644

645 Supplemental figure legends

646 **Supplemental Figure 1.** Phylogeny of Patients 1-4 with PAO1 and PA14. Patients 1, 2, and 4

647 cluster with PAO1, while Patient 3 clusters with PA14.

648

Supplemental Figure 2. Linear regression analysis demonstrates that total SNP count in a population was a strong indicator of AMR diversity for amikacin ($R^2 = .90$, F(1, 2) = 18.94, p =.049), meropenem ($R^2 = .93$, F(1, 2) = 25.3, p = .037), and piperacilin-tazobactam ($R^2 = .95$, F(1, 2) = 39.86, p = .024), but a poor indicator of AMR diversity for ciprofloxacin ($R^2 = .12$, F(1,2) =.27, p = .65) and ceftazidime ($R^2 = .71$, F(1,2) = 4.78, p = .16), and was inversely related to AMR diversity for tobramycin ($R^2 = .97$, F(1,2) = 66.61, p = .015)

655

Supplemental Figure 3. Linear regression analysis shows that the number of distinct CARD profiles within a population is an improved predictor of population standard deviation for ciprofloxacin ($R^2 = .79$, F(1,2) = 7.35, p = .11), tobramycin ($R^2 = .77$, F(1,2) = 6.73, p = .12), and ceftazidime ($R^2 = .81$, F(1,2) = 8.44, p = .10) over total population SNP count.

660

661 Supplemental Figure 4. Enrichment analysis of the frequency of functional categories in which 662 non-synonymous SNPs and microindels are found in each of the four populations relative to the 663 proportions of these functional categories in the PAO1 genome shows that protein secretion/ 664 export apparatuses and transcriptional regulators are enriched for such variants, while phage/ 665 transposon/ plasmid and non-coding RNA are less likely to be impacted by such variants. Donut 666 plot of the relative frequencies of genes categorized within each of the 27 different PseudoCAP 667 functional categories in the PAO1 genome (A). Donut plots of the relative frequencies of non-668 synonymous SNPs and indels located in each of the 27 different PseudoCAP functional 669 categories in Patient 1 (B), 2 (C), 3 (D), and 4 (E). Protein secretion/ export apparatuses and 670 transcriptional regulators are denoted with green asterisks on donut plots where applicable, while 671 phage/ transposon/ plasmid and non-coding RNA are denoted with red asterisks.

672

Supplemental Figure 5. Principal components analysis vectors display no evidence of collateral
sensitivity across any of the six antimicrobials tested for any patient, and further demonstrate that
cross-resistance and cross-sensitivity patterns differ across patients.

676

577 **Supplemental Figure 6.** Scatterplots of zone of inhibition (ZOI) versus growth rate (r) in SCFM 578 for all six tested antibiotics: amikacin (AK), meropenem (MEM), piperacillin-tazobactam (TZP), 579 ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Results of linear mixed model 580 (Table S18), with growth rate in SCFM as a fixed effect and patient as a random effect,

- 681 demonstrate that there is no significant effect of growth rate on resistance, and therefore, no 682 evidence for trade-offs between growth rate and resistance in these four populations.
- 683

Supplemental Table 1. Antimicrobial susceptibility testing measurements for Patient 1 as measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition radii (mm units). Data in the right columns represent calculated zone of inhibition values as diameters (mm units).

690

Supplemental Table 2. Antimicrobial susceptibility testing measurements for Patient 2 as measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition radii (mm units). Data in the right columns represent calculated zone of inhibition values as diameters (mm units).

697

Supplemental Table 3. Antimicrobial susceptibility testing measurements for Patient 3 as measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition radii (mm units). Data in the right columns represent calculated zone of inhibition values as diameters (mm units).

