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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): experfise in long read computafional bioinformafics

The authors use both short-read and long-read scRNA-seq technology to invesfigate the isoform and 

genomic features of ovarian cancer. They modify the sequencing protocols and capture plenty of novel 

isoforms and detect cell type- and cell-specific isoforms at usage and expression level between tumors 

and control samples. In addifion, they also idenfify novel gene fusions using with the validafion from 

scDNA-seq data. Leveraging the dataset, the author also idenfifies several key isoforms that may 

potenfially important during EMT. Overall, this study provides a very valuable dataset in the field of 

ovarian cancer research, and the comparafive analysis also highlights the unique advantages of long-

length sequencing in single-cell cancer research. It may potenfially drive advances in precision medicine 

and personalized medicine. Below are some concerns and comments.

Major Points:

1. While the authors sequenced many samples and cells by different types of sequencing technologies, 

they did not make in-depth interpretafion of these datasets. Some of the analysis is descripfive and looks 

superficial. For example, the authors idenfified COL1A1 tend to use longer 3’UTR in tumor cells than 

distal cells, but they did not invesfigate the mechanism by experiment nor make an explanafion with 

published studies. Most isoforms highly expressed in cancer cells tend to have shorter 3’UTRs. I would 

suggest the authors take a global view of the 3’UTR length alterafion between control and tumor cells. 

Please also make explanafions about the candidates the authors chose for further analysis and explore 

the possible mechanisms.

2. Although there are a lot of interesfing points in the dataset, but the authors did not make a 

comprehensive analysis on those points. For example, in Fig. 2a, we can see that the HGSOC cells seem 

to have two subpopulafions at short-read-based gene-level analysis, but we cannot see that at long-read 

gene/isoform-level. How do you explain that? The isoform-level analysis have more features than gene-

level analysis, maybe we can find some novel subpopulafions using isoform expression data. However, it 

seems the clustering ability of isoform-level is not as good as gene-level. In addifion, in Extended Data 

Fig.4, there are significant heterogeneity in HGSOC cells. Is it possible that different pafients have 

different isoform usage? By exploring the differences (e.g., isoform usage, mutafions) between pafients, 

we may get more informafion for personalized medicine.

3. The overall analysis is not convincing or solid. For example, the detecfion of novel isoforms is crifical 

for down streaming analysis, the authors should run more parallel analysis to confirm the accuracy of the 

results. Also, the authors should make a detailed explanafion on data processing steps in Methods. For 

example, what is used for UMAP analysis? Is batch effect removed before clustering? How to integrate 

different samples together? Furthermore, the authors should also perform more global analysis to 

compare the differences between tumor and control samples while not just focusing on several key 

genes.



4. The manuscript needs to be well organized, there needs to be a connecfion between different parts of 

the enfire arficle. The paper is not well structured, and some figures may express the same conclusion, 

such as Fig. 4.

Minor Points:

1. In line 198, it may be befter touse the distribufion of mulfi-isoform gene number to compare the 

isoform diversity.

2. In Fig 1E, what is the sorfing basis of bars?

3. In Fig 1F, the total number of isoforms is not 40,046 (Line 147). Does an isoform have two more 

biotypes?

4. Extended data Fig. 4a-f. Please label the exons that are menfioned in the manuscript.

5. The code in GitHub should include the enfire data processing steps of the work.

6. As a data resource, please use a web interface, such as Shiny, to show the data.

Reviewer #2 (Remarks to the Author): experfise in ovarian cancer splicing and isoforms

In this manuscript, Arthur Dondi and co-authors opfimize PacBio sequencing strategies and apply their 

approach to capture cell type-specific genomic and transcriptomic alterafions of ovarian cancer pafients. 

This study describes a workflow to increase the sequencing depth of long- read scRNA-seq, which is 

useful for detecfion of novel isoforms and genomic alterafions. Overall, this is a well-designed study and 

the manuscript is well wriften.

The following comments are suggested for considerafion by the authors.

1. The authors performed scRNA-seq using five samples including three samples were derived from 

HGSOC omental metastases and two from matching distal tumor-free omental fissues. Why the authors 

chose omental fissue other than fallopian tube or ovarian surface epithelium (Both fallopian tube and 

ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma, Shuang Zhang, 

Nat commun. 2019)?

2. The authors claimed that HGSOC cells account for 15% of idenfified cell types (lines 169-170). Can you 

explain why HGSOC has a low proporfion?

3. The authors idenfified a novel IGF2BP2::TESPA1 fusion using long-read scRNA and validated by scDNA-

seq. Is there any other ovarian cancer pafient who have this fusion (DNA sequencing data from other 

cohorts)?



4. How about the mutafions in the single-cell DNA-sequencing data as scDNA-seq is capable of detecfing 

the rarest somafic mutafions.

5. Line 226, “resulfing in a truncated protein” should be resulfing in a truncated transcript or isoform.

Reviewer #3 (Remarks to the Author): experfise in single cell RNA-seq bioinformafics

Dondi et al present a very nice body of work showing the benefits of long-read single-cell sequencing in 

detecfing isoforms and genomic alterafions in ovarian cancer. My main concern with the manuscript 

regards the detecfion of the novel fusion genes that you have idenfified and if they are in fact read 

fusions or artefacts of the library preparafion. I lay out my concerns and comments below:

Generally the paper is wriften in a style that seems to over hype some of the findings. Please tone down 

the paper conclusions and direcfion and make your findings more relevant and specific to personalised 

medicine for ovarian cancer and not cancer as a generalised subject. For example, there is no menfion of 

ovarian cancer in the fitle and it makes the reader think that you have studied many different types of 

cancer in this manuscript.

Please provide more QC on the quality of the sequencing. Also how many concatemeric sequences did 

you achieve per sequencing read.

Extended data Figure 1:

• The UMIs are shifted within the long-read approach compared to the short-read. Why is this? One 

possible explanafion for exploded UMI counts is the suggesfion that there are errors within your 

sequencing in the long-read UMI and this leads to arfificial counts.

• Why is there a shift in the genes detected in your data? I assume this is before filtering, what is your 

QC metrics before and after filtering?

• Aligned with the above two comments, why do you have so many genes detected and why do the 

numbers not reflect the greater number of genes detected in Extended data Figure 1b?

Line 92-93:

• This is not the case, there are references such as: PMID: 32887687, PMID: 36781734, PMID: 36289342

Line 102:

• Please clarify this, as I believe there are other PacBio datasets that include more than 2,571 cells , e.g. 

this paper seems to have included 10,000 cells: 

hftps://www.biorxiv.org/content/10.1101/2021.10.01.462818v

Figure 5:

• It has been reported that template switching and PCR can generate significant false alternafive 



transcripts and chimeric artefacts ( 

hftps://www.sciencedirect.com/science/arficle/pii/S0888754305003770, 

hftps://genomebiology.biomedcentral.com/arficles/10.1186/gb-2011-12-2-r18). You do not employ any 

strategy to determine that the IGF2BP2::TESPA1 is a real fusion event and not just a PCR artefact. I am 

not convinced that your novel fusion detecfion approach isn’t just detecfing chimeric artefacts amplified 

early during the PCR cycles. No further validafion is performed to confirm these fusion events. Your 

extended figure 5 states this this figure is intended as a validafion of the IGF2BP2::TESPA1 breakpoint. 

However, this is just an IGV view and not an experimental validafion.

• In order to be convinced, a strategy for removing chimeric artefacts is required or an experimental 

validafion that does not include PCR.



Dondi et al.

General response to the reviewers:

First, we would like to thank the reviewers for their valuable inputs, comments, and questions. We
addressed all of them below: we have experimentally validated the fusion on the genomic level as
requested by Reviewer 3, compared our data to external cohorts and added QC metrics as suggested
by Reviewer 2, and performed additional analysis as asked by Reviewer 1. Additionally, thanks to
Reviewer 1’s suggestion, we have unveiled and described a TGF-β driven microRNA downregulation
mechanism that further supports our hypothesis of an epithelial-to-mesenchymal transition of the
tumor microenvironment. We feel that altogether the changes greatly benefitted the manuscript and
hope that it is now ready for publication.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): expertise in long read computational
bioinformatics

The authors use both short-read and long-read scRNA-seq technology to investigate the isoform
and genomic features of ovarian cancer. They modify the sequencing protocols and capture plenty
of novel isoforms and detect cell type- and cell-specific isoforms at usage and expression level
between tumors and control samples. In addition, they also identify novel gene fusions using with
the validation from scDNA-seq data. Leveraging the dataset, the author also identifies several key
isoforms that may potentially important during EMT. Overall, this study provides a very valuable
dataset in the field of ovarian cancer research, and the comparative analysis also highlights the
unique advantages of long-length sequencing in single-cell cancer research. It may potentially
drive advances in precision medicine and personalized medicine. Below are some concerns and
comments.

Major Points:

1. While the authors sequenced many samples and cells by different types of sequencing
technologies, they did not make in-depth interpretation of these datasets. Some of the analysis is
descriptive and looks superficial. For example, the authors identified COL1A1 tend to use longer
3’UTR in tumor cells than distal cells, but they did not investigate the mechanism by experiment
nor make an explanation with published studies. Most isoforms highly expressed in cancer cells
tend to have shorter 3’UTRs. I would suggest the authors take a global view of the 3’UTR length
alteration between control and tumor cells. Please also make explanations about the candidates
the authors chose for further analysis and explore the possible mechanisms.

Response: We thank the reviewer for this very helpful comment that encouraged us to perform an
additional 3’UTR length analysis, which has led to concrete findings. Reviewer 1 states that “Most
isoforms highly expressed in cancer cells tend to have shorter 3’UTRs.”, as 3’UTR shortening is one
possible mechanism of cancer cells to avoid microRNAs (miRNAs)-mediated mRNA degradation1.
Another known mechanism is the downregulation of miRNAs. If miRNAs are downregulated in cancer
cells, their target isoforms with a longer 3’UTR are not degraded anymore, resulting in lengthened
3’UTRs compared to cell types still expressing the miRNAs2.

