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Editorial Note: This manuscript has been previously reviewed at another journal that is not
operating a transparent peer review scheme. This document only contains reviewer
comments and rebuttal letters for versions considered at Nature Communications.

REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

We thank to the author for providing clarification and additional data on the reviewer
concerns.

However, a few major concerns remain unresolved.

1. The z-score and other data normalization method comparisons for heatmaps should be
provided. and how would other normalization methods affect the clusters visualized? Seems
like only 1 method provided them what the authors wanted to show. This means that data
mining should be robust

2. The sphere-seq is an unacceptable name because nothing in the dissociated blobs
resembles spheres. As a diligence, | find reviewer concerns were not taken into account
when responding. We would highly recommend renaming this technique to avoid future
confusions.

3. The spatial location of where spheres came from the tissues is also very crucial. This
technique is only impactful if the users can track the position of the blobs. Thus, the readers
(and of course reviewers) would be interested in a proof-of-concept of the proposed
approaches as described in the paper. Putting such an important direction out-of-scope is
premature from a revision perspective. This is especially needed because of direct
comparisons of MERFISH, DBIT-seq etc. technologies to the proposed method. They are
only fair comparisons if the spatial data is retained, measured, and incorporated into this
technology.

Reviewer #2 (Remarks to the Author):

We applaud the revised manuscript by the authors that much more rigorously benchmark
sphere-seq based on this reviewer’s feedback. There remain a few minor comments that
should be addressed before this manuscript is acceptable for publication, and better inform
potential users for this methodology.

Related to Q1.

The authors’ response to the concern regarding the variation of the sphere size, found them
“to be comparable in size and cell number (Supplementary Fig. 6a,b and Supplementary Fig.
7c,d)”. The boxplot representation here should be replaced with a violin plot, as it is difficult
to visually confirm that. Similarly, the term “comparable” should be toned down since there
are differences observed.

It appears from Supplementary Fig 69 that several L-R interactions were not detectable
when split across the two different size groups? Perhaps this is one of the limitations of the
method caused by the uncontrollable size difference. That authors should comment on this
in the results and discussion.



Related to Q3.

The authors did not fully address my concern related to any potential mechanical
fragmentation induced transcriptional changes beyond those from scRNA-seq. The
comparison in Q4 thereafter has more to do with cell type annotation and transcript counts
rather than additional mechanically induced transcriptional responses due to sphere-seq.
This warrants some form of attempt at showing little/no changes along with discussions.

Related to Q4.

The authors now present Supplementary Fig 3d, which indicates NS differences of UMI and
gene counts, mito/cyto ratio of genes. There seems to be a considerable difference between
the methods based on the mean values (e.g. 500 vs >1000 UMI per cell; 200 vs ~300 gene
counts per cell). This NS is almost certainly due to the low sample size of n=2 in sScCRNA-seq
vs n =9 in sphere-seq. If sample sources is really the limiting factor, one can potentially
subsample or bootstrap the data to better compare their average UMI/gene counts or ratio,
and better test for statistical significance.

The second question is that it seems based on these values alone, sphere-seq is better than
scrna-seq. Can the author potentially explain why it would be better, as for the protocol cells
likely go through more perturbation etc, or is it due to differences in sequencing depth etc
that should be accounted for in the data presented above.

For Rev Fig2, the authors show pearsons correlation scatter plots. | assume each dot is a
gene, and the x, y axis is the average (?) normalized count for that gene in scrna-seq and
sphere-seq. Are the genes plotted here all the genes? What does this plot look like if we
select variable genes in scrna-seq + variable genes in sphere-seq, and plot them in such
scatter plots? These may in part be related to my concerns in Q3 related to potential
mechanically induced transcriptional changes added on by sphere-seq.

Related to Q5.

The Supplementary fig 9e would be better serviced if it is limited to cell types that can be
robustly detected in both sphere-seq and Molecular Cartography for a more meaningful
comparison

Related to Q6.
The authors raised a very good point that should be included in the discussion section.

Related to Minor point Q4.
Boxplots are completely and statistically meaningless with 3 points. The upper and low
guartile in there, with 3 points, do not mean anything.

As previously mentioned, the authors should replace them, even with just colored dots, or a
single line indicating the mean. If the rationale is optical consistency, then one can color the
dots without the need for the meaningless boxplots.

