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Supplementary Tables

Cell Type CHR POS rsID Effect Allele Other Allele Cyto. Band MAF P

Myeloid 15 80263217 rs3826007 T C 15q25.1 0.27 2.61e-08
NK 2 111851212 rs13025330 T C 2q13 0.22 1.76e-09
NK 11 128070535 rs519062 G A 11q24.3 0.28 2.48e-13
NK 12 10583611 rs3003 T C 12p13.2 0.18 1.96e-11
NK 19 16441973 rs56133626 A G 19p13.11 0.33 1.96e-13

Supplementary Table 1: Genome-wide significant csaQTLs in the OneK1K dataset detected
by GeNA. For each csaQTL, we indicate the GRCh37 build position and rsID of the lead SNP, the effect
allele associated with the observed phenotype, the cytogenetic band of the locus as well as the MAF and
GeNA p-value.

Trait CHR BP Effect Allele P BETA

CD16 Mono frac Myeloid 15 80267501 G 5.732000e-10 -0.4257
CD16 Mono frac allcells 15 80260275 T 9.171000e-11 -0.3212
NK CD56bright frac NK 2 111832065 A 3.257000e-11 -0.3208
NK CD56bright frac NK 12 52595174 T 9.888000e-09 0.2649
NK CD56bright frac allcells 2 111836333 G 7.359000e-11 -0.3377

Supplementary Table 2: Lead SNPs for csaQTLs that pass a genome-wide significant threshold
in a cluster-based GWAS approach performed for comparison against GeNA. For each cell state
cluster defined by Yazar, Alquicira-Hernandez, Wing, et al. in the OneK1K dataset, we defined two traits:
the fractional abundance of cells in that type out of all cells in the sample (e.g., CD4+ effector memory T
cells % of all cells) and the fractional abundance of cells in that type out of all cells in the corresponding
major cell type (e.g., CD4+ effector memory T cells % of all T cells). We performed quality control of these
traits (e.g., to remove one from each strongly correlated trait pair) and performed one GWAS for each major
cell type including all traits defined within that type. For each lead SNP, we list the associated trait and
effect allele as well as the chromosome and the GRCh37 build position of the lead SNP.

Cell Type CHR Phenotype Annotation Novel

Myeloid 15 Decrease in CD16+ monocytes % myeloid cells No
NK 2 Decrease in CD56bright % NK cells No
NK 11 Increase in NK cells activated by TNF-α and IFN-γ % NK cells Yes
NK 12 Increase in NK cells activated by TNF-α, IFN-γ, IL-2, and IL-6 % NK cells Yes
NK 19 Increase in NK cells activated by TNF-α % NK cells Yes

Supplementary Table 3: Phenotypes associated with dose of alternative allele at each csaQTL
detected by GeNA. For each csaQTL, we summarize the phenotype observed in association with higher
dose of the effect allele. The analyses that form the basis of these phenotype annotations are discussed
below. A directionally-concordant genotype association to the listed phenotype was observed by Orrù et al.1

for the csaQTL at 15q25.1 and a directionally-concordant genotype association to the listed phenotype was
observed by Patin et al.2 for the csaQTL at 2q13. Specifically, Orrù et al. identified the same lead SNP,
rs3826007-T, to associate (p=5x10−9) with a decrease in “CD14- CD16+ monocyte %monocyte.” Patin et
al. identified rs12986962-G to associate (p=9x10−19) with decreased abundance of CD8a+CD56hi NK cells.
rs12986962-G is in LD (0.3) and correlates with rs13025330-T, the GeNA lead SNP.
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Publication Cohort N, NK
dataset

N,
Myeloid
dataset

Cells,
NK
dataset

Cells,
Myeloid
dataset

Randolph et al. AFR 38 42 2544 6055
Perez et al. ASI 98 98 23817 115912
Randolph et al. EUR 41 44 3687 7988
Oelen et al. EUR 103 104 16731 22441
Perez et al. EUR 139 140 40201 154527

Supplementary Table 4: Five cohorts from three previously published datastes of scRNA-seq
profiling of PBMCs were used to test replication of the novel csaQTLs identified by GeNA in
the OneK1K dataset. We tabulate the replication cohorts here, indicating the count of donors (N) and
Cells that passed quality control.

csaQTL Pathway P-adjusted
11:128070535:A:G HALLMARK TNFA SIGNALING VIA NFKB 8.4e-07
11:128070535:A:G HALLMARK INTERFERON GAMMA RESPONSE 0.04
12:10583611:C:T HALLMARK TNFA SIGNALING VIA NFKB 5.2e-12
12:10583611:C:T HALLMARK HYPOXIA 2.3e-06
12:10583611:C:T HALLMARK MTORC1 SIGNALING 4.4e-03
12:10583611:C:T HALLMARK IL2 STAT5 SIGNALING 5.8e-03
12:10583611:C:T HALLMARK INFLAMMATORY RESPONSE 6.7e-03
12:10583611:C:T HALLMARK INTERFERON GAMMA RESPONSE 6.7e-03
12:10583611:C:T HALLMARK ESTROGEN RESPONSE LATE 0.012
12:10583611:C:T HALLMARK IL6 JAK STAT3 SIGNALING 0.012
12:10583611:C:T HALLMARK P53 PATHWAY 0.013
12:10583611:C:T HALLMARK KRAS SIGNALING UP 0.015
19:16441973:G:A HALLMARK TNFA SIGNALING VIA NFKB 3.5e-08