We compared 3’UTR lengths in cancer versus distal cells, and found an overall trend towards 3’UTR
lengthening in cancer cells. More context on the global analyses that was performed, as well as the
associated figures, are provided in our response to Reviewer 1, Major point 3:

“When testing for differential APA between HGSOC and distal cells, we found shortened 3’UTR in 85
and lengthened 3’UTR in 203 genes (n=4758) (Figure 4f). There was a notable trend toward
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lengthening of the 3’UTR in cancer cells (P=5.59x10-20), with COL1A2 emerging once more as the
most prominent finding (Pcorr=7.48x10-47, 61% change) (Figure 3b-c, Figure 4f). Expression levels
remained consistent between genes featuring either shortened or lengthened 3’UTRs. Furthermore,
neither miRNA profiles nor canonical pathways exhibited an overlap exceeding 20% with either the
lengthened or shortened gene sets (Methods).”

Additionally, 3’UTR differential analysis revealed major differences between mesothelial cells derived
from the metastasis (TME) and matched tumor-free (distal) omentum. Briefly, we found multiple genes
where isoforms had an lengthened 3’UTR in the TME and demonstrated that this may be due to a
TGF-β-driven downregulation of miR-29, leading to an overexpression of genes that promote
epithelial-to-mesenchymal transition.

To account for those findings, the entire section “Differential isoform expression in the tumor
microenvironment reveals epithelial-to-mesenchymal transition” has been rewritten as shown below.
Figure 3 was also changed: previous Figure 3a,e,f are now Extended Data Figure 4a,b,d, and
previous Figure 3c is now Figure 3f. Figure 3 a-e are new.

Tumor microenvironment shows epithelial-to-mesenchymal transition through
TGFβ-driven miR-29 downregulation

In the subsequent analysis, we compared stromal fibroblasts and mesothelial cells derived from
metastasis (TME) and matched tumor-free (distal) omentum. In distal samples, fibroblasts and
mesothelial cells formed distinct clusters in both short- and long-read data (Figure 3a left, Extended
Data Figure 5a). In metastatic samples, however, TME fibroblasts and mesothelial cells formed a
bridge in the UMAP embedding, suggesting that these cells might undergo a cell state transition. To
test this hypothesis, we conducted gene set enrichment analysis and found that the
epithelial-to-mesenchymal transition (EMT) pathway was enriched in TME compared to distal
mesothelial and fibroblast cells (Figure 3a, right). Similarly, collagen fibril organization and
extracellular matrix (ECM) pathways were enriched in TME cells, indicating a reprogramming of the
TME cells during metastasis formation (Extended Data Figure 5b). Additionally, we compared the
alternative poly-adenylation (APA) (Methods). Among the 2,876 genes tested for APA, the isoforms of
26 genes in TME mesothelial cells exhibited significant 3’UTR lengthening compared to distal
mesothelial cells, while 13 genes showed shortened 3’UTRs (Figure 3b). Collagen-encoding genes
COL1A2, COL3A1, COL5A2, and COL6A1 were similarly lengthened and up-regulated in TME cells
(Figure 3c), with COL1A2 having the highest effect size (Pcorr=3.42x10-67, 53% change).

As 3’UTR lengthening is usually associated with a decrease in expression due to microRNA (miRNA)
silencing1, the increased usage of lengthened 3’UTR in TME mesothelial cells suggests that distal
cells may express a distinct set of miRNAs not present in TME cells. Collagen-encoding genes are
known to be regulated by the miR-29 family in fibroblasts3. Thus, we used miRDB4 to predict gene
targets for silencing by miR-29a/b/c (Supplementary Table 2). Among the 26 isoforms with
lengthened 3’UTR, 9 were predicted targets of miR-29a, almost all described as EMT actors
(collagens5–8, KDM6B9, TNFAIP310, FKBP511 and RND312). In contrast, none of the 13 shortened
3’UTR isoforms were predicted to be miR-29 targets (Figure 3b). Furthermore, we compared gene
expression of TME and distal mesothelial cells (Supplementary Table 3), and genes with lengthened
3’UTR isoforms predicted to be silenced by miR-29 were significantly overexpressed (P = 1.35x10-3)
in TME mesothelial cells compared to the ones not predicted to be silenced by miR-29a (Figure 3d).
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Mesothelial TME cells also differentially expressed miR-29 targets which are major ECM genes, such
as collagen gene COL1A1 (fold-change=9.0, Pcorr=1.72x10-124), MMP213 (fold-change=4.1,
Pcorr=1.51x10-30), and LOX14 (fold-change=10.6, Pcorr=6.33x10-51), which is also lengthened
(Pcorr=7.07x10-2, 77% change). Overall, ECM-related genes known to be targeted by miR-29 were
upregulated in TME cells compared to distal cells (Figure 3e), supporting the hypothesis that the
observed EMT was potentially linked with the miR-29 downregulation. When comparing differentially
expressed isoforms in TME mesothelial cells to distal cells, COL1A1 was also the gene with the
highest change in relative isoform abundance amongst all its isoforms (Pcorr=6.34x10-49, 86% usage
change, Methods) (Figure 3f). In TME mesothelial cells, the COL1A1 canonical 3’ poly-adenylation
site was used, whereas distal cells used a premature poly-adenylation site, leading to the formation of
truncated isoforms (Figure 3f). When incorporating only protein-coding isoforms and removing the
truncated isoforms from the analysis, the gene expression fold-change increased from 9 to 62-folds
(Pcorr=3.15x10-183). This overexpression of canonical COL1A1 in the TME can be explained by the
absence of miR-29 silencing, as previously described15.

The miR-29 family is known to be an EMT inhibitor15. Its silencing through the TGFβ pathway
correlates with the upregulation of ECM-encoding genes, including multiple collagens, as reported in
the present study. The main TGFβ gene TGFB1 was found to be enriched in TME mesothelial cells
(fold-change=1.4, Pcorr=2.32x10-2). Furthermore, in distal mesothelial cells, 38% of TGFB1 isoforms
comprise an alternative 3’ exon, leading to aberrant protein expression (Extended Data Figure 5c),
while the canonical protein-coding TGFB1 isoform ENST00000221930.6 is overexpressed in TME
cells (fold-change=2.3, Pcorr=6.59x10-9). miR-29 is also regulated through the expression of
non-coding RNAs that act as molecular sponges, directly binding to miR-29 and, therefore, leading to
the overexpression of their targets. The TGFβ-regulated long non-coding RNA H19, which enhances
carboplatin resistance in HGSOC, has been reported to promote EMT through the
H19/miR-29b/COL1A1 axis16–18 and was found to be overexpressed in the TME mesothelial cells
(fold-change=4.6, Pcorr=3.46x10-34). Circular RNAs have also been described as miR-29 sponges,
notably circMYLK, and circKRT7 in HGSOC. circMYLK and circKRT7 originate from MYLK and KRT7,
respectively, which are both significantly overexpressed in TME mesothelial cells (fold-change=4.1,
Pcorr=6.97x10-96 and fold-change=4.6, Pcorr=2.18x10-13)19,20. Similarly, TME mesothelial cells expressed
the endogenous isoform of GSN (cGSN), while distal cells only expressed the secreted isoform
(pGSN)21 (Extended Data Figure 5d). cGSN has been shown to be under TGF-β control in breast
cancer and to increase EMT marker expression22. In conclusion, our findings strongly support that, in
omental metastases, the mesothelial cells transition into cancer-associated fibroblasts (CAFs), partly
through the TGF-β/miR-29/Collagen axis.
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Figure 3: Epithelial-to-mesenchymal transition in the tumor microenvironment.
(a) Zoom of UMAP embeddings of the cohorts' long-read - gene level data (Figure 2a, middle column)
highlighting tumor and stromal (mesothelial and fibroblast) cells, colored by biopsy tissue type (left)
and EMT gene set signal (right). (b) Volcano plot of genes with APA in mesothelial cells. Genes have

4



either a lengthened (red) or shortened (blue) 3’UTR in TME compared to distal mesothelial cells.
Differentially lengthened or shortened genes targeted by miR-29 are colored in green. Genes with
-log10(p-adjusted) > 10 and |Fraction Change| > 0.4 are annotated. (c) IGV view of 3’UTR raw
coverage of COL1A2, COL6A1, COL3A1, and COL5A2 in tissue cell types. On the top left between
brackets, the coverage range is displayed throughout each condition. In blue, Ensembl canonical
3’UTR, and for each gene, distal (d) and proximal (p) APA sites are annotated. (d) Log fold-change
expression between TME and distal mesothelial cells of lengthened genes targeted (+, green) or not
targeted (-, red) by miR-29, and shortened genes (blue). (e) Cohort UMAP embedding long-read data
- gene level, colored by gene set signal of ECM-related genes targeted by miR-29. (f) ScisorWiz
representation of COL1A1 isoforms. Colored areas are exons, whitespace areas are intronic space,
not drawn to scale, and each horizontal line represents a single read colored according to cell types.
Dashed boxes highlight the use of the canonical 3’ UTR in TME fibroblasts and mesothelial cells,
while distal mesothelial cells use an earlier 3’ exon termination.
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Extended Data Figure 5: Epithelial-to-mesenchymal transition in the tumor microenvironment.
(a) UMAP embeddings of the cohorts' long-read data of short-read data - gene level (left), long-read
data - gene level (middle), long-read data - isoform level (right), colored by tissue type. (b) Gene set
variation analysis (GSVA) scores for different cell types. Heatmap colors from blue to red represent
low to high enrichment. (c) ScisorWiz representation of isoforms in TGFB1. Dashed box highlights the
non-canonical 3’UTR used by distal mesothelial cells. (d) ScisorWiz representation of isoforms in
GSN. Dashed boxes highlight the TSS, where mesothelial TME and HGSOC cells differentially
express the cGSN isoform, while mesothelial distal cells and fibroblasts use pGSN.
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The “Pathway enrichment analysis” section of the Methods was rewritten as follows:

We used GSVA to perform pathway enrichment analysis. When comparing TME and distal cells, gene
sets were obtained from MSigDB23, except for the miR-29 targets that were obtained from Cushing
and colleagues24. When we searched for pathways enriched in lengthened or shortened 3’UTRs in
cancer cells, we used the investigate function of the GSEA webpage
(https://www.gsea-msigdb.org/gsea/msigdb/human/annotate.jsp), and compared against all MSigDB
gene sets23.