Related to Reviewer 3 Q2:

The authors mentioned not using individual spheres for L-R analysis but instead grouped
them together. This confounds this reviewer, as it seems like this defeats the purpose of
sphere-seq

Additional comments:



The authors should discuss the following to better help readers understand the potential for
the method:

1. Whether this protocol can be eventually be potentially used on freshly acquired human
tissue, and some of its potential future applications.

2. For precious and limited samples, would the high cell loss rate e.g. mentioned in
Reviewer3 Q1 be a limitation?

3. Are there alternative ways that can be used to group different spheres, eg a sphere with 5
cells but with 1 cancer cell is certainly different from a sphere with 50 cells but with 1 cancer
cell.

Reviewer #3 (Remarks to the Author):

The authors have satisfactorily addressed my comments/concerns through additional
experiments, analyses, comparisons with published data, modifications to the text, and
visual improvements to the figures. | do not have any additional major comments. | have one
minor comment that | hope the authors can respond to, but | do not feel that publication of
this manuscript is conditional on the response.

In reviewer figure 3, the authors report that only 50% of their single cells were kept due to
Multi-seq classification. As an increase in cell number recovery would improve proportional
and other analyses of Sphere-seq data, did the authors attempt the negative-cell
reclassification for their data (https://github.com/chris-mcginnis-ucsf/MULTI-seq)? Relatedly,
for the cells that were negative, was there a cell type bias relative to the positive cells? In
other words, did the Multi-seq process work better for some cell types than others?



We are grateful to the referees for their detailed second evaluation of our manuscript.
Below we detail how we have addressed each point (the reviewer’'s comments are in
black, and our responses are in blue). For your convenience, we have also included the
resulting changes in the manuscript in purple.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

We thank to the author for providing clarification and additional data on the reviewer
concerns.

However, a few major concerns remain unresolved.

1. The z-score and other data normalization method comparisons for heatmaps should
be provided. and how would other normalization methods affect the clusters visualized?
Seems like only 1 method provided them what the authors wanted to show. This means
that data mining should be robust

We thank the reviewer for the comment regarding data normalization. It appears that in
the process of the discussion, some concepts have been confused and we would like to
briefly clarify. Z-score and normalization represent two different concepts: For
clarification, z-scores are computed row-wise and normalization factors column-wise in a
my+, Matrix, with p genes and n cells. Z-scores (or standardization) scale all features
(genes) to a mean of zero and a standard deviation of one. This approach can be
utilized to facilitate, for example, the visualization of gene expression values across
different genes with varying dynamic ranges of gene expression. Scaling to a zero-mean
and standard deviation of one thereby is solely used to make the features (genes)
comparable in a single color scale. Normalization on the other hand, in the context of
scRNA-seq, aims to remove technical differences between cells such as sequencing
depth or total RNA content whilst preserving true biological differences. This is a crucial
step in the analysis of scRNA-seq data and we utilized the well-established ‘Pearson
residual’ approach as implemented in the ‘SCTransform’ function. This approach was
chosen as it has been repeatedly shown to perform well on single-cell RNAseq data
(Hafemeister and Satija 2019; Lause, Berens, and Kobak 2021; Ahlmann-Eltze and
Huber 2022). In addition, it should be noted that there are no conceptual differences in
choosing a normalization approach for scRNA-seq or fragment-seq (formerly named
sphere-seq), as at this stage of the analysis the type of data is identical. Future users of
the presented method can choose a normalization approach of their liking. We updated
the figure caption of the heatmap in Supplementary Fig. 3b to make the analysis
approach clearer.

Mentioned in the text:


https://paperpile.com/c/RzB26R/dOT3+8kru+pHEV
https://paperpile.com/c/RzB26R/dOT3+8kru+pHEV
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Supplementary Fig. 3b: Heatmap showing marker genes used for cell type annotation
of liver fragment-seq experiments. The columns represent cells and the rows represent
genes. Gene expression levels per cell cluster are normalized using a Pearson residual
approach.

2. The sphere-seq is an unacceptable name because nothing in the dissociated blobs
resembles spheres. As a diligence, | find reviewer concerns were not taken into account
when responding. We would highly recommend renaming this technique to avoid future
confusions.