Supplementary Table 5: All MSigDB Hallmark gene sets significantly enriched in the cell
states associated with three novel csaQTLs revealed by GeNA. For each novel csaQTL, we list
all Hallmark gene sets that passed a p<0.05 threshold after correction for multiple testing with Benjamini-
Hochberg adjustment.

csaQTL Stimulus r-squared P

12:10583611:C:T TNF-α 0.008370 0.006119
12:10583611:C:T IFN-γ 0.004367 0.033220
12:10583611:C:T IL-2 0.007334 0.009544
12:10583611:C:T IL-6 0.009894 0.003338
19:16441973:G:A TNF-α 0.005125 0.019800
11:128070535:A:G TNF-α 0.000439 0.199147
11:128070535:A:G IFN-γ 0.002636 0.026951

Supplementary Table 6: Direct association tests between mean cytokine response expression
per individual and genotype at the csaQTL lead SNP. For each csaQTL and corresponding enriched
gene set implicating a cytokine response as part of the csaQTL-associated phenotype, we followed up with a
direct association test between genotype values for the csaQTL lead SNP and estimated cytokine response
level per individual (Methods). We report the variance explained by the lead SNP in mean cytokine
response expression per individual, as well as the result of a one-tailed t-test evaluating the significance of
the association, after controlling for age, sex, and gPC1-6.
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Cell
Type

Lead SNP eGene Beta P csaQTL Colocalization

NK 12:10594848:C:A KLRC1 -0.4 1.0e-41 NK 12:10583611:C:T 0.96
NK 12:10580062:C:T KLRC2 -0.86 5.2e-64 NK 12:10583611:C:T 2.9e-14
NK 12:10574001:T:C KLRC3 -0.59 1.1e-117 NK 12:10583611:C:T 6.6e-05
B 12:10561279:C:G KLRK1 -0.6 2.3e-56 NK 12:10583611:C:T 4.0e-05
B 15:80311721:T:C BCL2A1 0.31 2.6e-64 Myeloid 15:80263217:C:T 6.5e-06

Supplementary Table 7: eQTLs detected in the OneK1K dataset as candidates to colocalize
with csaQTLs. For each csaQTL, we tested the csaQTL lead SNP for eQTL associations to all cis-genes
within a 2 megabase window within each single-cell object (T, B, NK, myeloid and all cells) using a model
with pseudo-bulked gene expression per sample (Methods). For each triple (csaQTL lead SNP, eGene,
expression cell type) with a p<5x10−4 association in the pseudobulk eQTL model, we further tested the
eQTL association using a single-cell-resolution model (Methods). For all triples (csaQTL lead SNP, eGene,
expression cell type) with p<1x10−6 in the single-cell eQTL model, we applied the single-cell eQTL model
to all SNPs in a 2 megabase window centered on the csaQTL lead SNP to identify an eQTL lead SNP and
we estimated eQTL colocalization with the csaQTL (Methods). In this table, we display one row for each
triple (csaQTL lead SNP, eGene, expression cell type) that met these criteria for colocalization analysis.
Specifically, we report the csaQTL, the Cell Type in which expression was modeled for the eQTL, the
eQTL Lead SNP, the eQTL Beta, the eQTL p-value, and the posterior probability of a shared causal
variant between the csaQTL and eQTL (Colocalization).

Cell Type Lead SNP eGene Beta P csaQTL Coloc.
Whole blood 15:80260274:A:T BCL2A1 -0.24 9.3e-52 Myeloid 15:80263217:C:T 0.98
NK 11:128085408:C:T ETS1 0.39 4.3e-04 NK 11:128070535:A:G 0.40
Stim. CD8+ T 12:10591281:G:A KLRC4 0.89 4.9e-06 NK 12:10583611:C:T 0.78

Supplementary Table 8: Published eQTLs that colocalize with the GeNA csaQTLs. We reviewed
eQTL summary statistics from five published studies (Methods) to identify eQTLs that colocalize with the
csaQTLs. We display one row for each triple (csaQTL lead SNP, eGene, expression cell type) with a published
eQTL that colocalizes with a GeNA csaQTL. Specifically, we report the csaQTL, the Cell Type in which
expression was modeled for the eQTL, the eQTL Lead SNP, the eQTL Beta, the eQTL p-value, and the
posterior probability of a shared causal variant between the csaQTL and eQTL (Coloc.).
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Cell
Type

