RGCs). This is likely 
because capture rate of the RGCs is extremely low in the snATAC (Figure 1). All conclusions of 
cell-type specificity are therefore limited because a major and disease-relevant cell type is not 
included. There is no mention of the limitations and/or biases of the analysis when missing this 
cell type. Conversely, when the Authors examine relevant diseases (Figure 7), the RGCs are 
now included because primary open angle glaucoma is a disease where RGCs are affected. As 
the dataset is likely under-powered for RGC analyses, it seems disingenuous to state that 
RGCs don't have genetic features (accessibility/expression) that are likely to contribute to 
POAG.  
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. Indeed, the capture rate of RGCs per 
individual is very low for the snATAC-seq, therefore, we did not include RGC in genetic 
association studies that required individual (donor) level data, such as QTL and ASCA. 
However, when examining cell type enrichment of GWAS loci (Figure 8), we included RGC for 
evaluation based on both chromatin accessibility (derived from snATAC-seq) and gene 
expression (derived from snRNA-seq). Because the cell type enrichment analysis is based on 
snATAC-peaks or gene expression derived from RGC cells aggregated across all 20 donors, 
rather than per donor basis. In total, we obtained 7,789 RGCs for snRNA-seq and 2,442 RGCs 
for snATAC-seq, as well as 109,398 snATAC-peaks from RGCs. Importantly, the number of 
snATAC-peaks (n=109,398) identified in RGCs falls within a similar range as the number of 
snATAC-peaks (n=124,653) identified in Rods. Therefore, in cell type level (aggregated across 
20 donors), we should have adequate power to analyze the enrichment of GWAS loci in RGC. 
Additionally, an independent study also found similar results as ours, namely, Muller glia and 
astrocyte rather than RGC are the retinal cell types that are enriched of primary open-angle 
glaucoma (POAG) and elevated intraocular pressure (IOP) GWAS loci13.   
 
Following Reviewer’s suggestion, we added the following sentences to the discussion section in 
the manuscript: “Additionally, the low capture rate of RGCs and astrocytes per individual due to 
cell type proportion differences limited their inclusion in the genetic association studies. This 
compromised our ability to effectively fine-map primary open-angle glaucoma (POAG) by 
overlapping with sc-QTLs, as RGCs are the affected cell type in glaucoma. We anticipate that 
enriching for cell types representing a small proportion of the total retinal cell population will 
increase the power to map QTLs, identify allele-specific variants, and nominate causal variants 
and genes for GWAS loci.” Page 17 line 1071-1078. 
 
 
c. snRNA-seq seems to show multiple rod populations, including a mixing of rods with many 
other cell types (bipolars, Mullers, others?). Potential causes of this variability is high amounts of 
ambient RNA (concern of snRNA-seq) and/or doublets. The methods state that 'SoupX' and 
'DoubletFinder' were applied to remove doublets, but a low doublet threshold was utilized (0.01). 
The standard doublet rate for capturing 10,000 cells/run on a 10x Genomics v3.1 3'  is 8% (0.08 
doublet threshold). 
 
 
Response: 
 
Thanks Reviewer #2 for the question. We apologize for any confusion caused regarding the 
doublet rate threshold. We would like to clarify that we used “𝑡ℎ𝑒	𝑐𝑒𝑙𝑙	𝑛𝑢𝑚𝑏𝑒𝑟/1000	 × 	0.01", 
rather than 0.01, to estimate doublet rate (Page 21 line 1227). Thus, for capturing 10,000 
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cells/run on a 10x Genomics v3.1 3’, the doublet rate threshold we applied is "%%%%
"%%%

× 	0.01 =
10% , which is higher than 8%. Since our analyses were primarily conducted in cell type level 
rather than individual cells through aggregating cells of the same cell type into a pseudo-bulk, 
we anticipate that a small proportion of potential doublets present in the data would have a 
minimal impact on our results and overall patterns.  
 
 
d. Would be helpful to have UMAPs of scRNA and scATAC colored by sample to observe 
potential batch effects 
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. We have plot UMAPs of snRNA cells and 
snATAC cells colored by sample/batch source in the Supplementary Fig. 1a and 1b 
respectively. These figures showed that batch effects within our data are minimal. 
 