We thank the reviewer for pointing out that there could be a misunderstanding of our
method due to the name “sphere-seq”. We, therefore, now changed the name of
sphere-sequencing to fragment-sequencing, which connects the two approaches of
sequencing and sorting fragments of connected cells with the large fragment biosorter.
We introduced the concept in the introduction of the paper.

Mentioned in the text:

Abstract: Here, we introduce fragment-sequencing (fragment-seq), a method that
enables the characterization of single-cell transcriptomes within multiple spatially distinct
tissue microenvironments sorted using a large fragment biosorter.

Introduction: Here, we introduce fragment-sequencing (fragment-seq), a novel method
that enables the transcriptomic characterization of single cells within spatially distinct
tissue niches which are partitioned using a large fragment biosorter.

3. The spatial location of where spheres came from the tissues is also very crucial. This
technique is only impactful if the users can track the position of the blobs. Thus, the
readers (and of course reviewers) would be interested in a proof-of-concept of the
proposed approaches as described in the paper. Putting such an important direction



out-of-scope is premature from a revision perspective. This is especially needed
because of direct comparisons of MERFISH, DBIT-seq etc. technologies to the proposed
method. They are only fair comparisons if the spatial data is retained, measured, and
incorporated into this technology.

We thank the reviewer for their comment. We would like to clarify the conceptual
difference between the spatial localisation that is reconstructed by our sphere-seq
(fragment-seq) approach and in slice-based spatial transcriptomics methods such as
MERSCOPE and DBIT-seq.

Fragment-seq can retrieve the single-cell transcriptomes of individual 3D cellular
neighborhoods (= tissue fragments), derived from random locations of the donor tissue.
Each of these spatial neighborhoods can then be assigned to a particular niche (e.g.
metastatic-proximal or -distal tissue, periportal or pericentral areas) - but not an exact
physical location within the host tissue. Therefore,this substantially increases the power
of a single-cell RNA sequencing based method to reflect niche composition, cell-cell
interactions and ligand receptor interactions as they actually occur within tissues.

In contrast, slice-based spatial transcriptomic methods like MERSCOPE, DBit or Visium
are ideal to assign a given transcript a specific physical location within the host tissue,
but have limitations that make comprehensive assessment of a niche difficult. For
example, these methods have a limited throughput due to a high cost in material and
time, lack 3D information (as thin tissue slices are used) and have not yet achieved
single-cell whole-transcriptome resolution (either compromised by pooling cells in tiles or
profiling few genes per cell). In contrast, fragment-seq provides whole transcriptome,
true single-cell resolution, and incorporates 3D spatial information albeit without
assigning a cell or fragment a particular physical location within the host tissue. We
therefore highlight in the discussion that both types of methods complement each other,
without being in direct competition.

We made additional adjustments to the text to clarify these conceptual differences.

Mentioned in the text:

Introduction:

Fragment-seq was inspired by Paired-cell sequencing (Halpern et al. 2018), PIC-seq
(Giladi et al. 2020), and Clump-seq (Manco et al. 2021), which analyze spatial
communities of 2-10 cells together in bulk. All three of these methods rely on
computational deconvolution to approximate single-cell transcriptomes, which is
inherently imprecise, especially for genes that are expressed in multiple cells.
Fragment-seq refines these approaches and achieves single-cell resolution while
simultaneously capturing larger communities of cells than its predecessors, thus
reflecting biologically relevant tissue microenvironments in three-dimensional space. For
greater analytical power, fragments can be grouped based on landmark genes or the
presence/absence of one cell type to represent spatial niches. Thus, fragment-seq
exploits the spatial proximity of landmark cells or genes to other cell types to more
accurately reconstruct tissue niches, without assigning a specific physical location to a
cell or transcript. Importantly, this enabled us to predict ligand-receptor (L-R)
interactions which are not only significantly enriched in a scRNA-seq dataset, but


https://paperpile.com/c/RzB26R/BiFO0
https://paperpile.com/c/RzB26R/EDhRU
https://paperpile.com/c/RzB26R/odExn

actually co-occur in specific microenvironments. To this end, fragment-seq combines
previously established methods of single object sorting using a large fragment biosorter,
cell hashing using lipid-tagged barcodes (McGinnis et al. 2019), and scRNA-seq
(Macosko et al. 2015; Klein et al. 2015).