Lead SNP Associated
Condition

Subcohort N, Dis-
covery

N,
Subco-
hort

P, Sub-
cohort

r-sq.,
Traits

NK 19:16441973:G:A Asthma Known absence
of asthma

935 444 2.54e-6 0.72

NK 19:16441973:G:A Type 1 Dia-
betes

Known absence
of autoimmune
disease

935 454 6.08e-4 0.75

NK 12:10583611:C:T Psoriasis Known absence
of autoimmune
disease

935 454 2.99e-4 0.72

NK 2:111851212:C:T Ovarian
Cancer

Known absence
of ovarian can-
cer

935 513 5.59e-3 0.72

Myeloid 15:80263217:C:T Primary
Sclerosing
Cholangitis

Known absence
of autoimmune
disease

523 247 7.48e-5 0.75

Supplementary Table 9: Testing for csaQTL persistence in custom OneK1K subcohorts that
exclude clinical conditions of interest. For each csaQTL that corresponds to a disease risk locus, we re-
tested the csaQTL using GeNA in a custom subcohort of the OneK1K dataset that excluded all individuals
lacking clinical metadata and excluding individuals with specific diagnoses. For each csaQTL tested in a
custom subcohort (one per row) we display the Lead SNP and source csaQTL GWAS (Cell Type), the
clinical condition associated with genetic risk at the same locus (Associated Condition), the inclusion
criteria for the custom OneK1K subcohort (Subcohort), and the count of individuals in the original GWAS
(N, Discovery) and subcohort (N, Subcohort). We found that all csaQTLs persisted in their custom
cohorts, with GeNA p<6x10−3 (P, Subcohort) and with consistency between the csaQTL-associated traits
detected by GeNA in the discovery and custom subcohort analyses (Pearson’s r-squared between sample-level
phenotype values in each cohort, r-sq., Traits).
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Celltype CHR:POS Cis Vargenes Expr
Cor
(r)

%tile
Expr
Cor
(r2)

r2

Pheno,
Nbhds

r2

Pheno,
Sam-
ples

GWAS
P

P,
Masked

Myeloid 15:80263217

BCL2A1
RP11-81A1.6

ST20

-0.358
0.021
-0.016

97
41
32 1.00 1.00 2.61e-08 2.71e-08

NK 2:111851212 MIR4435-
2HG

0.025 80 1.00 1.00 1.76e-09 3.94e-09

NK 11:128070535 ETS1 0.011 55 1.00 1.00 2.48e-13 1.65e-13

NK 12:10583611

CD69
KLRC2
KLRK1
KLRC3

LINC02446
RP11-726G1.2

CLEC2D
KLRC4
KLRC1
CLECL1

KLRK1-AS1

0.164
0.127
0.081
0.082
0.05
0.03
0.021
0.018
-0.014
0.006
0.006

99
98
95
95
90
82
75
70
63
36
35 0.95 0.91 1.96e-11 3.9e-10

NK 19:16441973

HSH2D
KLF2

MYO9B
TPM4

CTC-429P9.3
CTC-429P9.5

BRD4

0.091
-0.016
-0.011
0.008
-0.008
-0.003
-0.002

95
68
59
50
49
20
12 1.00 0.99 1.96e-13 1.4e-14

Supplementary Table 10: csaQTL association tests for each lead SNP from the discovery
GWAS, after masking expression of cis-genes. Celltype of the discovery GWAS and CHR:POS
for each lead SNP are shown, along with the variable genes from the discovery GWAS within a 2 megabase
window centered on the SNP (Cis-Vargenes), which were removed from the dataset for the masked test.
For each cis-variable gene, we also show for the csaQTL in the discovery GWAS the correlation (Pearson’s
r) between expression of that gene and csaQTL phenotype value per neighborhood (Expr Cor). To con-
textualize these raw correlations among the strengths of all variable genes’ expression correlations to the
csaQTL per-neighborhood phenotype values, we also show the percentile among all variable genes’ corre-
lations (Pearson’s r2; %ile Expr Cor). To compare csaQTLs in the discovery versus masked versions of
the dataset, the correlations are shown between the per-sample (r2 Pheno, Samples) csaQTL phenotype
values. We also compare the per-gene correlations to the neighborhood-level phenotype in the discovery and
cis-masked analyes (r2 Pheno, Nbhds). Finally, we compare csaQTL association strength in the discovery
(GWAS P) and masked (P, Masked) datasets.
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Cell Type Disease PRS Cohort N P P, adjusted

Myeloid SLE Known absence of SLE 282 0.003996 0.03996
B SLE Known absence of SLE 492 0.318681 0.455259
NK SLE Known absence of SLE 511 0.249750 0.41625
T SLE Known absence of SLE 531 0.369630 0.462038
allcells SLE Known absence of SLE 532 0.053946 0.17982
Myeloid RA Known absence of RA 274 0.165834 0.331668
B RA Known absence of RA 478 0.139860 0.331668
NK RA Known absence of RA 498 0.527473 0.586081
T RA Known absence of RA 517 0.605395 0.605395
allcells RA Known absence of RA 518 0.026973 0.134865
Myeloid SLE Known absence of any

autoimmune disease
270 0.018981 N.A.

allcells RA Known absence of any
autoimmune disease

507 0.011988 N.A.

Supplementary Table 11: Testing associations to disease PRS in the OneK1K cohort. Us-
ing published polygenic risk scores, we quantified genetic risk for systemic lupus erythematosus (SLE) and
rheumatoid arthritis (RA) for each individual in the OneK1K cohort. We tested associations to each PRS
within all cells and each major cell type using Covarying Neighborhood Analysis (CNA)[3]. For each asso-
ciation test we report the Disease PRS tested in the Cell Type and the resulting P value from CNA’s
global association test. We excluded individuals lacking clinical metadata or with a diagnosis of the disease
of interest. To account for multiple hypothesis testing, we used the Benjamini-Hochberg FDR correction
approach and report the P, adjusted. For each association test that passed a nominal p<0.05 threshold,
we tested again in a subcohort including only individuals with a known absence of any autoimmune disease.