Supplementary Fig. 1a and 1b 

 
 
 
4) Figure Legends - Most figure legends are interpretations of the data, not an actual description 
of the graphs, presented data. Here are two examples, but this is how the legends of a 
MAJORITY of the figures read. 
Example 1: 
Figure 5b legend (Figure 5c is also labeled as 5b) - "The variant rs6859300 is a Rod-specific sc-
caWTL of its residing OCR, and resides in an OCR accessible in ROD, Cone, and BC. This 
variant is predicted to enhance binding of EPAs1, increasing chromatin accessibility of its 
residing OCR in Rod. EPAS1 is highly expressed in Rod buy lowly in Cone and BC. This OCR 
is a predicted LCRE of WWC1." 
 
Figure 5b figure panels (reviewer's interpretations): 
boxplots of expression of WWC1 expression in cells with different nucleotide sequences of 
rs6859300 in Rods, cones, and bipolar cells 
EPAS1 position weight matrix aligned to reference and alternative allele sequences at 
rs6859300 
violin plots of cellular expression of EPAS1 
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15−19_D011_Lobe
16−19_D011_Macular
17−19_D019_Lobe
18−19_D019_Macular
19−D005_13_Lobe
20−D005_13_Macular

21−D009_13_Lobe
22−D009_13_Macular
23−D013_13_Lobe
24−D013_13_Macular
25−D017_13_Lobe
26−D017_13_Macular
27−D018_13_Lobe
28−D018_13_Macular
29−D019_13_Lobe
30−D019_13_Macular

31−D021_13_Lobe
32−D021_13_Macular
33−D026_13_Lobe
34−D026_13_Macular
35−D027_13_Lobe
36−D027_13_Macular
37−D028_13_Lobe
38−D028_13_Macular
39−D030_13_Lobe
40−D030_13_Macular

a bsnRNA-seq snATAC-seq
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Genome track of WWV1 locus showing cell type specific chromatin accessibility and positioning 
of rs6859300 within called scATAC peaks 
 
Example 2:  
Figure 3b legend - "sc-eQTLS of the same sc-eGene are often different across cell types" 
 
Figure 3b panel (reviewer's interpretations): 
Bar graph showing proportion of eQTLs that associated with genes (sc-eGenes) expressed in 
one of more cell types, colored by the number of cell types that the sc-eQTL is significantly 
associated with. 
 
Additionally, few of the boxplots or violin plots have descriptions of error bars (are these error 
bars), descriptions of median or mean, or descriptions of the 'n' and statistical test used in the 
analysis.  
 
Response: 
 
We greatly appreciated Reviewer #2 for the detail suggestions. We revised the figure legends 
according to the suggestions.  
 
 
Minor points: 
1. Line 124-125 "Lower correlations are observed in other cell types, particularly rare cell types, 
for example, a Pearson correlation of 0.41 for RGC. RGCs are not rare populations in the 
macula, where some of these samples were taken. 
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. We revised the sentence to “Lower 
correlations are observed in other cell types, particularly the cell types that represent a small 
proportion of the total retinal cell population, for example, a Pearson correlation of 0.41 for 
RGC”. Page 5 line 257-259.   
 
 
2. Line 128 - Supplementary Table 2 should be Supplementary table 3 
 
Response: 
 
Thanks Reviewer #2 for the constructive comment. We changed Supplementary Table 2 to 
Supplementary table 3. 
 
 
3. Unclear which samples/cells are from macula and which are from periphery - Table 1 should 
be updated to include whether macula or periphery was used, including number of sequencing 
samples, and total number of cells. 
 
Response: 
 
Thanks Reviewer #2 for the suggestion. We have updated the Supplementary Table 1 
accordingly.  
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4. Supplemental Table 2 is not useful, organize the table as sample x cell type 
 
Response: 
 
Thanks Reviewer #2 for the suggestion. We have organized the Supplementary Table 2 
accordingly.  
 