Reviewer #2 (Remarks to the Author):

We applaud the revised manuscript by the authors that much more rigorously
benchmark sphere-seq based on this reviewer’s feedback. There remain a few minor
comments that should be addressed before this manuscript is acceptable for publication,
and better inform potential users for this methodology.

Related to Q1.

The authors’ response to the concern regarding the variation of the sphere size, found
them “to be comparable in size and cell number (Supplementary Fig. 6a,b and
Supplementary Fig. 7c,d)”. The boxplot representation here should be replaced with a
violin plot, as it is difficult to visually confirm that. Similarly, the term “comparable” should
be toned down since there are differences observed.

We thank the reviewer for pointing out this issue and we toned down this statement. We
also replaced the boxplots with violin plots. (Please note that spheres are referred to as
fragments in the revised version of the manuscript.)

Mentioned in the text:

First, we compared pericentral and periportal fragments and found them to be
comparable in size (Supplementary Fig. 6a), while cell counts were on average slightly
lower in periportal than in pericentral fragments (Supplementary Fig. 6b). In order to test
for biases introduced by fragment size or cell number, we divided the dataset according
to fragment size into small (211 - 325 um) or big fragments (326 - 457 um) or applied
different minimum cutoffs for cell numbers (= 5 or = 20 cells per fragment). Next, we
performed differential gene expression (DGE) analysis for LECs or KCs, which did not
reveal any significant changes (Supplementary Fig. 6c¢,d). A similar pattern of
significantly upregulated zonated genes could be found in all scenarios (Supplementary
Fig. 6e).
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Supplementary Fig. 6: Assessment of biases introduced by fragment size and cell
counts per fragment. a and b, Violin plots comparing fragment sizes (a) and cell counts


https://paperpile.com/c/RzB26R/9RUXG
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per fragment (b) between different lobule areas (n = pericentral: 829, periportal: 714
fragments across 9 samples). P-values were calculated with a non-parametric Wilcoxon
signed-rank test (NS > 0.05, * < 0.05).
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Supplementary Fig. 7: Fragment-sequencing application to mouse metastatic liver.
¢ and d, Violin plots comparing fragment sizes per sphere (c¢) and cell count per
fragment (d) between distal and proximal areas ( distal: 289; n = proximal: 51 fragments
across 3 samples). P-values were calculated with a non-parametric Wilcoxon
signed-rank test (NS > 0.05).

It appears from Supplementary Fig 6g that several L-R interactions were not detectable
when split across the two different size groups? Perhaps this is one of the limitations of
the method caused by the uncontrollable size difference. That authors should comment
on this in the results and discussion.

We thank the reviewer for pointing out that some L-R interactions are not replicated
across differently-sized groups. In order to assess whether this effect is caused by
differential fragment sizes, or is rather the consequence of undersampling, we
downsampled the data sets of CV and PV fragments from the whole size range (211-457
pum) to the same cell numbers that are within the size-restricted (211-325 ym) datasets.
This demonstrated that downsampling alone also leads to the loss of some L-R
interactions. For example, Vcam1 - Integrin a9b1 complex or Cxcl14 - Cxcr4 are lost in
both the size-restricted and downsampled data. In sum, this indicates that the overall
number of acquired fragments and cells is more critical to the robustness of results than
the consistency of fragment sizes. We included a new figure (Supplementary Fig. 6h)
and some comments about that in the results of the manuscript.



Mentioned in the text:
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Supplementary Fig. 6h: Predicted ligand-receptor (L-R) interactions between KCs and
T cells in pericentral or periportal zones (n=9 samples). Interaction scores were
calculated from grouped fragment-seq data using different technical cutoffs by
CellPhoneDB. Interaction scores from fragments of different sizes/cell counts are
highlighted by different colors of the bar borders (red: 211-325 pm, black: 211-457 ym
downsampled to match the cell numbers of the 211-325 ym datasets, yellow: 211-457
um). Interactions mentioned in the main text are highlighted with black boxes.

Methods:

L-R interaction analysis of datasets with different cutoffs was performed as described in
Ligand-receptor (L-R) interaction between different groups using CellPhoneDB.
Interaction scores of datasets with different sizes and cell number cutoffs were then
plotted in barplots for comparison. To assess the influence of fragment size or sample
size on L-R interaction analysis, cells from the pericentral and periportal datasets which
included the whole size range (211-457 pym) were randomly downsampled to the same
amounts of cells as present in the pericentral and periportal areas of the small
fragment-size data sets (211-325 pm).