Cell Type N cases N conrtrols P

Myeloid 9 9 <1e-4
allcells 16 16 <1e-4
NK 15 15 <1e-4
B 15 15 <1e-4
T 16 16 <1e-4

Supplementary Table 12: Case-control association testing for rheumatoid arthritis (RA) in
the OneK1K dataset. For each major cell type, we created a single-cell object containing profiling from
all individuals with an RA diagnosis that passed quality control (e.g., at least 25 cells of that type available)
and profiling for individuals with a known absence of RA downsampled at random to an equal number as
cases. We performed case-control association tests using CNA[3]. All tests attained the minimum possible
permutation-based p-value, indicating p<1x10−4.
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Supplementary Figures

Supplementary Figure 1: Performance of GeNA on simulations with no true associations
between genotypes and cell states. We plot the cumulative fraction of GeNA p-values (y-axis) that
fall below a given p-value threshold (x-axis) for simulated genotypes across our full included MAF spectrum
0.5>=MAF>0.05 (left) and for simulated genotypes with 0.055>=MAF>0.05 (right). Both x and y axes
are log-scaled.

Supplementary Figure 2: Quantile-quantile plots of null simulations for SNPs sampled from
all included MAFs. We plot GeNA results from simulated genotypes with no true associations to any
cell state. We plot results separately by major cell type (T, B, NK, myeloid and all cells) and by value of
k. GeNA considers two values of k by default for a given dataset. We plot performance separately for each
(cell type, k) pair for the values of k used by default by GeNA in each major cell type (Supplementary
Figure 4). We also display the rate of false positive associations and lambda value for each QQ plot.
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Supplementary Figure 3: Quantile-quantile plots of null simulations for SNPs with MAF 0.05-
0.055. We plot GeNA results from simulated genotypes with no true associations to any cell state. We plot
results separately by major cell type (T, B, NK, myeloid and all cells) and by value of k. GeNA considers
two values of k by default for a given dataset. We plot performance separately for each (cell type, k) pair
for the values of k used by default by GeNA in each major cell type (Supplementary Figure 4). We also
display the rate of false positive associations and lambda value for each QQ plot.

Supplementary Figure 4: Values of k considered by GeNA by default for each major cell type
in the OneK1K dataset. For each major cell type, two values of k, the number of NAM-PCs to include
in the csaQTL model, are selected by GeNA using 50% (green) and 80% (orange) thresholds of percent
variance explained.
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Supplementary Figure 5: Power to detect associations between simulated genotype values and
real single-cell traits. For 94 real cell state abundance traits that vary across individuals in the OneK1K
dataset, we defined simulated genotype values per individual to create true associations to these traits. By
including random noise in the simulated genotypes we can use these data to quantify the fraction of true
associations detected by GeNA (power) across a spectrum of noise levels. At each noise level, we show the
mean and standard error of statistical power across traits for a given p-value threshold. A dashed line is
shown at y=0.05.
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Supplementary Figure 6: Power to detect associations between simulated genotype values and
real cell state abundance traits, split by phenotype category. We defined real cell state abundance
traits within three categories (left, middle, right): 1) differential abundance of a cluster-based cell type,
2) increased expression of a gene set across all cells, and 3) increased expression of a gene set within a
cluster-based cell type. In this figure, we split our simulation results by phenotype category. At each noise
level, we show the mean and standard error of statistical power across the traits in that category for a given
p-value threshold. A dashed line is shown at y=0.05. Above each power plot, we include an illustration of one
example phenotype from that category. Each neighborhood is colored according to its abundance correlation
to the simulated genotype, with larger positive correlations in darker red, larger negative correlations in
darker blue, and correlations equal to zero in grey.

Supplementary Figure 7: Heatmap of correlations among per-sample values for 14 cell state
abundance traits used in our non-null simulated GWAS for T cells. For each of these 14 traits with
pairwise Pearson’s r2 < 0.2, we display the r2 correlation in per-sample values between each pair of traits.
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Supplementary Figure 8: Illustration of 14 real cell state abundance traits used in our non-null
simulated GWAS for T cells. For each trait in Supp. Fig. 7, we plot the true cell-level phenotype for
which we simulated associated genotypes with varying levels of noise. Each UMAP includes one dot per T
cell in the OneK1K dataset. Cells that do not affect the trait are colored grey. For example, for the “CD8
Näıve Program 1” trait, we used a gene expression program that varies substantially across näıve CD8+ T
cells. We quantified the usage of that program across all näıve CD8+ T cells and defined the trait value per
individual in the dataset as the mean use of that gene expression program across all näıve CD8+ T cells
in that individual’s sample. Therefore, for the “CD8 Näıve Program 1” trait we color all cells that are not
näıve CD8+ T cells grey because they do not influence the trait and we color each näıve CD8+ T cell by its
use of the gene expression program. Cells with greater use of the program are colored deeper red and cells
with less use of the program are colored deeper blue.