 
5. Line 143-145 - Histone marks - unclear as to where this data comes from as this is not 
referenced or included in any part of the Methods. If this comes from ENCODE, this is not retina 
tissue, so the significance of these correlations is questionable. Many of these histone marks 
were examined within the retina (Al Diri et al, 2017) including annotation of cis-regulatory 
elements and intersection with cCRE registries 
 
Response: 
 
Thanks Reviewer #2 for the question. The H3K27ac and H3K4me2 bulk ChIP-seq data we 
utilized in the manuscript were obtained from the adult human retinal tissue published 
previously17. The detailed information about data source and processing can be found in the 
section “Processing of the bulk ATAC-seq and ChIP-seq data” in Supplementary Information 
Page 13-14 line 242-251.  
 
 
6. a. Use of Wilcoxon Rank sum across most analyses - not sure if this is appropriate in all 
contexts used. Additionally, significance of Wilcoxon Rank Sum p-values is questionable in 
figures like 2d-2e and 3f (Bipolar cells versus Rods) as the plots look essentially identical.  
 
Response: 
 
Thanks Reviewer #2 for the comment. We would like to clarify that we utilized various statistical 
tests such as the Binomial test, Fisher's Exact test, and Wilcoxon Rank sum test based on the 
specific statistical question or context. The Wilcoxon rank-sum test, also known as the Mann-
Whitney U test, is a nonparametric statistical test used to compare whether two independent 
samples come from the same distribution. The Wilcoxon rank-sum test does not rely on specific 
distributional assumptions and is suitable when sample size is small. Given these 
characteristics, the Wilcoxon rank-sum test appears to be an appropriate choice for comparing 
two distributions in our study.  
 
Additionally, we thoroughly reviewed and confirmed the accuracy of the p-values associated 
with Figures 2d, 2e and 3f. Furthermore, we revised Figure 3f and 5b to only consider the 
unique transcription factors (previously we counted a TF multiple times, if its motif was 
perturbed by multiple variants in different genomic regions respectively) to avoid potential 
inflation. The Figures 2d, 2e, 3f and 5b were re-plot in violin plot format for better visualization. 
For transparency and reproducibility purposes, we provided the original data in Supplementary 
Table 5, 6, and 7, enabling others to reproduce the results and obtain the corresponding p-
values for Figures 2d, 2e and 3f. 
 
 
Fig. 2 
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Fig.3f 
 

 
 
 
7. Figure 7 - Concerned that Muller glia and astrocytes show 'significance' for all diseases. This 
is especially important when tissues affected are not included in the dataset (choroid/sclera, 
lens, cornea for diseases including myopia, refractive error, and disorders of the choroid). 
 
Response: 
 
We appreciate Reviewer #2's comment. In Figure 7, we presented the raw p-values without 
applying multiple testing correction. However, it is important to note that in the main text (page 
13 line 764-777), we mentioned that after applying multiple testing correction with a false 
discovery rate (p.adj) <0.1 through Benjamini-Hochberg correction, the enrichment of GWAS 
loci in specific cell types is limited. Specifically, cup areas (CA) and vertical cup-disc ratio 
(VCDR) of optic nerve, intraocular pressure (IOP), and primary open angle glaucoma (POAG) 
displayed enrichment in astrocytes and MG, which was replicated in an independent study13. 
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Refractive error and myopia loci displayed enrichment in most of major retinal cell types, which 
was suggested by an independent study as well12. The loci associated with choroid/retina 
disorders, retinal detachments/breaks, and retinal problems showed enrichment in MG. 
Consistently, MG has been suggested to be associated with various retinal diseases18,19. While 
we acknowledge that our dataset for the retina does not include the tissues primarily affected by 
some of these eye complex diseases, our results do not negate the importance of other affected 
tissues being enriched for GWAS loci. Rather, our focus is on studying which specific cell types 
in the retina exhibit enrichment of GWAS loci. These two aspects are not mutually exclusive. It 
is plausible that both the cell types in the retina and the affected tissues outside the retina could 
show significant enrichment of the same GWAS trait13. 
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Second round of review

Reviewer 1

The authors provided a comprehensive response and performed a substantial amount of new 
analyses and experiments to support their findings. Most of my comments have been 
successfully addressed. I have a few remaining suggestions: 

1. The authors discovered that OTX2 binding was significantly enriched in experimentally 
validated enhancers. To support their model of hierarchical TF regulatory networks, the authors 
should consider referencing OTX2 as a pioneer factor. 