Results:

Moreover, recovered cell types and predicted L-R interactions were similar between
different cutoffs, with only a few L-R interactions not being replicated across all size
gates (Supplementary Fig. 6f,g). In order to assess whether this effect is caused by
differential fragment sizes, or is rather a consequence of undersampling, we compared
L-R interactions from the complete pericentral and periportal datasets with datasets from
small fragment sizes (211-325 ym), and a downsampled dataset, representing the same
amount of cells as the small fragment size data, but covering the complete size range
(211-457 um) (Supplementary Fig. 6h). This revealed that interactions such as
Vcam1|ltga9 and Cxcl14|Cxcr4 were lost in both analyses (211-325 um and 211-457 um
downsampled), indicating that the overall number of acquired fragments is more critical
to the robustness of results than the consistency of fragment sizes. Therefore, we
recommend prioritizing sample size over restrictive gating or subsampling of fragment
sizes.



Related to Q3.

The authors did not fully address my concern related to any potential mechanical
fragmentation induced transcriptional changes beyond those from scRNA-seq. The
comparison in Q4 thereafter has more to do with cell type annotation and transcript
counts rather than additional mechanically induced transcriptional responses due to
sphere-seq. This warrants some form of attempt at showing little/no changes along with
discussions.

We understand that by “mechanical fragmentation” the reviewer is referring to the tissue
mincing step, after which fragments (=spheres) are sorted or picked. We would like to
point out that tissue mincing is a standard first step of many single-cell dissociation
protocols (Aliaghaei and Haun 2022), and is also the first step of tissue dissociation in
our scRNA-seq experiments. Regardless, cells in fragment-seq may undergo somewhat
different stresses, e.g. they may be exposed to fluid shear stresses when being sorted in
the biosorter. To assess any potential indicators of fragment-seq-induced cellular stress,
we plotted GO terms associated with cellular responses to stress. However, comparing
differentially expressed genes between fragment-seq and conventional scRNAseq
considering all cells or specific cell types (for example Kupffer cells) did not reveal any
significantly upregulated terms (Reviewer Fig. 1).

All cells (fragment-seq vs. conventional scRNAseq) Kupffer cells (fragment-seq vs. conventional scRNAseq)

p-value adjusted
. 0.90 p-value adjusted

Regulation of response Response to oxidative stress 0.65

to stress 0.85 :
0.80 060
0.75 058

Regulation of response 0.50

0.70 to stress

Regulation of cellular Regulation of cellular

response to stress response to stress

0.0 0.5 1.0
Normalized enrichment score

Response to oxidative stress

Pathway
Pathway

-1.0 -0.5 0.0 0.5 1.0
Normalized enrichment score

Reviewer Fig. 1: Gene ontology terms associated with cellular stress using differentially
expressed genes between fragment-seq and conventional scRNA-seq from a, all cells
and b, Kupffer cells.

Related to Q4.

The authors now present Supplementary Fig 3d, which indicates NS differences of UMI
and gene counts, mito/cyto ratio of genes. There seems to be a considerable difference
between the methods based on the mean values (e.g. 500 vs >1000 UMI per cell; 200
vs ~300 gene counts per cell). This NS is almost certainly due to the low sample size of
n=2 in scRNA-seq vs n = 9 in sphere-seq. If sample sources is really the limiting factor,
one can potentially subsample or bootstrap the data to better compare their average
UMI/gene counts or ratio, and better test for statistical significance.

The second question is that it seems based on these values alone, sphere-seq is better
than scrna-seq. Can the author potentially explain why it would be better, as for the


https://paperpile.com/c/RzB26R/KnTY

protocol cells likely go through more perturbation etc, or is it due to differences in
sequencing depth etc that should be accounted for in the data presented above.