The APA analysis section of the Methods was written as follows:

Alternative polyadenylation analysis

To analyze differences between 3’UTR lengths, we used a modified version of DaPars225

(https://github.com/ArthurDondi/DaPars2_LR), with an APA site detection adapted to long-read
coverage.

Briefly, we identified the 3’UTR exon of each isoform and overlapping 3’UTR exons with different 5’
start positions were discarded from analysis, as they create false positive APA. Then, for each
remaining 3’UTR we computed the coverage for each cell type. The distal site position was defined as
the most 3’ position with a coverage superior to 10 in all cell types:

𝐿 *  =  𝑚𝑎𝑥 𝑘:  𝑤
𝑘
𝑐 > 10,  1 < 𝑘 < 𝐿 ,  1 < 𝑐 < 𝑚

⎰
⎱

⎱
⎰( )

where is the length of the annotated 3′ UTR region and is the defined distal site position. is𝐿 𝐿 * 𝑤
𝑘
𝑐

the coverage in cell type at position , and is the total number of cell types.𝑐 𝑘 𝑚

We inferred the exact location of APA site by maximizing the coverage gap between the 50 positions
before and after the possible APA sites, based on the two-polyA-site model, the most common model
of APA regulation:

 (𝐶 *, 𝑃 *) =  𝑎𝑟𝑔𝑚𝑎𝑥
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where is the estimated length of alternative proximal 3′ UTR, and the optimal proximal site in𝑃 𝑃 *  

cell type is the one with the maximal objective function value. is the coverage at position and𝐶 * 𝑤
𝑘
𝑐 𝑘

cell type , and is the total number of cell types.𝑐 𝑚
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The fraction of distal polyA site usage is then defined as 𝐹 =  
𝑤

𝑑

𝑤
𝑑
+𝑤

𝑝

The degree of difference in APA usage in cell types and can be quantified as a𝐶
1

𝐶
2

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶ℎ𝑎𝑛𝑔𝑒

, which is capable of identifying 3′ UTR lengthening (positive index) or shortening (negative index):
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.𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶ℎ𝑎𝑛𝑔𝑒 =  𝐹
𝐶

1

−   𝐹
𝐶

2

2. Although there are a lot of interesting points in the dataset, but the authors did not make a
comprehensive analysis on those points. For example, in Figure 2a, we can see that the HGSOC
cells seem to have two subpopulations at short-read-based gene-level analysis, but we cannot see
that at long-read gene/isoform-level. How do you explain that?

Response: The cancer subpopulations seen in short-reads are patient-specific (Extended Data
Figure 2d). Although the patient-specific cancer clusters are less defined in the UMAPs generated
from long-read gene/isoform expression than in the short-reads one, we can still see in Extended
Data Figure 2d the separation by patients inside the cluster.

There was a mislabelling of the patients in Extended Data Figure 2d. It is now corrected as shown
below, and we added the cluster names. We apologize and we hope the correction will help answer
the reviewer’s question.

Extended Data Figure 2: Cell type marker detection and embedding by sample. [...] (d) UMAP
embeddings of the cohort, colored by sample ID for short-read - gene level (left), long-read - gene
level (middle), and long-read - isoform level (right) data.

The isoform-level analysis have more features than gene-level analysis, maybe we can find some
novel subpopulations using isoform expression data. However, it seems the clustering ability of
isoform-level is not as good as gene-level.

Response: The isoform expression matrix contains more entries, as we observe more isoforms than
genes, and more values are equal to 0 as we have limited coverage due to sequencing costs. While
we indeed believe that the isoform data has the potential to reveal novel or different subpopulations,
here the limited coverage results in a bridge of low read count cells between cancer and mesothelial
clusters. This is evident from the isoform counts per cell, as illustrated in the figure below.
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Rebuttal Figure 1: UMAP cohort visualization based on isoforms expression, colored by number of
isoforms expressed per cell.

In addition, in Extended Data Figure4, there are significant heterogeneity in HGSOC cells. Is it
possible that different patients have different isoform usage? By exploring the differences (e.g.,
isoform usage, mutations) between patients, we may get more information for personalized
medicine.

Response: Patients with High-Grade Serous Ovarian Cancer (HGSOC) typically share TP53
mutations as a common genetic characteristic. In addition, the mutations (SNVs) we have identified
were previously recorded in the panel DNA sequencing data for all three patients and were
patient-specific. Please refer to Supplementary Table 1 for comprehensive details regarding these
mutations. We also investigated patient-specific differences in gene fusions and found the
patient-specific IGF2BP2::TESPA1 fusion. Furthermore, the isoform diversity observed in previous
Extended Data Figure 4 is often shared between patients, and observed at such low frequency that it
is hard to draw any conclusions.

We performed differential isoform usage analysis and found that differences between patients were
minimal. However, we found one important difference between Patient 3 and the two other patients in
the OAS1 gene (more details can be found below in Major Point 3, Reviewer 1, section “Differential
isoform expression in cancer reveals isoform-specific usage of EMT genes”):

Although isoforms differentially expressed in cancer cells were similar among patients, there was one
significant case of patient-specific expression. For OAS1, patient 3 predominantly expressed isoform
p42, while patients 1 and 2 exhibited a balanced distribution of isoforms p42 and p46. The p42 and
p46 expressions are known to be allele-specific, caused by the rs10774671 SNP, a splice acceptor
A/G variation. However, this cannot explain the different expression levels as all patients have both
the A and G alleles (Figure 4e). Given that isoform p42 is more susceptible to Nonsense-Mediated
mRNA Decay (NMD) and possesses diminished enzymatic activity26, the observed differences could
potentially indicate a diminished OAS1 activity in Patient 3. Whether OAS1 has an impact on ovarian
cancer is still to be elucidated.

The rare differences between patients could be due to the disparity of gene expression. For example,
when we compared isoform usage in cancer and distal cells, we found that, in CERK and RTN1,
cancer-specific isoform usage was also patient specific. Those results do not appear when comparing
isoform usage between patients, because the other patients had no CERK or RTN1 expression at all,
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and the genes were discarded from the analysis (more details can be found below in Major Point 3,
Reviewer 1, section “Differential isoform expression in cancer reveals isoform-specific usage of EMT
genes”):

In RTN1, distal cells expressed the isoform RTN1-A and RTN1-B, while Patient 3’s cancer cells
expressed RTN1-C, an isoform known to bind to the anti-apoptotic protein Bcl-xL and reduce its
activity [...] For CERK, by contrast, patient 2’s HGSOC cells strongly expressed a novel isoform
leading to a shortened protein (Extended Data Figure 6g).

3. The overall analysis is not convincing or solid. For example, the detection of novel isoforms is
critical for down streaming analysis, the authors should run more parallel analysis to confirm the
accuracy of the results.

Response: We used SQANTI for novel isoform detection, classification, and artefact filtering, as this
is the gold standard within the field (https://github.com/ConesaLab/SQANTI3). In addition to the
SQANTI output, we validated the 5’ and 3’ completeness of the novel isoforms by comparing them to
experimental CAGE/PolyA peak databases (FANTOM5 and PolyASite). We also sent the list of novel
detected isoforms for external validation to the researchers maintaining the GENCODE database,
which is the most intensely curated database for isoforms. GENCODE validated and characterized
the biotype of ~80% of the novel isoforms we detected. Throughout, we have taken rigorous steps to
ensure the accuracy of our results with gold-standard procedures (SQANTI), validation with
experimental CAGE/PolyA databases and an independent group of experts (GENCODE). Thus, we
are convinced that the reported results are solid.

Also, the authors should make a detailed explanation on data processing steps in Methods. For
example, what is used for UMAP analysis? Is batch effect removed before clustering? How to
integrate different samples together?

Response: We apologize for this omission, and we now provide all details. In brief, gene/isoform
counts were normalized with sctransform, regressing out cell cycle effects, library size, and sample
effects as non-regularized dependent variables. Further details are below.

For short reads, we modified corresponding subsection in Material and Methods as follows:

10x Genomics read data processing, normalization and visualization.
Expression data of each sample was analyzed using the scAmpi workflow27. In brief, UMI counts were
quality-controlled and cells and genes were filtered to remove mitochondrial and ribosomal
contaminants. Cells for which over 50% of the reads mapped to mitochondrial genes and cells with
fewer than 400 genes expressed were removed. By default, all non-protein-coding genes, genes
coding for ribosomal and mitochondrial proteins, and genes that were expressed in less than 20 cells
were removed. Doublet detection was performed using scDblFinder28. Subsequently, counts were
normalized with sctransform29, regressing out cell cycle effects, library size, and sample effects as
non-regularized dependent variables. Similar cells were grouped based on unsupervised clustering
using Phenograph30, and automated cell type classification was performed independently for each
cell31 using gene lists defining highly expressed genes in different cell types. Major cell type marker
lists were developed in-house based on unpublished datasets (manuscripts in preparation), including
the Tumor Profiler Study32, using the Seurat FindMarkers method33. Immune subtype marker gene
lists were obtained from Newman et al.34 and enriched with T cell subtypes from Sade-Feldman et
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al.35 The results of the unsupervised clustering and cell typing are visualized in a low-dimensional
representation using Uniform Manifold Approximation and Projection (UMAP).

For long reads, we also added this paragraph:

Normalization and visualization
Long read gene expression counts were normalized and visualized as described above for short
reads. Long read gene expression counts were normalized using 10,000 features instead of the
default 3,000 in sctransform29.

Furthermore, the authors should also perform more global analysis to compare the differences
between tumor and control samples while not just focusing on several key genes.

Response: We compared tumor and control samples on two levels: tumor cells with all distal cells,
and metastasis TME with corresponding distal cell types (with a focus on mesothelial cells). The
additional analyses and findings regarding the metastasis TME mesothelial cells are reported in our
response to Reviewer 1’s Major Point 1.