Supplementary Figure 9: Traits associated with lead SNPs for each suggestive association in
our csaQTL GWAS. We display results for loci that passed a p<1x10−6 threshold for suggestive associ-
ation in our csaQTL GWAS but did not attain genome-wide significance (p>5x10−8). For each lead SNP
(“CHR:POS:REF:ALT”), we plot a UMAP of the included cells colored by neighborhood-level phenotype
and we report the associated p-value and source GWAS (T, B, NK or myeloid cells). For each source GWAS
with multiple suggestive loci, we observe associations to distinct traits detected by GeNA in a single genome-
wide survey.
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Supplementary Figure 10: Correlations among csaQTL-associated traits. For each of our csaQTL
GWAS with more than one association that passed a p<1x10−6 threshold for suggestive association, we plot
pairwise Pearson’s r-squared values among the traits associated with the lead SNPs for each suggestive or
genome-wide significant locus. Specifically, for each pair of loci, we compute the correlation between the
sample-level phenotypes corresponding to each lead SNP. While some phenotypes have shared features, such
as the loci on chromosomes 12, 11, and 19 from the NK GWAS, these results highlight the diversity of
phenotypes to which csaQTL associations can be detected in a single genome-wide survey using GeNA.

Supplementary Figure 11: GWAS for csaQTLs within B cells. Dashed horizontal lines indicate
p=5x10−8 and p=1x10−6 thresholds.

13



Supplementary Figure 12: GWAS for csaQTLs within T cells. Dashed horizontal lines indicate
p=5x10−8 and p=1x10−6 thresholds.

Supplementary Figure 13: GWAS for csaQTLs across all cells in the dataset. Dashed horizontal
lines indicate p=5x10−8 and p=1x10−6 thresholds.
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Supplementary Figure 14: GWAS for CD56br fractional abundance out of all NK cells, as
defined by published cell assignments to clusters in this dataset. Dashed horizontal lines indicate
p=5x10−8 (genome-wide significant) and p=1x10−6 thresholds (Methods).

Supplementary Figure 15: GWAS for CD16+ monocyte fractional abundance out of all myeloid
cells, as defined by published cell assignments to clusters in this dataset. Dashed horizontal lines
indicate p=1.67x10−8 (genome-wide significant) and p=1x10−6 thresholds (Methods).
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Supplementary Figure 16: Replication testing within five independent cohorts for each csaQTL
identified by GeNA in the OneK1K dataset. Each plot corresponds to one csaQTL and includes all
cohorts in which genotypes for the lead SNP were available. For each replication cohort and SNP pair, we
show the replication beta (dot) and one standard error (whiskers). We also show the meta analysis test
result associated with each csaQTL across all five replication cohorts. All association tests with p<0.05 are
shown with a bold marker.
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Supplementary Figure 17: Characterization of the csaQTL at 15q25.1. (A) Boxplot of sample-level
phenotype values for each individual, organized by genotype at the lead SNP. We also show the GeNA p-value.
(B) UMAP of Myeloid cells colored by neighborhood-level phenotype value (i.e., correlation between cell
abundance and dose of alternative allele per neighborhood). (C) Violinplot of neighborhood-level phenotype
value distribution within CD14+ monocytes, CD16+ monocytes and dendritic cells. (D) Heatmap of expres-
sion across neighborhoods for genes with strong correlations in expression to the csaQTL neighborhood-level
phenotype. Neighborhoods are arrayed along the x-axis by phenotype value. (E) UMAP of myeloid cells
colored by cell type assignment to the CD16+ monocyte cluster. We also show the Pearson’s r value between
neighborhood-level phenotype values and a binary encoding of CD16+ monocyte cluster membership per
cell. (F) Boxplot of cluster-based CD16+ monocyte % myeloid cells trait value per donor by genotype. The
csaQTL lead SNP explains 6.5% of variance in this phenotype. (G) Locus zoom plot with one marker per
tested SNP, genomic position along the x-axis, and GeNA p-value on the y-axis. Each SNP marker is colored
by LD value relative to the lead SNP. The lead SNP is labeled with a green diamond. The BCL2A1 eQTL
lead SNP and primary sclerosing cholangitis risk lead SNP are labeled with purple triangles. (H) Diagram
of genotypes for the csaQTL lead SNP and colocalizing associations to molecular, tissue and organism-level
traits at this locus.
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Supplementary Figure 18: Among peripheral blood mononuclear cells, CD16+ monocytes
preferentially express BCL2A1. (Left) UMAP of all cells in the OneK1K dataset with cells in the