We thank the reviewer for pointing out the potentially better performance of
fragment-seq. We speculate that this could be due to the increased numbers of washing
steps in fragment-seq compared to conventional scRNAseq, which could remove dying
cells more efficiently. The difference, however, is not due to differences in sequencing
depth, because we downsampled all samples to 30k reads/cell, meaning that all cells
with lower than 30k reads were removed and cells with higher than 30k reads were
downsampled to 30k. We described this in the figure legend and method section.
Additionally, the conventional scRNA-seq and fragment-seq experiments were not done
on the same liver samples and we cannot exclude differences in overall sample quality.
Therefore, while the data quality in fragment-seq appears to outperform scRNA-seq, we
did not want to make such claims and instead argue that results are “comparable”, which
is also shown by the comparable detection of various different cell types across assays
(Figure 1f). We agree that the statistical analysis might be influenced by the lower
sample size of conventional scRNA-seq, however, as our main intent was to
demonstrate that the data quality obtained by fragment-seq is not significantly worse
than conventional scRNA-seq, therefore, we considered additional experiments to be a
disproportionate effort and cost.

Mentioned in the text:

Methods:

Conventional scRNA-seq downstream analysis

Cell count matrix generation, gene name conversion, clustering, and annotation were
performed as previously described for fragment-seq downstream analysis. Annotated
UMAPs were then compared between fragment-seq and conventional scRNA-seq.
Quality features (median UMI counts, gene features, and ratio of mitochondrial to
cytoplasmic genes) were assessed after accounting for different read depths by
downsampling and only considering cells with 30000 reads. Therefore we re-run zUMlIs
(Parekh et al. 2018) (v2.9.4) for all samples using ‘30000 as a counting_opts
downsampling parameter.
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Supplementary Fig. 3d, Barplots comparing median UMI counts (left), gene counts
(middle), and the ratio of mitochondrial to cytoplasmic genes (right) between
conventional scRNA-seq and fragment-seq (n = 2 samples for conventional scRNA-seq
and 9 samples for fragment-seq). Dots represent individual samples. The upper bar limit


https://paperpile.com/c/RzB26R/7cnHq

shows the mean across samples. The error bars show the standard deviation. P-values
were calculated with a non-parametric Wilcoxon signed-rank test [> 0.05 is considered
non-significant (NS)]. Reads were downsampled to 30,000 reads/cell.
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Fig. 1f: UMAP visualization of mouse metastatic livers. Cells are clustered, annotated,
and colored by their cell type. Cells are separated based on the protocol [conventional
scRNA-seq (n = 3 samples) and fragment-seq (n = 10 samples)].

For Rev Fig2, the authors show pearsons correlation scatter plots. | assume each dot is
a gene, and the x, y axis is the average (?) normalized count for that gene in scrna-seq
and sphere-seq. Are the genes plotted here all the genes? What does this plot look like if
we select variable genes in scrna-seq + variable genes in sphere-seq, and plot them in
such scatter plots? These may in part be related to my concerns in Q3 related to
potential mechanically induced transcriptional changes added on by sphere-seq.

We thank the reviewer for giving us the opportunity to clarify these points. Indeed, each
dot represents a gene and the x and y axis are the average normalized counts of each
gene in scRNAseq and sphere-seq respectively and all genes are plotted. Additionally,
we now provide Pearson correlation plots showing the variable genes only (Rev. Fig. 3),
which are also highly correlated between conventional scRNA-seq and fragment-seq. As
we show in response to Q3, differentially expressed genes in fragment-seq compared to
conventional scRNA-seq do not exhibit any enrichment in GO terms that are associated
with cellular stress, in fact, there are no GO terms significantly enriched at all.
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Rev. Fig. 2: Scatterplots showing Pearson correlation between average normalized gene
expression counts of Kupffer cells (left), liver endothelial cells (middle), and
macrophages/monocytes (right). All genes are considered.
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Rev. Fig. 3: Scatterplots showing Pearson correlation between average normalized gene
expression counts of Kupffer cells (left), liver endothelial cells (middle), and
macrophages/monocytes (right). Only variable genes of conventional scRNAseq and
fragment-seq are considered.

Related to Q5.

The Supplementary fig 9e would be better serviced if it is limited to cell types that can be
robustly detected in both sphere-seq and Molecular Cartography for a more meaningful
comparison

We thank the reviewer for this suggestion and we removed all cell types (DCs,
Cholangiocytes, Neutrophils, Kupffer/LECs, and Basophils) that did not have proper cell
type markers within our Molecular Cartography panel. Additionally, we clarified this in the
methods of the manuscript.



Mentioned in the manuscript:
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Supplementary Fig. 9e, Zoomed-in barplot comparing the cell type proportions between
Molecular Cartography (black borders) and fragment-seq (red borders) of cell types that
could be robustly detected in both datasets.