For the comparison of cancer with distal cells, we first analyzed the distributions of cell type-specific
novel isoforms, revealing that cancer cells expressed more novel isoforms (Extended Data Figure 4).
We also performed differential isoform usage analysis between cancer and distal cells and focused on
the most differentially expressed genes (Figure 4). Focusing on these genes was necessary as
isoforms are understudied and insufficiently annotated (even protein-coding ones), such that
extensive bibliographical research was needed to assign biological meaning to specific isoform
expressions. We were able to do this for IGF1 Class I/II, cGSN, TPM2.3, RTN1-C, etc., but not for
CERK or ICAM3 due to current lack of functional isoform characterization.

In this revision, we also performed novel global analyses between cancer and distal cells. Thanks to
the help of GENCODE, isoform biotypes were available even for novel isoforms in our datasets, and
we were able to compare biotypes of isoforms differentially expressed between cancer and distal
cells. Isoform-level analysis accounting for non-coding isoforms also revealed that protein-coding
gene expression was overestimated by 20% on average. We also performed alternative
poly-adenylation (APA) analysis between cancer and distal cells, as stated in our response to
Reviewer 1’s Major Point 1.

Figure 4 and Extended Data Figure 4 (now Extended Data Figure 6) were also redone to account
for the novel analyses performed and to remove any redundancy, in line with Reviewer 1’s demand in
Major Point 4.

You can find the results of our comparison of cancer against distal cells below:

Differential isoform usage in cancer reveals changes in biotypes

After comparing cells from the TME with distal cells, we investigated which isoforms, biotypes, and
poly-adenylation sites were differentially used between cancer and all distal cells. HGSOC cells
expressed isoforms differentially with a change in relative isoform abundance of more than 20% in
960 genes (15.1%), compared to all distal cells (6,353 genes tested in total, Fig. 4a, Supplementary
Table 4, Methods). In 36% of those 960 genes, the highest expressed isoform biotype changed
between conditions (Fig. 4b). In 32% of instances, there was a transition from a protein-coding to a
non-protein-coding isoform, and in 17% of cases, cancer cells expressed a protein-coding isoform
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while distal cells expressed a non-protein-coding isoform. Only 39 genes (0.6%) had an isoform
switch with a change in relative isoform abundance of more than 50%. 59% of these switched
isoforms demonstrated a biotype transition (49% of protein-coding to non-protein coding transition,
Fig. 4c), and in 33% of cases, cancer cells expressed a protein-coding isoform while distal cells
expressed a non-protein-coding isoform. Additionally, in cancer, distal and TME cells, on average
20-21% of the expression in protein-coding genes was non-coding (Extended Data Fig. 6a), and
13-14% of protein-coding genes had more than 50% of non-coding expression. This means that, on
average, using only gene-level information to estimate protein expression (as done in short-read data)
will lead to an overestimation of 20%.

The ten genes with the statistically most significant switches were IGF1, TPM2, NCALD,
VAMP8-VAMP5, EXOSC7, ICAM3, CERK, OBSL1, GSN, and RTN1 (Supplementary Table 4,
Methods). In IGF1, cancer cells across all patients predominantly used the second exon of the gene
as their transcription start site (secreted isoform, Class II), whereas non-cancerous cells primarily
used the first exon (endogenous isoform, Class I)36 (Fig. 4d). On the contrary, similarly to TME
mesothelial cells, cancer cells expressed the endogenous isoform of GSN (cGSN), while distal cells
only expressed the secreted isoform (pGSN)21 (Extended Data Fig. 5d). In RTN1, distal cells
expressed the isoform RTN1-A and RTN1-B, while Patient 3’s cancer cells expressed RTN1-C, an
isoform known to bind to the anti-apoptotic protein Bcl-xL and reduce its activity37,38 (Extended Data
Fig. 6b). In the tropomyosin gene TPM2, which is involved in TGF-β-induced EMT, cancer cells
differentially expressed exon 6b (isoform TPM2.3, expressed in epithelial cells39) and the alternative
3’UTR exon 9a (Extended Data Fig. 6c). In VAMP5, the overexpressed isoform in HGSOC cells was
a VAMP8-VAMP5 read-through gene, i.e., a novel gene formed of two adjacent genes, previously
described in human prostate adenocarcinoma40 (Extended Data Fig. 6d). HGSOC cells expressed
almost no wild-type (wt) VAMP5 but had a significantly higher VAMP8 expression than distal cells
(Pcorr=1.0x10-15), indicating that this read-through gene was under transcriptional control of VAMP8.
With a short-read 3’ capture method, this VAMP8-VAMP5 expression cannot be distinguished from
the wt VAMP5 expression. For NCALD and OBSL1, only cancer cells expressed canonical
protein-coding isoforms, while other cells expressed short non-coding isoforms (Extended Data Fig.
6e,f). For CERK, by contrast, patient 2’s HGSOC cells strongly expressed a novel isoform leading to a
shortened protein (Extended Data Fig. 6g). Finally, in ICAM3, cancer cells mainly expressed a short
protein-coding isoform, while distal cells (mainly T cells) expressed the canonical isoform. More
characterization of those isoforms will be necessary in the future to explore the biological implications
linked to their expression (Extended Data Fig. 6h).

Although isoforms differentially expressed in cancer cells were similar among patients, there was one
significant case of patient-specific expression. For OAS1, patient 3 predominantly expressed isoform
p42, while patients 1 and 2 exhibited a balanced distribution of isoforms p42 and p46. The p42 and
p46 expressions are known to be allele-specific, caused by the rs10774671 SNP, a splice acceptor
A/G variation. However, this cannot explain the different expression levels as all patients have both
the A and G alleles (Fig. 4e). Given that isoform p42 is more susceptible to Nonsense-Mediated
mRNA Decay (NMD) and possesses diminished enzymatic activity26, the observed differences could
potentially indicate a diminished OAS1 activity in Patient 3. Whether OAS1 has an impact on ovarian
cancer is still to be elucidated.
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When testing for differential APA between HGSOC and distal cells, we found shortened 3’UTR in 85
and lengthened 3’UTR in 203 genes (n=4758) (Fig. 4f). There was a notable trend toward lengthening
of the 3’UTR in cancer cells (P=5.59x10-20), with COL1A2 emerging once more as the most prominent
finding (Pcorr=7.48x10-47, 61% change) (Fig. 3b-c, Fig. 4f). Expression levels remained consistent
between genes featuring either shortened or lengthened 3’UTRs. Furthermore, neither miRNA profiles
nor canonical pathways exhibited an overlap exceeding 20% with either the lengthened or shortened
gene sets (Methods).

Figure 4: Differential isoforms and 3’UTR lengths in cancer.
(a) Number of genes with change in isoform usage between HGSOC and all distal cells. In orange,
genes with differentially expressed isoforms and a change in relative isoform abundance >20% (>50%
in green). In blue, genes with no differentially expressed isoforms or change in relative isoform
abundance <20%. (b) Alluvial plot of biotypes of most expressed isoforms in HGSOC and distal cells
in genes containing an isoform change >20% (n=960). Each vein represents the conversion of one
biotype to another. For example, in 7 genes, the most expressed isoform in HGSOC cells is
protein-coding, while distal cells’ one is non-protein-coding. (c) Alluvial plot of biotypes of most
expressed isoforms in HGSOC and distal cells in genes containing an isoform switch (>50% change,
n=39). (d) ScisorWiz representation of isoforms in IGF1, each horizontal line represents a single
isoform colored according to cell types. Exons are numbered according to the Gencode reference,
Class I and II isoforms are isoforms with starting exons 1 and 2, respectively. (e) Top: IGV view of
OAS1 expression in patients. Patient 3 has low p46 expression compared to others. Bottom: zoom on
the last exon of isoform p46, where all patients have at least one mutated A allele in the splice
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acceptor site. (f) Volcano plot of genes with APA in cancer versus distal cells. Genes have either a
lengthened (red) or shortened (blue) 3’UTR in cancer cells compared to all distal cells. Differentially
lengthened or shortened genes targeted by miR-29 are colored in green. Genes with
-log10(p-adjusted) > 10 and |Fraction Change| > 0.5 are annotated.
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Extended Data Figure 6. Top differentially expressed genes between HGSOC and distal cells.
(a) Boxplot of the fraction of non-coding expression in protein coding genes, where each point is a
protein-coding gene. ScisorWiz representation of isoforms in (b) RTN1, (c) TPM2, (d)
VAMP5-VAMP8, (e) NCALD, (f) OBSL1, (g) CERK, (h) ICAM3 in cancer, distal and TME cells. Each
horizontal line represents a single isoform colored according to cell types. Notable reference isoforms
from GENCODE are named on the bottom of each gene.
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Relative Methods were added as follows:

Biotype switching analysis

In genes with differential isoform usage between conditions, we compared the biotypes of the most
expressed isoform of each condition, and if they were not identical this was considered a change in
biotype.

Protein-coding gene expression

Considering only genes with protein-coding biotype (GENCODE) with a minimal expression of 20
UMIs in a condition, we assessed the ratio of non-coding isoforms (NMD, intron retention, etc.)
expression to total gene expression (non-coding and coding).

4. The manuscript needs to be well organized, there needs to be a connection between different
parts of the entire article. The paper is not well structured, and some figures may express the
same conclusion, such as Figure 4.

Response: We have further improved the writing and organization of the manuscript, which was
assessed very favorably by Reviewer 2. We agree with the comment on Figure 4, which we
restructured and rewrote the corresponding text.

Figure 4 and Extended Data Figure 4 (now Extended Data Figure 6) were redone to remove any
redundancy and add more analysis, in the line of Reviewer 1’s demand for more global analysis, and
the corresponding section was rewritten (see above). We also rewrote parts of the discussion, as
follows:

Discussion
[...]

Taking advantage of the long-read technology, our study provides evidence that cancer cells may
induce EMT in TME mesothelial cells. In omental metastases, it has been shown that
HGSOC‐secreted TGF‐β triggers EMT and converts TME cells, including mesothelial cells, into
CAFs, which in turn may favor tumor cell adhesion, invasion, and proliferation41–43. Our findings
provide further evidence of this phenomenon and reveal that the process might partly be controlled
through the TGF-β/miR-29/Collagen axis: secreted and endogenous TGF‐β downregulates miR-29
expression, thus increasing the expression of its targets, including collagens44. Coincidentally, Han
and colleagues13 recently showed that omental CAF-derived exosomes from HGSOC patients
contained significantly lower miR-29c than normal fibroblasts. Furthermore, the reduced levels of
miR-29 have been demonstrated to play a role in the development of cisplatin resistance by
upregulating collagen expression45.