CD16+ monocyte cluster colored green and all other cells colored grey. (Right) UMAP of all cells in the
OneK1K dataset colored according to (normalized and scaled) expression of BCL2A1.
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Supplementary Figure 19: Characterization of the csaQTL at 11q24.3. At 11q24.3, lead SNP
rs519062-G associates with expansion of activated NK cell states expressing TNF-α and IFN-γ response
genes. Transcription factor ETS1 is encoded by the nearest gene to all SNPs in the locus. Schmiedel
et al.[4] report a suggestive eQTL in NK cells (lead SNP p=4x10−4; Prcoloc=40%) for which rs519062-G
associates with increased ETS1. Interestingly, primary human NK cells with experimental ETS1 knockout
exhibit decreased IFN-γ production in response to stimulation[5]. (A) Boxplot of sample-level phenotype
values for each individual, organized by lead SNP genotype, with GeNA p-value. (B) UMAP of NK cells
colored by neighborhood-level phenotype values. (C) Heatmap of expression across neighborhoods for genes
with strong expression correlations to the neighborhood-level phenotype. Neighborhoods are ordered along
the x-axis by phenotype value. The phenotype-correlated genes include general markers of NK activation
(CD69, NFKBIA) as well as TNF-α (FOS, CD44, KLF6 ) and IFN-γ (CD74, XCL1 ) response. (D-E) Gene
set enrichment analysis identified significant activation of TNF-α and IFN-γ response in association with the
csaQTL phenotype. We show UMAPs of NK cells colored by summed expression of (D) TNF-α response
genes and (E) IFN-γ response genes. We report the Pearson’s r across neighborhoods between phenotype
values and summed expression for the gene set, with FDR-adjusted enrichment p-value. (F) Locus zoom
plot with one marker per tested SNP, genomic position along the x-axis, and GeNA p-value on the y-axis.
Each marker is colored by LD value relative to the lead SNP. The csaQTL lead SNP is a green diamond.
The ETS1 eQTL lead SNP is a purple triangle. (G) Diagram of genotypes for the csaQTL lead SNP and
colocalizing associations to molecular and tissue traits.
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Supplementary Figure 20: Characterization of the csaQTL at 19p13.11. At 19p13.11, lead SNP
rs55908509-A associates with expansion of activated NK cells expressing TNF-α response genes. All SNPs in
the locus lie near the KLF2 gene, but no colocalizing KLF2 eQTLs were identified. (A) Boxplot of sample-
level phenotype values for each individual, organized by lead SNP genotype, with GeNA p-value. (B) UMAP
of NK cells colored by neighborhood-level phenotype values. (C) Heatmap of expression across neighbor-
hoods for genes with strong expression correlations to the neighborhood-level phenotype. Neighborhoods
are ordered along the x-axis by phenotype value. The phenotype-correlated genes include general markers of
NK activation (CD69, NFKBIA) as well as TNF-α (DUSP1, CD44, JUN, FOS, DUSP2, ZFP36 ) response.
(D) Gene set enrichment analysis identified significant activation of TNF-α response in association with the
csaQTL phenotype. We show a UMAP of NK cells colored by summed expression of TNF-α response genes.
We report the Pearson’s r across neighborhoods between phenotype values and summed expression for the
gene set, with FDR-adjusted enrichment p-value. (E) Locus zoom plot with one marker per tested SNP,
genomic position along the x-axis, and GeNA p-value on the y-axis. Each marker is colored by LD value
relative to the lead SNP. The csaQTL lead SNP is a green diamond. The lead SNPs for type 1 diabetes and
asthma risk are annotated with purple triangles. (F) Diagram of genotypes for the csaQTL lead SNP and
colocalizing associations to tissue and organism-level traits.
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Supplementary Figure 21: Characterization of the csaQTL at 2q13. At 2q13, CD56br fraction of NK
cells decreases in association with increasing dose of lead SNP rs13025330-T. The csaQTL colocalizes with a
published pQTL for the abundance of chemokine CXCL16 in peripheral blood (pQTL lead SNP p=4.6x10−18,
Prcoloc=84%); rs13025330-T associates with increased CXCL16 [6]. (A) Boxplot of sample-level phenotype
values for each individual, organized by lead SNP genotype, with GeNA p-value. (B) UMAP of NK cells
colored by neighborhood-level phenotype values. (C) Heatmap of expression across neighborhoods for genes
with strong expression correlations to the neighborhood-level phenotype. Neighborhoods are ordered along
the x-axis by phenotype value. The phenotype-correlated genes include markers of the CD56br (ITGAX,
CD44, SELL, GZMK ) and CD56dim (FCGR3A, FGFBP2, CST7 ) subtypes. (D) UMAP of all NK cells,
colored according to cell assignment to the CD56br cluster. We also show the Pearson’s r between CD56br