704

Supplemental Table 4. Antimicrobial susceptibility testing measurements for Patient 4 as measured by zone of inhibition (ZOI) in a standard disc diffusion assay for amikacin (AK), meropenem (MEM), piperacilin-tazobactam (TZP), ciprofloxacin (CIP), tobramycin (TOB), and ceftazidime (CAZ). Data in the left columns represent raw measurements of zone of inhibition radii (mm units). Data in the right columns represent calculated zone of inhibition values as diameters (mm units).

711

Supplemental Table 5. Genome size, average sequencing coverage, and number of contigs ofeach assembly.

714

715	Supplemental Table 6. Supporting statistical values of the linear regression analysis of distinct
716	CARD resistance genotype profiles within a population as a proxy for genomic diversity as
717	measured by total SNPs in each population.
718	
719	Supplemental Table 7. Genes that were impacted by non-synonymous mutations in at least one
720	isolate in all four populations.
721	
722	Supplemental Table 8. Full details of the chi-squared goodness of fit and Monte Carlo simulation
723	exact multinomial tests, with all associated chi-squared and p-values.
724	
725	Supplemental Table 9. Genes that were impacted by non-synonymous mutations in at least one
726	isolate in three out of four populations.
727	
728	Supplemental Table 10. All annotated genetic variants discovered in Patient 1.
729	
730	Supplemental Table 11. All annotated genetic variants discovered in Patient 2.
731	
732	Supplemental Table 12. All annotated genetic variants discovered in Patient 3.
733	
734	Supplemental Table 13. All annotated genetic variants discovered in Patient 4.
735	
736	Supplemental Table 14. Raw OD ₆₀₀ reads for growth in SCFM used to create growth curves and
737	analyze growth rate (r) for Patient 1. Time is given in hours, and all isolates were tested in
738	biological triplicates.
739	
740	Supplemental Table 15. Raw OD ₆₀₀ reads for growth in SCFM used to create growth curves and
741	analyze growth rate (r) for Patient 2. Time is given in hours, and all isolates were tested in
742	biological triplicates.
743	
744	Supplemental Table 16. Raw OD ₆₀₀ reads for growth in SCFM used to create growth curves and
745	analyze growth rate (r) for Patient 3. Time is given in hours, and all isolates were tested in
746	biological triplicates.
747	

548 Supplemental Table 17. Raw OD₆₀₀ reads for growth in SCFM used to create growth curves and analyze growth rate (r) for Patient 4. Time is given in hours, and all isolates were tested in biological triplicates.

751

Supplemental Table 18. Supporting brms R code and statistical values for the linear mixed model run to assess the relationship between growth rate (r) and antimicrobial resistance. Results of the model, with growth rate in SCFM as a fixed effect and patient as a random effect, show that the 95% confidence interval of the fixed effect of growth rate spans 0 for all six antimicrobials. Therefore, the null hypothesis that the fixed effect of growth on antimicrobial susceptibility is 0 cannot be rejected, providing no evidence for trade-offs or any significant relationship between resistance and growth rate across all four populations.

759

760

761

Fig S4

*

*

_			П	E	
Adaptation/ protection		Membrane proteins	D	E	
Amino acid biosynthesis and metabolism		Motility and attachment			
Antibiotic resistance and susceptibility		Non-coding RNA gene 🗙			
Biosynthesis of cofactors, prosthetic groups, and carriers		Nucleotide biosynthesis and metabolism			
Carbon compound catabolism		Phage, transposon, plasmid ★			
Cell division		Protein secretion/ export apparatus ★	*		
Cell wall/ LPS/ capsule		Putative enzymes			
Central intermediary metabolism		Secreted factors (toxins, enzymes, alginate)			
Chaperones and heat shock proteins		Transcription, RNA processing, and degradation			
Chemotaxis		Transcriptional regulators 🗙	*		
DNA replication, recombination, modification, and repair		Translation, post-translational modification, degradation	**		
Energy metabolism		Transport of small molecules			
Fatty acid and phospholipid metabolism		Two-component regulatory systems			
Hynothetical unclassified unknown					