2. The authors provided important new analysis to justify the potential gain in power for fine-
mapping GWAS variants using single-cell multi-omic data. It would be interesting to include a 
comparison of single-cell RNA-seq over bulk RNA-seq, and single-cell multiome over single-
cell RNA-seq, to give readers more contexts of the significance of their findings. In general, 
reporting these numbers in the main text or supplement would be helpful. 

3. The authors acknowledged that small sample size is a crucial limiting factor in their analysis 
of cell type-specific regulatory networks. This does weaken the claim that “integration of single 
cell multiomics and GWAS studies can increase the resolution to nominate effective cell 
context”. I wonder if the authors have tried methods specifically designed to model correlation of 
effects in different tissue contexts, such as mash, to evaluate whether they can detect more cell 
type-specific effects. 

4. Another minor comment related to cell type-specific regulatory effects is for eQTL (Fig 2C) 
and caQTL (Fig 4C) effect heatmaps, the diagonal can be grayed out to highlight comparisons 
between cell types. It seems that caQTL effects show more cell type specificity compared to 
eQTLs, which could be interesting to explore as well. 

Overall, the authors made significant improvements of their manuscript and this work could be 
of great interest to the broad readership of Genome Biology, particularly if they could provide 
more insights on understanding of cell type-specific regulatory networks and disease 
associations. 



 
Reviewer reports: 
 
Reviewer #1: Please see above for full comments - the authors have successfully addressed 
most of my comments and significantly improved the manuscript. 
 
Reviewer's Responses to Questions 
 
Please provide your comments for the author(s) on the revised manuscript 
 
Reviewer #1: The authors provided a comprehensive response and performed a substantial 
amount of new analyses and experiments to support their findings. Most of my comments have 
been successfully addressed. I have a few remaining suggestions: 
 
1. The authors discovered that OTX2 binding was significantly enriched in experimentally 
validated enhancers. To support their model of hierarchical TF regulatory networks, the authors 
should consider referencing OTX2 as a pioneer factor. 
 
Response: 

 
Thanks Reviewer #1 for the insightful comment. We have revised the corresponding text as 
follows: “Interestingly, the validated enhancers are enriched of the co-binding of an early 
lineage-determining factor, OTX2, with at least one cell type/context specific trans-factor, i.e. 
CRX, NEF2D and NRL, compared to the inactive elements (62.5% vs. 46.2%, one-sided 
Fisher’s exact test, 𝑝 = 6.2 × 10!", Fig. 7e). This result indicates the potential role of OTX2 as a 
pioneer factor. ” 
 
 
2. The authors provided important new analysis to justify the potential gain in power for fine-
mapping GWAS variants using single-cell multi-omic data. It would be interesting to include a 
comparison of single-cell RNA-seq over bulk RNA-seq, and single-cell multiome over single-cell 
RNA-seq, to give readers more contexts of the significance of their findings. In general, 
reporting these numbers in the main text or supplement would be helpful. 
 
Response: 
 
Thanks Reviewer #1 for the constructive comment. We have incorporated the analysis 
comparing single-cell RNA-seq to bulk RNA-seq into a section entitled “A comparison of fine-
mapping using single-cell multi-omics data with existing data from bulk eQTL and annotated cis-
regulatory regions” in Additional file 1: Supplementary Note.  
 