cluster assignment status and csaQTL phenotype values across neighborhoods. (E) A boxplot of CD56br

fractional abundance out of all NK cells per individual, organized by genotype at the lead SNP. We also
show the variance explained by the lead SNP in the fraction of NK cells assigned to the CD56br cluster. (F)
Locus zoom plot with one marker per tested SNP, genomic position along the x-axis, and GeNA p-value
on the y-axis. Each SNP marker is colored by LD value relative to the lead SNP. The csaQTL lead SNP
is labeled with a green diamond. The ovarian cancer risk and CXCL16 abundance pQTL lead SNPs are
labeled with purple triangles, as is the lead SNP from the replicating association to CD56br%NK previously
found using flow cytometry.
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Supplementary Figure 22: Re-analysis of the Perez et al. [7] SLE dataset within a
neighborhood-based framework using CNA. Re-analysis of the Perez et al. (2022) SLE case-control
PBMC scRNA-seq dataset in our neighborhood-based framework enables a direct comparison of SLE PRS-
associated cell states against cell states that differentiate patients with SLE from controls. The significant
lupus case-control differences present in Perez et al. across major cell types (CNA Global p <5x10−4 for T,
B, NK, myeloid) correspond closely to interferon response gene expression across neighborhoods (Pearson’s
r 0.38-0.68 between SLE-associated phenotype values and interferon response gene expression per neigh-
borhood, all with confirmatory bootstrapped p<0.001 for r>0). In fact, SLE case-control differences are
eliminated in this model after controlling for average interferon response gene expression per sample (all
CNA Global pIFN >0.08; Methods), suggesting that increased interferon response may be the primary
perturbation present in peripheral blood cell state abundances during lupus disease. (Top) Consistent with
the published results in Perez et al., these data show strong cell state abundance shifts associated with SLE
disease status across T, NK, and B cells with strong correspondence to interferon signaling. CNA global
p-values shown with (pIFN ) and without (p) controlling for mean interferon response gene expression per
individual. (Bottom) Interferon response gene expression per neighborhood among T, NK, and B cells.
Pearson’s r between interferon response per neighborhood and SLE phenotype is shown for each cell type,
with associated bootstrapped p-value for r>0.
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Supplementary Figure 23: T cell state abundance shifts associated with increasing RA genetic
risk and associated with RA disease status relative to controls. Näıve-to-effector T cell ratios were
computed per individual in the OneK1K cohort using cell assignments to the published T cell clusters. (A)
UMAP of all cells from the OneK1K subcohort used to test for a cell state abundance association to RA
PRS value (Methods). The UMAP is colored according the cell state abundance shift neighborhood-level
phenotype associated with RA PRS value. (B) UMAP of all cells from the OneK1K subcohort used to test
for a cell state abundance association to RA PRS value. The UMAP is colored according to cell assignments
to näıve, effector memory and cytotoxic CD4+ T cell clusters. (C) UMAP of all cells from the OneK1K
subcohort used to test for an RA case-control association (Methods). The UMAP is colored according the
cell state abundance shift neighborhood-level phenotype associated with RA. (D) UMAP of all cells from
the OneK1K subcohort used to test for an RA case-control association. The UMAP is colored according to
cell assignments to näıve, effector memory and cytotoxic CD4+ T cell clusters. (E) The distribution of cell
abundance correlations per neighborhood to RA PRS value within each highlighted cluster (näıve, effector
memory and cytotoxic CD4+ T cells). (F) Tnaive/[TEM+TCTL] ratio among individuals with a known
absence of RA, shown separately for individuals with the top 5% highest RA PRS values and for individuals
with lower PRS values. We report the Pearson’s r correlation. We also show a permutation-based p-value
for r>0. (G) The distribution of cell abundance correlations to RA disease status within each highlighted
cluster (näıve, effector memory and cytotoxic CD4+ T cells). (H) Tnaive/[TEM+TCTL] ratio among CD4+
T cells for individuals with RA as compared to healthy controls. We report the Pearson’s r correlation.
We also show a t-test p-value corresponding to the relationship between RA case-control status and this
näıve-to-effector ratio. In (F) and (H), each boxplot displays the median (orange), Q1 and Q3 quartiles
along with Q1–1.5xIQR (lower whisker) and Q3+1.5xIQR (upper whisker). Values per individual are shown
in green with jittering along the x-axis.
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Supplementary Figure 24: Comparison of effects captured by NAM-PCs to published associa-
tions, with respect to specific phenotypes. Z-scores for published SNP associations to specific cell state
abundance phenotypes quantified using flow cytometry by Orrù et al. are shown on the x-axis. For each
SNP-trait pair, a corresponding Z-score is shown on the y-axis reflecting an association test in the OneK1K
dataset between genotype and the best approximation of that phenotype that can be captured by NAM-PCs
(Methods).

Supplementary Figure 25: GeNA’s statistical power increases linearly with the number of
samples included in the single-cell dataset. We downsampled the OneK1K dataset at random to 80%,
60%, 40% or 20% of the total donor count and repeated our power analysis simulation for each downsampled
dataset. Here we plot statistical power by dataset size for simulated genotypes that explain 6% or 12% of
variance in the associated cell state abundance shift trait.
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Supplementary Figure 26: Genotype principal components for the Perez et al. [7] European-
ancestry samples. European-ancestry samples genotyped on the Omni and LAT arrays were merged
after imputation. gPCs were constructed for this cohort using post-QC pre-imputation shared SNPs. The
distributions of these samples, colored by genotyping array cohort, on gPCs 1-4 confirm that the gPCs
capture within-ancestry genotypic variation, rather than reflecting genotyping array batch. We also display
an elbow plot of eigenvalues by principal component. The red dashed line indicates the threshold used to
select the number of gPCs included in our models.
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Supplementary Figure 27: Genotype principal components for the Perez et al. [7] Asian-
ancestry samples. The distributions of these samples on gPCs 1-4 are shown along with an elbow plot of
eigenvalues by principal component. The red dashed line indicates the threshold used to select the number
of gPCs included in our models.

Supplementary Figure 28: Genotype principal components for the Oelen et al. samples. [8]
The distributions of these samples on gPCs 1-4 are shown along with an elbow plot of eigenvalues by principal
component. The red dashed line indicates the threshold used to select the number of gPCs included in our
models.
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Supplementary Figure 29: Genotype principal components for the Randolph et al. [9]
European-ancestry samples. The distributions of these samples on gPCs 1-4 are shown along with
an elbow plot of eigenvalues by principal component. The red dashed line indicates the threshold used to
select the number of gPCs included in our models.