Methods: Comparison of cell type abundances between fragment-seq and Molecular
Cartography. Only cell types that could be robustly detected in Molecular Cartography,
because of the presence of cell type marker genes in the gene panel, were included in
this analysis. Cell-type proportions from both protocols were calculated and plotted in a
barplot.

Related to Q6.
The authors raised a very good point that should be included in the discussion section.

We thank the reviewer for this suggestion and we added these points to the discussion
of the manuscript.

Mentioned in the text:

Like any methodology that uses spatial reconstruction, fragment-seq is limited by prior
knowledge of landmark gene expression patterns (Moor and ltzkovitz 2017) to
reconstruct the position of fragments within tissues. However, this could be improved by
the incorporation of additional landmark genes or reporters that indicate proximity to a
certain microenvironment, for example, metastasis. Other spatial transcriptomics
methods (for example laser capture microdissection or array-based approaches) could
be employed to sample sections with different distances to metastases and attempt to
identify landmark genes, which in turn could be used to reconstruct the distance of a
sphere from the metastatic site. Alternatively, proximity-labeling systems such as
sLP-mCherry, based on cell-permeable mCherry that is secreted by a sender cell to
integrate into the cell membrane of neighboring cells (Ombrato et al. 2019), or cell-cell
contact tracing models (Zhang et al. 2022) might have the capacity to label
tumor-proximal areas with fluorescent signals that could be selectively enriched with the
biosorter.
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Related to Minor point Q4.

Boxplots are completely and statistically meaningless with 3 points. The upper and low
quartile in there, with 3 points, do not mean anything.

As previously mentioned, the authors should replace them, even with just colored dots,
or a single line indicating the mean. If the rationale is optical consistency, then one can
color the dots without the need for the meaningless boxplots.

We thank the reviewer for pointing out this issue and have now changed the plots and
removed the boxes.

Mentioned in the text:
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Fig. 3: Fragment-seq application to investigate local differences in
metastatic-proximal and -distal microenvironments. c, Dot plots representing cell
type proportions of grouped fragment-seq data (n=3 samples). From left to right;
macrophages/monocytes, metastatic cells, Kupffer cells (KCs), and liver endothelial cells
(LECs). Dots represent individual mice and dots with black circles represent grouped
fragments from proximal positions. f, Dot plots representing cell type proportions from
fragment-seq showing macrophage/monocyte subtypes (n=3 samples). Dots represent
individual mice and dots with black circles represent grouped fragments from proximal
positions.

Related to Reviewer 3 Q2:

The authors mentioned not using individual spheres for L-R analysis but instead grouped
them together. This confounds this reviewer, as it seems like this defeats the purpose of
sphere-seq

We thank the reviewer for giving us an opportunity to clarify this point. We agree that
performing L-R interaction analysis on individual spheres would be interesting, however,
the limited number of cells recovered per sphere would likely introduce a significant
amount of noise in the analyses. Instead, we opted to use the spatial proximity of cells
within spheres to reconstruct niches, thus allowing us to assess a much larger group of
cells for L-R interactions. This allows us to robustly identify L-R interactions that are
common within that niche.



Additional comments:

The authors should discuss the following to better help readers understand the potential
for the method:

1. Whether this protocol can be eventually be potentially used on freshly acquired
human tissue, and some of its potential future applications.

2. For precious and limited samples, would the high cell loss rate e.g. mentioned in
Reviewer3 Q1 be a limitation?

3. Are there alternative ways that can be used to group different spheres, eg a sphere
with 5 cells but with 1 cancer cell is certainly different from a sphere with 50 cells but
with 1 cancer cell.

1. As supplementary Fig. 8 shows, fragment-seq was applied to freshly acquired
biopsies from Crohn’s disease patients. Demonstrating that the fragment-seq
protocol is adaptable to freshly acquired human tissues. In case the reviewer is
referring to the fragment-seq approach that uses the biosorter instead of the
filtering approach, we have not yet carried out such experiments but foresee no
difficulties besides ensuring that experiments can be carried out in BSL2 facilities.
A potential application in this regard would be to study fibrotic microenvironments
in Crohn’s disease patients. To this end, fragments could be clustered based on
the presence/absence of activated fibroblasts to analyze their influence on other
cell types. This could answer fundamental questions on the development and
progression of fibrosis.