In addition to TGF‐β, HGSOC cells also promote EMT and CAF activation through the secretion of
other growth factors such as insulin-like growth factors (IGFs)46. In our data, HGSOC cells revealed a
profoundly modified IGF system among all patients with a drastic switch from endogenous Class I to
secreted Class II IGF1 isoform, IGF2 overexpression, and a highly expressed IGF2BP2::TESPA1
gene fusion in one patient. Secreted IGF1 (Class II) and IGF2 activate EMT through IGF1R, by
triggering an uncontrolled wound healing response47. The IGF gene family also promotes cancer
growth, survival, proliferation, and drug resistance through signaling via PI3K-AKT or MAPK, and is a
known clinical target in ovarian cancer48.
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Additionally, we demonstrated the potential of the technology in terms of coverage and sequencing
accuracy to detect mutations and gene fusions. In particular, in one patient, the novel fusion
IGF2BP2::TESPA1 was highly overexpressed compared to wt IGF2BP2 (~10x more) and TESPA1
(~150x more). IGF2BP2 is known to be regulated via 3’UTR miRNA silencing49, however, the
IGF2BP2::TESPA1 fusion has the unregulated 3'UTR of TESPA1, which could explain its
overexpression. TESPA1 is normally expressed in T cells50 and long-read data confirmed T
cell-specific wt TESPA1 expression. Short read data however erroneously reported TESPA1 as the
most differentially expressed gene in cancer cells, resulting from 3’ end capture of the fusion
transcripts. This highlights that short-read scRNA-seq data fails to distinguish between gene and
fusion expression, potentially leading to wrong biological conclusions.

In addition to their canonical mRNA isoforms, numerous protein-coding genes express non-coding
RNA isoforms, which are wrongly accounted for as protein-coding on the gene expression level and
can serve as miRNA sponges and competing endogenous RNAs, especially in EMT and
metastasis51,52. In our data, we found that 20% of the protein-coding gene expression was non-coding
and in the genes exhibiting a significant isoform switch between cancer and healthy cells, nearly half
(49%) transitioned from a protein-coding to a non-coding isoform. Furthermore, 51% of the UMIs were
composed of intra-priming and non-canonical artifacts before filtering, and their detection was only
possible through isoform classification. Overall, our findings highlight the need for an isoform-specific
quantification to accurately assess protein-coding gene expression53 and narrow the RNA-protein
gap54–57. Additionally, a better isoform characterization is needed to understand their biological
implications, as we partly demonstrated with IGF1 Class I/II, cGSN, TPM2.3, RTN1-C, and OAS1 p42.
[...]

Minor Points:

1. In line 198, it may be better touse the distribution of multi-isoform gene number to compare
the isoform diversity.

Response: While isoforms per genes per cell type is an interesting metric, it is not properly
normalized: we are more likely to capture more isoforms in cell types that express more reads, and
this metric does not account for that. This is why we came up with the reads per isoform metric: it
shows that cancer cells express less reads per isoform than mesothelial cells, for example, and that
the abundance of isoforms in cancer cells is not only due to overall expression. We nevertheless tried
to investigate the mean number of isoforms expressed per gene in each cell.

Please find below the number of isoforms per gene per cell type as Extended Data Figure 3b.
Previous Extended Data Figure 3b became 3a, and previous 3a (genes per cells) was removed as it
offers low information.
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Extended Data Figure 3: QC metrics by cell type in long-read sequencing. (a) Number of
isoforms detected per cell, by cell type. (b) Number of isoforms detected per gene, by cell type. (c)
Number of unique reads per cell in long-read s, by cell type. (d) Ratio of long reads per isoform in
each cell, by cell type. [..]

And we changed the text accordingly:

We analyzed the expression of cell type-specific isoforms. HGSOC cells expressed more isoforms
(overall and per gene), and RNA molecules than other cell types (Extended Data Figure 4a-c).

2. In Fig 1E, what is the sorting basis of bars?

Response: The original idea was to sort by level of interest, with first our data and then GENCODE.
Thank you for inquiring about the sorting, we can see now that the ordering can be confusing.

Figure 1e is now sorted in descending order, as you can see below.
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Figure 1: Study design and long read data overview. [...] (e) Percentage of isoforms for which
transcription start site is supported by CAGE (FANTOM5) data and transcription termination site is
supported by polyA (PolyASite) data, per isoform structural categories. GENCODE.all indicates all
protein-coding isoforms in the GENCODE database, GENCODE.FL is a subset of GENCODE.full
containing only isoforms tagged as full-length, and GENCODE.MANE is a hand-curated subset of
canonical isoforms, one per human protein coding locus. [...]

3. In Fig 1F, the total number of isoforms is not 40,046 (Line 147). Does an isoform have two
more biotypes?

Response: 43,741 of the novel isoforms we identified were validated by GENCODE, with 40,046
being considered as novel by their team and 3,695 extended versions of existing isoforms.

We changed the corresponding section in the manuscript for a better understanding of Figure 1f :

A total of 52,884 novel isoforms were complete (NIC+NNC), of which 40,046 were confirmed as valid
novel isoforms by GENCODE (corresponding to 17% of the current GENCODE v36 database), and
3,695 were extended versions of existing isoforms.

4. Extended data Figure 4a-f. Please label the exons that are mentioned in the manuscript.

Response: We thank the reviewer for pointing out this omission, which is now fixed. You can find the
changes in response to Reviewer 1, Major Point 3, Extended Data Figure 6.

5. The code in GitHub should include the entire data processing steps of the work.

Response: We added post-processing code to GitHub. We also created a separate GitHub for 3’UTR
APA analysis: https://github.com/ArthurDondi/DaPars2_LR

6. As a data resource, please use a web interface, such as Shiny, to show the data.

Response: The sequencing data is confidential patient data, and thus cannot be made available on a
public web interface. It is available on demand at EGA (EGAC00001003014).
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Reviewer #2 (Remarks to the Author): expertise in ovarian cancer splicing and isoforms

In this manuscript, Arthur Dondi and co-authors optimize PacBio sequencing strategies and apply
their approach to capture cell type-specific genomic and transcriptomic alterations of ovarian
cancer patients. This study describes a workflow to increase the sequencing depth of long- read
scRNA-seq, which is useful for detection of novel isoforms and genomic alterations. Overall, this is
a well-designed study and the manuscript is well written.
The following comments are suggested for consideration by the authors.

1. The authors performed scRNA-seq using five samples including three samples were derived
from HGSOC omental metastases and two from matching distal tumor-free omental tissues. Why
the authors chose omental tissue other than fallopian tube or ovarian surface epithelium (Both
fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian
carcinoma, Shuang Zhang, Nat commun. 2019)?

Response: The aim of the study was not only to use long-read sequencing to study tumor-intrinsic
features, such as isoform use and genomic alterations, but also to investigate microenvironment
alterations. Since the omentum is the preferred site of HGSOC metastasis, we chose omental
metastases biopsies to study changes in the microenvironment and sampled metastatic and distal
tumor-free sites allowing for differential comparison of cell type gene and isoform composition.

2. The authors claimed that HGSOC cells account for 15% of identified cell types (lines 169-170).
Can you explain why HGSOC has a low proportion?

Response: This fraction is the average over all cells from all samples (including 2 healthy omentum
samples out of the 5 total samples). As shown in Extended Data Figure 3b (previously 2a), Patient 2
Tumor sample has ~50% HGSOC cells, Patient 1 Tumor sample has ~20% HGSOC cells, and Patient
3 Tumor sample has <10% HGSOC cells.

3. The authors identified a novel IGF2BP2::TESPA1 fusion using long-read scRNA and validated by
scDNA-seq. Is there any other ovarian cancer patient who have this fusion (DNA sequencing data
from other cohorts)?

Response: To investigate the presence of the IGF2BP2::TESPA1 fusion in other ovarian cancer
patients, we analyzed the Ovarian Cancer TCGA data expression of IGF2BP2 and TESPA1, on the
gene and exon level. We analyzed the exon expression at the breakpoint between exons 4 and 5 for
IGF2BP2, and between the last coding exon and 3’UTR for TESPA1 (Extended Data Figure 9a,b). If
a patient expressed IGF2BP2::TESPA1 as strongly as it is expressed in patient 2 in our data, the
expression between the exons should not correlate. For example, IGF2BP2 exon 4 is expressed by
both the fusion and wild-type genes, while exon 5 is only expressed in the wild-type gene. In Patient
2, exon 4 is >10x stronger expressed than exon 5, because the fusion is 10x more expressed than
wild-type IGF2BP2. This does not seem to be the case in TCGA data (Extended Data Figure 9a). All
patients (points) have a similar exon 4 and 5 expression in IGF2BP2 (R>0.99). We observe similar
results with TESPA1 (R>0.88) with a weaker correlation because TESPA1 is sparsely expressed in
ovarian cancer samples (Extended Data Figure 9b). Moreover, there was no clear correlation
between the gene expression of IGF2BP2 and TESPA1 in patients from the TCGA database, and no
patient had a clear high-TESPA1 high-IGF2BP2 expression indicating a potential IGF2BP2::TESPA1
presence (TESPA1 expression is low in all patients, max TPM = 4.834, Extended Data Figure 9c). It
is however important to note that those are bulk measures, and a fusion expression could be hidden
by low tumor content or only present in a rare subclone. In conclusion, we found no evidence of
IGF2BP2::TESPA1 presence in bulk RNA expression data in TCGA ovarian cancer patients.

The comparison with the TCGA has been incorporated as Extended Data Figure 9, as well as the
corresponding text below:
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In the ovarian cancer TCGA RNA dataset, the expression levels of exons surrounding breakpoints of
IGF2BP2 and TESPA1 did not change (Extended Data Fig. 9a,b), and the overall expression of the
genes did not correlate in any patient, suggesting that we detected an uncommon, patient-specific
fusion (Extended Data Fig. 9c).