Supplementary Figure 30: Genotype principal components for the Randolph et al. [9] African-
ancestry samples. The distributions of these samples on gPCs 1-4 are shown along with an elbow plot of
eigenvalues by principal component. The red dashed line indicates the threshold used to select the number
of gPCs included in our models.
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Supplementary Figure 31: Schematic representation of our our approach to project a
neighborhood-based phenotype into an independent dataset for testing of association replica-
tion. We use a published reference mapping algorithm [10] to project each cell from the replication dataset
(blue labels) into the embedding used for construction of the nearest neighbor graph from the discovery
dataset (orange labels). For each replication dataset cell, we store its distance to the 15 nearest discov-
ery dataset cells; these represent the seed weights of this replication dataset cell in the discovery dataset
neighborhoods, of which there is one per discovery dataset cell. We use diffusion in the nearest neighbor
graph, as we have previously described [3], to obtain from these seed weights the fractional membership
of each replication dataset cell within all discovery dataset neighborhoods. For each replication dataset
sample, the sum of neighborhood memberships across all cells in the sample yields the fractional abundance
of that sample across discovery dataset neighborhoods. Row-wise stacking these per-sample vectors into a
matrix produces an estimated Neighborhood Abundance Matrix (NAM) containing the distribution of each
replication dataset sample across discovery dataset neighborhoods. We can then use the stored products
of the discovery dataset NAM SVD to obtain loadings for each replication dataset sample on the discovery
dataset NAM-PCs, as shown. Combining the replication dataset sample loadings on the discovery dataset
NAM-PCs with the fitted coefficients that define the phenotype in the discovery dataset produces an esti-
mated phenotype value per replication dataset sample, which we can use to test for association to the allele
of interest (or case-control status) controlling for relevant covariates.

28



Supplementary Figure 32: A sex example demonstrates the neighborhood-based phenotype
projection and replication testing process. (Top) Phenotypes associated with male sex within the
OneK1K cohort were defined for NK, Myeloid, B and T cells. Each of these phenotypes was projected
into the relevant cell subset of the Perez et al. dataset [7] and tested for association to ground-truth
sex labels per sample. (Middle) Using the sex-associated phenotype within T cells as an example, we
show per neighborhood the empiric correlations between cell abundance per sample and sex label for the
discovery (left) and validation (right) datasets. Deeper red colors indicate larger positive correlations, while
deeper blue colors indicate larger negative correlations. (Bottom) Within the replication dataset, we plot
the projected per-neighborhood sex phenotype values against the empiric correlations per neighborhood
between replication dataset cell abundance per sample and sex label (left; Pearson’s r2 shown). We also plot
the distribution of estimated per-sample phenotype values for individuals in the replication dataset within
each sex category (right).
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Supplementary Note

GeNA supports flexible detection of genotype-associated cell states in high-dimensional single-cell data. For
some found csaQTL-associated phenotypes (e.g., if the SNP associates with abundance of näıve B cells),
clustering and differential expression alone may suffice to define an equivalent phenotype in an independent
replication dataset. Even in this simple case, however, ‘näıve B’ cluster boundaries may not be equivalent in
the discovery and replication datasets. This challenge increases with more complex phenotypes (e.g., the SNP
associates with a phenotype defined by one cell state abundance shift within CD4+ näıve T cells, another
cell state abundance shift that spans CD8+ T memory types, and a depletion of MAIT cells). Defining an
equivalent phenotype value per individual in a replication cohort that reflects this same pattern of change in
global T cell composition could be prohibitively difficult without transferring neighborhood-scale phenotype
information from the discovery dataset to the replication dataset. To address this challenge, we developed
an approach to project a neighborhood-based cell state abundance phenotype from a discovery dataset to a
replication dataset (Methods).

As an overview of our approach: consider a single-cell profiling discovery dataset in which we have
identified an association between a sample attribute (e.g. sex, or allele dose for a genetic variant) and a
tissue cellular composition phenotype using either CNA or GeNA. In order to evaluate replication of this
association, we need to define a value per sample in a replication dataset that reflects an equivalent phenotype.
The phenotype was originally defined in the discovery dataset through a linear association test between the
attribute values (e.g., allele doses) per sample and sample loadings on the discovery dataset NAM-PCs.
Using the fitted coefficient values per NAM-PC from the linear model, we can estimate replication sample
phenotype values as long as we can estimate replication sample loadings on the discovery dataset NAM-PCs.
We can estimate replication sample loadings on the discovery dataset NAM-PCs using the outputs from
PCA on the discovery dataset NAM as long as we can generate a NAM for the replication dataset that
stores the fractional cell abundance for each replication sample across discovery dataset neighborhoods. A
schematic overview of this process is shown in Supplementary Figure 31.

Rather than define new neighborhoods for the replication dataset, we map replication dataset cells into
the discovery dataset embedding and quantify the fractional abundance of each replication sample across
discovery dataset neighborhoods. Further, rather than define new axes of inter-sample variation specific to
the replication dataset, we determine the replication dataset sample loadings on the discovery dataset NAM-
PCs. Using the fitted coefficient values per NAM-PC that define the phenotype in the discovery dataset,
we obtain phenotype values per replication dataset sample and can test the association of the attribute of
interest (e.g., allele dose or case-control status) to the phenotype within the replication dataset.

We demonstrate projection and replication testing with a non-genotype example: sex (Supplementary
Figure 32). In a neighborhood-based framework, we have previously shown that sex associates with si-
multaneous changes in blood cell type relative abundances as well as the usage of a sex chromosome gene
expression program across cell types [3]. The sex-associated cell state abundance shift therefore represents a
multi-factorial phenotype that includes both coarse (cell type abundance changes) and granular (differential
expression of sex chromosome genes) components. A sex-associated phenotype defined within the OneK1K
dataset and projected into the Perez et al.[7] PBMC sc-mRNA-seq dataset yields replicating associations
(p<2x10−7) to ground-truth sex labels across all major cell types (T, B, NK, myeloid) in both ancestry
cohorts (Asian and European, N=98 and N=140 samples respectively).
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