2. We agree that a high cell loss rate is a potential limitation for very small and
precious samples, This limitation is somewhat mitigated by the fact that human
samples tend to be comparatively larger than murine samples, however, very
small samples may require pooling.

3. One alternative way to group different fragments would be to plot fragments in a
UMAP rather than cells. Each fragment would be a pseudo-bulk of all the cells it
contains. Similar fragments would then cluster together. This approach could be
used to analyze new microenvironments that are not driven by prior knowledge of
landmark genes or the presence of certain cell types.

We added some comments to the discussion.

Mentioned in the discussion:

Our preliminary data show that fragment-seq can be applied to fresh human tissues,
which could be potentially used to address fundamental questions about disease
mechanisms in humans. For example, fragment-seq could distinguish fibrotic and
non-fibrotic microenvironments in Crohn’s disease samples based on the presence or
absence of activated fibroblasts or could be used to separate pro- or anti-inflammatory
microenvironments within solid tumors. Of note, fragment-seq is limited by cell loss,
therefore, small tissue samples (approximately < 1cm?®) may require pooling.

Alternatively, fragments could be grouped into different spatial microenvironments based
on similarities in overall gene expression within fragments: Pseudo-bulks of fragments



could be clustered in UMAP space to investigate spatial microenvironments that are not
driven by prior knowledge.

Reviewer #3 (Remarks to the Author):

The authors have satisfactorily addressed my comments/concerns through additional
experiments, analyses, comparisons with published data, modifications to the text, and
visual improvements to the figures. | do not have any additional major comments. | have
one minor comment that | hope the authors can respond to, but | do not feel that
publication of this manuscript is conditional on the response.

In reviewer figure 3, the authors report that only 50% of their single cells were kept due
to Multi-seq classification. As an increase in cell number recovery would improve
proportional and other analyses of Sphere-seq data, did the authors attempt the
negative-cell reclassification for their data
(https://github.com/chris-mcginnis-ucsf/MULTI-seq)? Relatedly, for the cells that were
negative, was there a cell type bias relative to the positive cells? In other words, did the
Multi-seq process work better for some cell types than others?

We thank the reviewer for supporting the publication of our manuscript and these
suggestions. We tried using the negative-cell reclassification on our data, however, it did
not improve our classification results. Comparing the cell types between negatively and
positively classified cells (Rev. Fig. 4) we can indeed see that there seems to be a bias
and Multi-seq might work less efficiently on immune cells, especially T and B cells, and
on hepatocytes.
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B

Chol
LECs LECs Chol
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\ B \ B
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»

UMAP2 ———
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Reviewer Fig. 4: UMAP comparing cell type between negatively and positively classified
cells.
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REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

The reviewer is partially satisfied with the revision.

1. The normalization approaches have been clarified.

2. Re-naming to fragment-seq is now appropriate.

3. Spatial aspect of blobs but not the exact position is understood. However, the authors
propose additional tracing methods to infer spatial niches of the data. Can authors
demonstrate the feasibility of one of these approaches:

However, this could be improved by the incorporation of additional landmark genes or
reporters that indicate proximity to a certain microenvironment, for example, metastasis.
Other spatial transcriptomics methods (for example laser capture microdissection or array-
based approaches) could be employed to sample sections with different distances to
metastases and attempt to identify landmark genes, which in turn could be used to
reconstruct the distance of a sphere from the metastatic site. Alternatively, proximity-labeling
systems such as sLP-mCherry, based on cell-permeable mCherry that is secreted by a
sender cell to integrate into the cell membrane of neighboring cells 42, or novel cell-cell
contact tracing models47 might have the capacity to label tumor-proximal areas with
fluorescent signals that could be selectively enriched with the biosorter. Alternatively,
fragments could be grouped into different spatial microenvironments based on similarities in
overall gene expression within fragments: Pseudo-bulks of fragments could be clustered to
identify spatial microenvironments that are not driven by prior knowledge.

I think for this paper such a feasibility would be great addition.

4. The GitHub should be renamed according to fragment-seq: https://github.com/Moors-
Code/Sphere-sequencing

Reviewer #2 (Remarks to the Author):

The authors have sufficiently addressed my concerns, and recommend publication in Nature
Communications. Cheers.
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