Extended Data Figure 9: Detection of the IGF2BP2::TESPA1 fusion in the ovarian cancer TCGA
data.
(a) TCGA expression of IGF2BP2 exons 4 and 5, surrounding the IGF2BP2::TESPA1 breakpoint.
(b) TCGA expression of TESPA1 last coding exon and 3’UTR exon, surrounding the
IGF2BP2::TESPA1 breakpoint. (c) Log2 normalized gene expressions of IGF2BP2 and TESPA1 in
TCGA.

4. How about the mutations in the single-cell DNA-sequencing data as scDNA-seq is capable of
detecting the rarest somatic mutations.

Response: scDNA-seq is capable of detecting rare somatic SNVs in regions with high coverage, for
example, when using multiple displacement amplification and panel or whole-exome sequencing.
Here, we used whole-genome sequencing (WGS) at very shallow coverage, as the fusion breakpoint
was in an intron (10X Chromium Single Cell CNV Solution, discontinued). WGS at such low coverage
(<0.05x) is not suited for SNV detection.

5. Line 226, “resulting in a truncated protein” should be resulting in a truncated transcript or
isoform.

Response: We thank the reviewers for pointing this out. While it is indeed the isoform which is
truncated, the coding sequence is truncated, too, and if translated, the resulting protein would also be
truncated. This has been clarified throughout the manuscript.
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Reviewer #3 (Remarks to the Author): expertise in single cell RNA-seq bioinformatics

Dondi et al present a very nice body of work showing the benefits of long-read single-cell
sequencing in detecting isoforms and genomic alterations in ovarian cancer. My main concern with
the manuscript regards the detection of the novel fusion genes that you have identified and if they
are in fact read fusions or artefacts of the library preparation. I lay out my concerns and
comments below:

Generally the paper is written in a style that seems to over hype some of the findings. Please tone
down the paper conclusions and direction and make your findings more relevant and specific to
personalised medicine for ovarian cancer and not cancer as a generalised subject. For example,
there is no mention of ovarian cancer in the title and it makes the reader think that you have
studied many different types of cancer in this manuscript.

Response: We thank the reviewer for their overall positive feedback on our manuscript. As
requested, we tried to make our findings more relevant and specific to ovarian cancer, by changing
the title and abstract, and focusing parts of the manuscript (see complete response to Reviewer 1,
Major Point 1, above), as well as the discussion on EMT in ovarian cancer.

We changed the title to “Detection of isoforms and genomic alterations by high-throughput full-length
single-cell RNA sequencing in ovarian cancer”.

The abstract was also changed as follows :

Abstract

Understanding the complex background of cancer requires genotype-phenotype information in
single-cell resolution. Here, we perform long-read single-cell RNA sequencing (scRNA-seq) on clinical
samples from three ovarian cancer patients presenting with omental metastasis and increase the
PacBio sequencing depth to 12,000 reads per cell. Our approach captures 152,000 isoforms, of which
over 52,000 are novel. Isoform-level analysis accounting for non-coding isoforms reveals 20%
overestimation of protein-coding gene expression on average. We also detect cell type-specific
isoform and poly-adenylation site usage in tumor and mesothelial cells, and find that mesothelial cells
transition into cancer-associated fibroblasts in the metastasis, partly through the
TGF-β/miR-29/Collagen axis. Furthermore, we identify gene fusions, including an experimentally
validated IGF2BP2::TESPA1 fusion, which is misclassified as high TESPA1 expression in matched
short-read data, and call mutations confirmed by targeted NGS cancer gene panel results. With these
findings, we envision long-read scRNA-seq to become increasingly relevant in oncology and
personalized medicine.

We also changed the last paragraph of the introduction to reflect on our new findings and focus more
on ovarian cancer:

Introduction
[...]
Here, for the first time, we used high-quality, high-throughput long-read scRNA-seq to capture cell
type-specific genomic and transcriptomic alterations in clinical cancer patients. We applied both
short-read and long-read scRNA-seq to five samples from three HGSOC patients, comprising 2,571
cells, and generated the PacBio scRNA-seq dataset with the deepest coverage to date. We were able
to identify over 150,000 isoforms, of which a third were novel, as well as novel cell type-specific
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isoforms. Isoform-level analysis revealed that, on average, 20% of the protein-coding gene expression
was non-coding, leading to an overestimation of the protein expression. By combining differential
isoform and poly-adenylation site usage analysis between cells from the metastatic TME and distal
omental biopsies, we found evidence that in omental metastases, mesothelial cells transition into
CAFs, partly through the TGF-β/miR-29/Collagen axis. Additionally, we discovered dysregulations in
the insulin-like growth factor (IGF) network in tumor cells on the genomic and transcriptomic levels.
Thereby, we demonstrated that scRNA-seq can capture genomic alterations accurately, including
cancer- and patient-specific germline and somatic mutations in genes such as TP53, as well as gene
fusions, including a novel IGF2BP2::TESPA1 fusion.

Please provide more QC on the quality of the sequencing. Also how many concatemeric sequences
did you achieve per sequencing read.

Response: We appreciate the concerns on sequencing QC. The number of reads passing each
(pre)processing step are provided in Extended Data Table 1, and we added a new figure (Extended
Data Figure 1) providing the concatemeric sequences statistics as well as reads lengths and the
filtering of reads attached to based on :

This allowed the generation of a total of 212 Mio HiFi reads in 2,571 cells, which, after demultiplexing,
deduplication, and artifact removal, resulted in 30.7 Mio unique molecular identifiers (UMIs), for an
average of 12k UMIs per cell. (Extended Data Table 1). There was a mean of four cDNA molecules
concatenated per sequencing read overall, and cDNA length was similar across samples (Extended
Data Fig. 1a,b). Artifact removal revealed that filtered 51% of the UMIs were attached to , and it
included the removal of intra-priming (63%), non-canonical isoforms (36%), and reverse transcriptase
switching (1%)58 (Extended Data Fig. 1c). It must be emphasized that those artifact reads emerge
from the single-cell library preparation and are also present in short reads, where they cannot be
filtered and are hence accounted for as valid reads.
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Extended Data Figure 1: QC metrics long reads. (a) Histogram showing the number of
concatemeric cDNA molecules per sequencing read by sample. (b) Length distribution of long reads
after unconcatenation, per sample. (c) Number of UMIs belonging to isoforms passing all filters
(full-length non-chimeric, FLNC) and UMIs belonging to filtered isoforms (intra-priming, non-canonical
isoform, reverse transcriptase (RT) switching), following SQANTI classification.

Extended data Figure 1:
• The UMIs are shifted within the long-read approach compared to the short-read. Why is this?
One possible explanation for exploded UMI counts is the suggestion that there are errors within
your sequencing in the long-read UMI and this leads to artificial counts.

Response: There was a labeling error in Extended Data Figure 1c (now Extended Data Figure 2c)
that might have misled the reviewer’s interpretation on the blue color corresponding to long reads.
This has now been corrected (see Extended Data Figure 2c below), and we apologize for the
confusion. There are less long-read than short-read UMIs per cell, because long-read sequencing
yields fewer reads. In this configuration, the per-base quality of long reads surpasses that of short
reads overall, and UMIs errors are rare. Additionally, barcode correction was executed using the
IsoSeq3 deduplication tool. Please find below the corrected text and figure:

The short- and long-read datasets were of similar sequencing depth with a median of 4,930 and 2,750
UMIs per cell, respectively (average 10,235 and 6,413 UMIs, Extended Data Fig. 2a). Long-read
data contained slightly fewer detected genes, and genes detected in both datasets overlapped by
86.4% (Extended Data Fig. 2b,c). Paradoxically, the genes detected were overall shorter in
long-reads than short-reads, likely due to the concatenation step (Extended Data Fig. 2d).
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Extended Data Figure 2: QC metrics comparison of short and long reads. (a) Distribution of
single UMI reads and (b) genes detected per cell in short- (light-blue) and long-read (light-red)
technologies. (c) Overlap of total detected genes between short- and long-read datasets. (d) Gene
length distribution of genes detected in short- and long-read technologies, where gene length equals
the sum of exon length of the longest isoform associated with the gene.

• Why is there a shift in the genes detected in your data? I assume this is before filtering, what is
your QC metrics before and after filtering?

Response: Gene count displayed in Extended Data Figure 2b is after filtering. The shift is a direct
consequence of lower coverage and artifacts removal in long reads (less UMI counts per cell).

• Aligned with the above two comments, why do you have so many genes detected and why do
the numbers not reflect the greater number of genes detected in Extended data Figure 1b?

Response: We are not sure which figure or number the reviewer is referring to when asking “why do
you have so many genes detected?”. If it refers to Extended Data Figure 2c, this is the total number
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of genes detected overall (without counting novel genes) by both technologies, while Extended data
Figure 2b indicates the distribution of the number of genes detected per-cell. As explained above,
there was also a color inversion error in Extended Data Figure 2, which is now corrected. We hope
this clarifies the question Reviewer 3 was raising.

Line 92-93:
• This is not the case, there are references such as: PMID: 32887687, PMID: 36781734, PMID:
36289342

Response: We appreciate the reviewer's comment and conducted a thorough investigation of these
additional references in the context of those already present in our initial manuscript. In our
manuscript, we stated that : “So far, long-read RNA-seq has however only been applied on the bulk
level in the field of oncology”. The publications the reviewer is referring to are either a protocol for
long-read scRNA-seq that does not involve the field of oncology59 (PMID: 36781734), or the long-read
sequencing is performed on bulk DNA-seq60,61 (PMID: 36289342, PMID: 32887687). To the best of our
knowledge, there is currently no publication on patient-derived cancer samples using long-read
scRNA-seq. Thus, we believe that the statement we have made in the original manuscript holds true.
Yet, to address the reviewer’s request to tone down our statements, we have modified the sentence
accordingly.

We have modified the sentence as follows:
“Until now, long-read RNA-seq has primarily been utilized at the bulk level within the realm of
oncology.”