Currently, conducting QTL analyses on large-scale single-cell multiome profiling data and 
comparing single-cell RNA-seq with single-cell multiome data is not feasible for us. However, we 
anticipate that single-cell multiome sequencing could further validate our findings and provide 



novel insights. We have included this as a future direction in the last paragraph of the 
discussion section: "Another potential improvement is to simultaneously profile chromatin 
accessibility and gene expression within the same cell using single-cell multiome sequencing. 
This approach would allow for matching chromatin accessibility and allelic expression within 
individual cells, thereby increasing the power to validate our findings and gain further insights 
into gene regulation." 
 
 
3. The authors acknowledged that small sample size is a crucial limiting factor in their analysis 
of cell type-specific regulatory networks. This does weaken the claim that “integration of single 
cell multiomics and GWAS studies can increase the resolution to nominate effective cell 
context”. I wonder if the authors have tried methods specifically designed to model correlation of 
effects in different tissue contexts, such as mash, to evaluate whether they can detect more cell 
type-specific effects. 
 
Response: 
 
Thanks Reviewer #1 for the thoughtful suggestion. In our preliminary analysis, we explored 
methods to model the correlation of effects in different cell type contexts. Specifically, we utilized 
MetaTissue to identify eQTLs from multiple cell types and employed MetaSoft to perform meta-
analysis and combine results from various cell types. This method, based on m-value per tissue, 
can predict whether a genetic variant exerts eQTL effect in a specific cell type1,2. Consequently, 
we identified more eQTLs shared by multiple cell types compared to our current result. This 
result could also be partially attributed to the different FDR calculation approaches. 
 
We have not explored the “mash” method. To address this comment, we have added the 
following text in the discussion section: “Increasing the sample size and refining the mapping 
methods, such as applying a linear mixed effect model or modeling the correlation of effects in 
different cell type contexts, would significantly enhance the power to detect QTLs.”   
 
 
4. Another minor comment related to cell type-specific regulatory effects is for eQTL (Fig 2C) 
and caQTL (Fig 4C) effect heatmaps, the diagonal can be grayed out to highlight comparisons 
between cell types. It seems that caQTL effects show more cell type specificity compared to 
eQTLs, which could be interesting to explore as well. 
 
Response: 
 
Thanks Reviewer #1 for the insightful suggestion. We modified Fig 2C and Fig 4C to gray out 
the diagonal. Indeed, it seems caQTL effects show more cell type specificity than eQTLs. We 
added the following text in the “Significant proportion of sc-caQTLs are cell type-specific in 
retina” section of the result: “Compared to the correlation of sc-eQTL effect sizes across cell 
types, those of sc-caQTLs appears to be smaller. This suggests that sc-caQTL effects show 
higher cell type-specificity than sc-eQTLs, possibly due to the greater variation in chromatin 
accessibility across cell types compared to gene expression.”  
 
 



 
Overall, the authors made significant improvements of their manuscript and this work could be 
of great interest to the broad readership of Genome Biology, particularly if they could provide 
more insights on understanding of cell type-specific regulatory networks and disease 
associations. 
 
Response: 
  
Thanks Reviewer #1 for the constructive comment. To provide insights on understanding of cell 
type-specific regulatory networks and disease associations, we added the following text to the 
discussion section: “The specificity of genetic variant effects depends on the context in which 
the trans-factors with motifs perturbed by genetic variants operate. Specifically, if genetic 
variants disrupt the binding of pioneer factors, the associated cis-elements could become 
inaccessible, preventing the binding of additional cofactors. Consequently, diseases may onset 
in broader cell types or spatial/temporal contexts. In contrast, if genetic variants disrupt the 
binding of late or context-dependent trans-factors, the cis-elements could become accessible by 
pioneer factors but hinder the binding of these late or context-dependent trans-factors. 
Consequently, diseases may be triggered in specific spatial and temporal cellular contexts. 
Additionally, since the same TFs and cis-elements can be utilized in different cellular contexts, 
diseases may occur in multiple cellular contexts. In summary, disease onsets could be 
determined by the spatial and temporal cellular contexts where the disrupted TF motifs are 
actively involved. These insights could facilitate the understanding of pathogenic mechanisms 
and development of treatments for diseases.” 
 
 