Line 102:
• Please clarify this, as I believe there are other PacBio datasets that include more than 2,571 cells
, e.g. this paper seems to have included 10,000 cells:
https://www.biorxiv.org/content/10.1101/2021.10.01.462818v

Response: Line 102-103: “We applied both short-read and long-read scRNA-seq to five samples
from three HGSOC patients, comprising 2,571 cells, and generated the largest PacBio scRNA-seq
dataset to date”. MAS-ISO-seq was applied to 6,260 CD8 T cells in a single run yielding 33 M reads
corresponding to an overall lower sequencing depth - 1,5k UMIs/cell, compared to 2571 cells, total
dataset size 212 M reads resulting in 30.7 M UMIs corresponding to 12k UMIs/cell. Our statement still
holds true, this is the largest published PacBio scRNA-seq dataset to date in terms of number of
reads and reads per cell. To avoid any confusion, we changed the line by:

“We applied both short-read and long-read scRNA-seq to five samples from three HGSOC patients,
comprising 2,571 cells, and generated the PacBio scRNA-seq dataset with the deepest coverage to
date.”

Figure 5:
• It has been reported that template switching and PCR can generate significant false alternative
transcripts and chimeric artefacts (
https://www.sciencedirect.com/science/article/pii/S0888754305003770,
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-2-r18). You do not
employ any strategy to determine that the IGF2BP2::TESPA1 is a real fusion event and not just a
PCR artefact. I am not convinced that your novel fusion detection approach isn’t just detecting
chimeric artefacts amplified early during the PCR cycles. No further validation is performed to
confirm these fusion events. Your extended figure 5 states this this figure is intended as a
validation of the IGF2BP2::TESPA1 breakpoint. However, this is just an IGV view and not an
experimental validation.
• In order to be convinced, a strategy for removing chimeric artefacts is required or an
experimental validation that does not include PCR.
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Response: We thank the reviewer for bringing up this point. We have performed several experiments
in order to prove the presence of the fusion in the cancer patient. We are aware that PCR and
RT-switching artefacts can lead to false alternative isoforms, which is why we used UMIs to remove
PCR duplication effects. We used SQANTI classification to filter out RT-switching artifacts (see
Extended Data Figure 1c in answer to Reviewer 3 above). In addition, all the reads are
UMI-corrected.

We believe that the IGF2BP2::TESPA1 fusion is present in the patient and not observed due to
technical artifacts for the reasons presented below, where we first summarize the evidence presented
in the original manuscript and then present additional evidence based on new experiments.

1. Evidence that IGF2BP2::TESPA1 is highly unlikely to be a PCR / RT-switching artefact:

● The RNA fusion is patient 2-specific as it is not detected in the remaining patients (1
and 3) samples investigated. The fusion is covered by 2,174 UMIs in 178 cancer cells
(Figure 5c, please refer to figures page 32-33 of this letter): a chimeric artefact
amplified early during the PCR cycles would in principle only have one cell barcode
and one UMI barcode.

● The fusion is observed in numerous RNA isoforms, featuring three distinct
IGF2BP2::TESPA1 exon-exon breakpoints. Importantly, all of these breakpoints
adhere to canonical splice sites, displaying a seamless transition from an IGF2BP2
exon to a TESPA1 exon. As specified in the abstract of
https://www.sciencedirect.com/science/article/pii/S0888754305003770 cited above,
RT template switching is found in non-canonical sites, and it less likely happens with
canonical junctions: “However, most of the canonical examples (with ≥8-nt direct
repeats) that we found matched the majority (if not all) of the corresponding ESTs
[expressed sequence tags, i.e. short cDNAs], indicating that they were genuine
spliced isoforms. [...] These observations suggest that template-switching artifacts are
rare among isoforms with canonical splice sites.”. Furthermore, in all 3 exon-exon
breakpoints, there is no direct repeat of sequence that would suggest an
RT-switching event.

● The detected fusion only uses a single TESPA1 allele, while we identified two
TESPA1 alleles in non-cancer cells (using hSNPs, Figure 5g). Together with the
patient and cancer cell specificity, a monoallelic fusion in a biallelic gene is supporting
that IGF2BP2::TESPA1 is indeed a biological alteration with genomic origin.

● Upon realignment, we observed that 93% of short-reads originally mapping to the
TESPA1 and IGF2BP2 junction realigned on IGF2BP2::TESPA1, rather than the
wild-type IGF2BP2 or TESPA1 (Extended Data Figure 7a). This means that, with
prior knowledge of the existence of the fusion, it can also be detected in short reads,
and is not a long-read artefact.

● We detected the fusion on the genomic level, in addition to the transcriptomic level, in
an independent scDNA dataset of the same patient (Figure 6, Extended Data
Figure 7b (previously Extended Data Figure 5)).

2. We aimed to further experimentally validate the fusion with additional experiments as follows:
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● We have designed primer pairs in order to use genotyping PCR to detect the
IGF2BP2::TESPA1 fusion in genomic DNA isolated from multiple matched patient tumor
samples. We have extracted genomic DNA from these patient samples, performed QC, and
subjected 50 ng of genomic DNA to each PCR reaction. Our results clearly indicate that the
fusion is present in multiple tumor samples derived from the same Patient 2 unlike in control
samples derived from Patient 1 (new Figure 6a).

● In addition, we have purchased antibodies (antibodies information is below) in order to gain
insights on the protein level of this particular gene fusion. We have also synthesized the
expected fusion C-terminally tagged with a haemagglutinin (HA) tag (IGF2BP2::TESPA1-HA),
cloned into pUltra plasmid (addgene #24129) for bicistronic expression of EGFP and the
fusion HA, and lentivirally transduced cell lines HEK293 and ovarian cancer Kuramochi with
the plasmid for verification of specificity of commercial antibodies (Rebuttal Figure 2a,b).
Transfected cells were sorted based on the expressed GFP signal, indicating a >90%
transfection rate for HEK293 and Kuramochi respectively (Rebuttal Figure 2b). Western blots
revealed that HA antibodies detected a low expression at the expected fusion weight
(~22kDa), mainly in HEK293 cells, confirming lentiviral transfection and plasmid expression
(Rebuttal Figure 2c). Antibodies recognizing the C-terminal part of IGF2BP2 and TESPA1,
used as negative controls (the TESPA1 part of the fusion is from the 3’UTR, and not part of
the canonical TESPA1 protein), did not reveal a signal at the expected size overlapping with
HA. Unfortunately, the AB recognizing the full-length IGF2BP2 protein did not show full or
partial specificity towards the fusion, and only recognized wild-type IGF2BP2, thus not
allowing any form of detection of the shortened fusion protein. In conclusion, we are confident
based on the HA tag Western blot results that the fusion is expressed, however, the
commercially available antibodies tested in this experimental setup did not recognize the
fusion.

● Using the validated rabbit monoclonal antibody targeting C-terminal IGF2BP2, we detected a
high wildtype IGF2BP2 protein level in Patient 2 compared to Patient 1 in matched tissue
samples using immunofluorescence in combination with cancer cell detection and
quantification (Rebuttal Figure 2d,e) supporting the differential IGF2BP2 expression
described in the results section. This suggests that the IGF2BP2::TESPA1 fusion might have
happened due to chromatin accessibility.

● Apart from confirming tumor-specific wildtype IGF2BP2 expression difference between
patients on protein level that was observed on the gene expression level, our antibody setup
does not allow us to draw conclusions on the protein expression of the patient-specific fusion.
The full-length IGF2BP2-recognizing AB was not able to detect the shortened fusion protein
and the lack of TESPA1 protein sequence in the fusion does not allow for detection of the
fusion partner. Thus, the very nature of the shortened fusion product makes it difficult to detect
on protein level with standard techniques.
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Rebuttal Figure 2. Performance of commercially available antibodies to detect IGF2BP2 and
TESPA1 in cell lines and patient samples. A) Principle of delivery of the fusion-encoding plasmid
and EGFP+ enrichment after transduction in selected cell lines. B) Flow cytometry gating strategy with
evaluation of EGFP+ cells after transduction and FACS-sorting for HEK293 and the ovarian cancer
cell line Kuramochi. C) Immunodetection of overexpressed IGF2BP::TSPA1-HA using various
antibodies, red arrow indicates expected band for IGF2BP2 and TESPA1 antibodies.
D) Representative immunofluorescence images (2 tissue regions per patient) for detection of tumor
(EpCAM+) and C-terminal IGF2BP2 expressing cells in patient 1 (no fusion) and patient 2 harboring
the IGF2BP2::TESPA1 fusion. E) Quantification of immunofluorescence images for determination of
cancer cell-specific expression of IGF2BP2 in matched patient tissue samples,

Antibody details:
1. Mouse IGF2BP2 monoclonal antibody (MA5-25129) recognizing full length protein (aa 1-599)
2. Rabbit IGF2BP2 monoclonal antibody (MA5-42874) recognizing C-terminal peptide region (aa

500-595), which was truncated in the IGF2BP2::TESPA1 fusion
3. Rabbit TESPA1 polyclonal antibody (153352) recognizing 18 amino acid peptide near the amino

terminus of human TESPA1
4. Rabbit HA monoclonal antibody (CST 3724) detects exogenously expressed proteins containing

the HA epitope tag
5. Mouse monoclonal antibody GAPDH (sc-47724) used for reference protein expression
6. Mouse monoclonal antibody GFP (sc-9996) raised against aa 1-239 and used to show

expression of EGFP in cell lines harbouring lentiviral plasmids
All antibodies have been tested on cell lines harbouring the overexpressed fusion together with EGFP
as well as various patient samples depending on biobanked sample availability.
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We have incorporated the obtained data on patient samples into the revised version of the
manuscript. This encompasses the genotyping PCR results (Figure 6a, see below) as well as
immunofluorescence (Extended Data Figure 7). Data obtained from the cell line experiments have
only been included in the rebuttal letter, however, we are open to add them as supplementary data to
the manuscript if the Reviewer feels that it would be appropriate. We also rewrote the 2nd paragraph
of the “Long-read sequencing captures gene fusions and identifies an IGF2BP2::TESPA1 fusion that
was misidentified in short-read data” section, as follows:

We next investigated the footprint of the gene fusion in the short-read data. The TESPA1 gene was
expressed in T cells, as well as in HGSOC cells, where its expression values were elevated. High
expression was exclusive to patient 2 HGSOC cells and colocalized with IGF2BP2 expression (Fig.
5e,f). TESPA1 was the highest differentially expressed gene in cancer cells compared to non-cancer
cells in patient 2 (Pcorr<1.17x10-14). Next, we re-aligned Patient 2’s short-reads to a custom reference
including the IGF2BP2::TESPA1 transcriptomic breakpoint as well as wt TESPA1 and wt IGF2BP2
junctions (Extended Data Fig. 7a, Methods). Out of the 994 reads mapping to the custom reference,
93% preferentially aligned to IGF2BP2::TESPA1 (99.8% of those were from HGSOC cells). This
means that, when given the option, reads previously aligning to IGF2BP2 or TESPA1 are
preferentially mapping to the fusion reference, and the reported overexpression of TESPA1 in short
reads is likely an IGF2BP2::TESPA1 expression. Furthermore, reads covering the TESPA1 3’ UTR
region harbored three heterozygous single nucleotide polymorphisms (hSNPs): chr12:54.950.144
A>T (rs1047039), chr12:54.950.240 G>A (rs1801876), and chr12:54.950.349 C>G (  rs2171497). In
long-reads, wt TESPA1 was either triple-mutated or not mutated at all, indicating two different alleles.
All fusion long-reads, however, were triple-mutated, indicating a genomic origin and monoallelic
expression of the fusion (Fig. 5g). In short reads, the three loci were mutated in nearly all reads,
supporting the hypothesis that the observed TESPA1 expression represents almost completely
IGF2BP2::TESPA1 expression and that it has a genomic origin.

Genomic breakpoint validation of the IGF2BP2::TESPA1 fusion

To validate that the IGF2BP2::TESPA1 gene fusion is the result of genomic rearrangements, both bulk
and single-cell DNA sequencing (scDNA-seq) data from matched omental metastasis was used to
query the genomic breakpoint. A putative genomic breakpoint was first found in the RNA data. Two
long-read fusions were mapped to intronic regions of IGF2BP2 and TESPA1 (Extended Data Fig.
7b), pinpointing the location of the breakpoint at position chr3:185,694,020-chr12:54,960,603.
Subsequent genotyping PCR on genomic DNA extracted from patient-matched tissue samples using
IGF2BP2::TESPA1, wt IGF2BP2, and wt TESPA1 primer pairs flanking the genomic breakpoint
confirmed the presence of IGF2BP2::TESPA1 in Patient 2 in 3 out of 4 tested samples (Fig. 6a,
Methods). In contrast and as expected, the fusion was not found in Patient 1.

To assess whether the fusion was exclusive to cancer cells, we further investigated scDNA-seq data
from Patient 2. For the identification of cancer cells, we inferred the scDNA-seq copy number profiles
of all cells. We successfully identified two distinct clones within the pool of 162 cells. These clones
encompassed a cancer clone designated as "Subclone 0" and a presumably non-cancer clone without
copy number alterations labeled as "Subclone 1" (Fig. 6b). We next aligned the scDNA-seq data to a
custom reference covering the breakpoint (Methods) and only found cancer reads mapping to the
fusion breakpoint (P=0.032), while a mixture of reads from cancer and non-cancer cells mapped to wt
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IGF2BP2 and wt TESPA1 (P=0.78 and P=1.00, respectively) (Fig. 6c). Thus, genotyping PCR of bulk
extracted DNA and scDNA-seq data confirmed the genomic fusion breakpoint in the intronic region
detected in long-read scRNA-seq data. scDNA-seq also confirmed that the IGF2BP2::TESPA1 fusion
was cancer-cell specific, as suggested by long-read scRNA-seq data.

IGF2BP2 was also overexpressed in cancer cells from Patient 2 compared to other patients on both
RNA and protein levels (Extended Data Fig. 8a-c). In Patient 2, there was an elevated copy number
observed within the genomic region encompassing IGF2BP2 (Fig. 6b). Therefore, the presence of a
fusion allele on one allele does not seem to hinder the transcription of the wt IGF2BP2 allele.
Coherent with the high IGF2BP2 protein levels, IGF2 RNA, which is bound by the wt IGF2BP2
protein, is also largely overexpressed in Patient 2 cancer cells compared to other patients (Extended
Data Fig. 8d).. This could indicate that the fusion happened partly due to accessible chromatin. In the
ovarian cancer TCGA RNA dataset, the expression levels of exons surrounding breakpoints of
IGF2BP2 and TESPA1 did not change (Extended Data Fig. 9a,b), and the overall expression of the
genes did not correlate in any patient, suggesting that we detected an uncommon, patient-specific
fusion (Extended Data Fig. 9c).

31



Figure 5: Tumor and patient-specific detection of novel IGF2BP2::TESPA1 gene fusion.
(a) Overview of wt IGF2BP2, wt TESPA1, and IGF2BP2::TESPA1 gene fusion with exon structure. (b)
Overview of wt IGF2BP2, wt TESPA1, and fusion protein with protein domains. RRM:
RNA-recognition motif, KH: heterogeneous nuclear ribonucleoprotein K-homology domain,
KRAP_IP3R_bind: Ki-ras-induced actin-interacting protein-IP3R- interacting domain. (c) Violin plot
showing patient- and tumor-specific IGF2BP2::TESPA1 fusion transcript detection in patient 2. (d)
UMI count in fusion-containing vs. -lacking patient 2 tumor cells. (e) UMAP embeddings of the
cohorts' short-read data. Cells are colored if they express IGF2BP2 (red), TESPA1 (green), or both
(yellow) in short- (left panel) or long-reads (right panel). (f) Raw expression of TESPA1 (left) and
IGF2BP2 (right) in short- (top) or long-reads (bottom), by sample and cell type. (g) IGV view of
short-reads (top), non-fusion long-reads (middle), and fusion long-reads (bottom) mapping to the
3’UTR of TESPA1. Non-fusion reads are either triple hSNP-mutated or non-mutated, while fusion and
short-reads are only triple hSNP-mutated.
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Figure 6: IGF2BP2::TESPA1 fusion breakpoint validation in bulk and scDNA.
(a) Genotyping PCR on genomic DNA isolated from matched patient samples using gene-specific
primers for IGF2BP2::TESPA1 genomic breakpoint (top), wt TESPA1 (middle) and wt IGF2BP2
(bottom). (b) Copy number values per subclone in Patient 2 scDNA-seq data. Sublone 0 has multiple
copy number alterations, indicative of cancer, while Subclone 1 is copy-number neutral, presumably
non-cancer. (c) IGV view of scDNA reads aligning unambiguously to the IGF2BP2::TESPA1 genomic
breakpoint (top), wt TESPA1 (middle), or wt IGF2BP2 (bottom). In red, reads from Subclone 0 cells
(cancer); in blue, reads from Subclone 1 cells (non-cancer).
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Extended Data Figure 8: Immunofluorescence validation of IGF2BP2 expression.
(a) Normalized expression of IGF2BP2 in cancer cells, per patient. (c) Representative
immunofluorescence images (two tissue regions per patient) for detection of tumor (EpCAM+) and
C-terminal IGF2BP2 expressing cells in patient 1 (no fusion) and patient 2 harboring the
IGF2BP2::TESPA1 fusion. (c) Quantification of immunofluorescence images for determination of
cancer cell-specific expression of IGF2BP2 in matched patient tissue samples. (d) Normalized
expression of IGF2 in cancer cells, per patient

In addition, we have added the following sections to the Material & Methods sections. Antibody details
have been incorporated as well.

Genotyping PCR on genomic DNA
Genomic DNA was extracted from homogenized tumor tissue samples (n=8 samples matching
sampling time, Basel Ovarian Biobank) derived from patients using QIAGEN DNeasy Blood & Tissue
kit (#69504). Isolated DNA underwent QC using Nanodrop and Qubit measurements. Genotyping
PCR on genomic DNA was performed using MyTaq DNA Polymerase system from Bioline. Briefly,
MyTaq reaction buffer and MyTaq DNA polymerase were pipetted together with 200 nM primer pairs
(gPCR_IGF2BP2-TESPA1_Bp_F 5’-CCT GCT TTG AGG AGG GGA GGG A-3’ &
gPCR_IGF2BP2-TESPA1_Bp_R 5’-ACT GAG GAC AAT GCT ACG CAA GA-3’; gPCR_TESPA1_F
5’-CCT GCT TTG AGG AGG GGA GGG A-3’ & gPCR_TESPA1_R 5’-TGA GAA CTG CTG TTC CAG
GAG ACA-3’; gPCR_IGF2BP2_F 5’-ACA CTG GAC CCA TGC TTG AGC T-3’ & gPCR_IGF2BP2_R
5’-GCG TGC TAT GAA CAC TCC AGG CC-3’), and 50 ng genomic DNA (gDNA). PCR conditions
were 1 cycle 94°C for 5 min followed by 35 cycles 95°C for 20 sec, 58°C for 15 sec, 72°C for 1 min
and finished with 1 cycle at 72°C for 5 min. Amplicons were visualised on a 1.2 % agarose gel
together with DNA ladder.
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Immunofluorescence
Formalin-fixed and paraffin embedded tissue samples were obtained from the Basel Ovarian Biobank
matching with patient 1 and 2 on sampling time and site. Briefly, samples were deparaffinized and
immersed for 10 min in a 10 mM sodium citrate buffer at pH 6.0 (#C9999, Sigma Aldrich, Switzerland)
at 95°C for antigen retrieval. Samples were permeabilized in 0.25% (v/v) Triton™ X-100 in PBS for 5
min and blocked in 5% FBS, 0.1% Triton™ X-100, 1% BSA in PBS for 1 hour. The following
antibodies were used for this study: rabbit IGF2BP2 (#MA5-42874, ThermoFisher Scientific), EpCAM
(#5488S, Cell Signaling Technologies) goat anti-rabbit Alexa Fluor® 647 (#4414, Cell Signaling
Technology, Switzerland). Slides were mounted using ProLong® Gold Antifade Reagent with DAPI
(#8961, Cell Signaling Technology, Switzerland). Images were acquired using a Nikon spinning-disk
confocal microscope (Nikon CSU-W1 spinning-disk confocal microscope, Nikon Europe, Netherlands)
and processed with Fiji. Cell quantification was performed using an in-house developed QuPath script
for cell detection and annotations.
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