Supplemental material

Here we provide the derivation of the results in Section 3.

In Kasza and Forbes¹³, it is shown that if the block exchangeable model is fit to data generated according to the discrete time decay model (with an equal number of participants m in each of K clusters over T periods), then the following relationships will hold:

$$
E[\hat{\sigma}_{2\epsilon}^{2}] = \sigma_{3\epsilon}^{2}
$$

\n
$$
E[\hat{\sigma}_{\gamma}^{2}] = \sigma_{3\alpha}^{2} \left(\frac{T}{T-1} - \frac{1}{T(T-1)} \sum_{t=1}^{T} \sum_{s=1}^{T} r_{d}^{|t-s|} \right)
$$

\n
$$
E[\hat{\sigma}_{2\alpha}^{2}] = \sigma_{3\alpha}^{2} \left(\frac{1}{T(T-1)} \sum_{t=1}^{T} \sum_{s=1}^{T} r_{d}^{|t-s|} - \frac{1}{T-1} \right).
$$

Hence, by replacing estimators of variance components with their expected values, the within-period intracluster correlation estimated under the block exchangeable model can be written as:

$$
\hat{\rho_b} = \frac{E[\hat{\sigma}_{\gamma}^2] + E[\hat{\sigma}_{2\alpha}^2]}{E[\hat{\sigma}_{\gamma}^2] + E[\hat{\sigma}_{2\alpha}^2] + E[\hat{\sigma}_{2\epsilon}^2]} = \frac{\sigma_{3\alpha}^2}{\sigma_{3\alpha}^2 + \sigma_{3\epsilon}^2} = \rho_d.
$$

Similarly, the cluster autocorrelation estimated under the block exchangeable model can be written as:

$$
\hat{r_b} = \frac{E[\hat{\sigma}_{2\alpha}^2]}{E[\hat{\sigma}_{\gamma}^2] + E[\hat{\sigma}_{2\alpha}^2]} = \frac{\sigma_{3\alpha}^2 \left(\frac{1}{T(T-1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} - \frac{1}{T-1}\right)}{\sigma_{3\alpha}^2} = \frac{1}{T(T-1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} - \frac{1}{T-1}.
$$

Therefore an estimate of the block-exchangeable r_b can be obtained from the discrete time decay model by the simple arithmetic average of all the off-diagonal elements of the matrix Σ from Equation (3).

To find a value of r_d that is aligned with the estimated value from the block exchangeable model, \hat{r}_b , we thus propose solving the following equation:

$$
\sum_{t=1}^{T} \sum_{s=1}^{T} r_d^{|t-s|} - T(T-1)\hat{r}_b - T = 0
$$

The double sum $\sum_{t=1}^{T} \sum_{s=1}^{T} r_d^{|t-s|}$ is the sum over all elements of the correlation matrix Σ from Equation (3), hence the equation is given by:

$$
T + 2(T - 1)r_d + 2(T - 2)r_d^2 + \dots + 2(T - (T - 2))r_d^{T-2} + 2(T - (T - 1))r_d^{T-1} - T(T - 1)\hat{r}_b - T = 0
$$

which, with some minor rearranging, gives the following polynomial in r_d to be solved, yielding Equation (6) in the main text:

$$
(T-1)r_d + (T-2)r_d^2 + \dots + 2r_d^{T-2} + r_d^{T-1} - \frac{T(T-1)}{2}\hat{r_b} = 0.
$$

Prepared using sagej.cls

In Kasza and Forbes¹³ it is also shown that if the exchangeable model is fit to data generated according to the discrete time decay model (with an equal number of participants m in each of K clusters over T periods), then the following relationships will hold:

$$
E[\hat{\sigma}_{1\epsilon}^{2}] = \sigma_{3\epsilon}^{2} + \sigma_{3\alpha}^{2} \left(\frac{(K-1)Tm}{KTm - K - T + 1} - \frac{m(K-1)}{T(KTm - K - T + 1)} \sum_{t=1}^{T} \sum_{s=1}^{T} r_{d}^{|t-s|} \right)
$$

$$
E[\hat{\sigma}_{1\alpha}^{2}] = \sigma_{3\alpha}^{2} \left(\frac{Km - 1}{T(KTm - K - T + 1)} \sum_{t=1}^{T} \sum_{s=1}^{T} r_{d}^{|t-s|} - \frac{K - 1}{KTm - K - T + 1} \right).
$$

Hence, by replacing estimators of variance components with their expected values, the intracluster correlation estimated under the exchangeable model can be written as:

$$
\hat{\rho}_e = \frac{E[\hat{\sigma}_{1\alpha}^2]}{E[\hat{\sigma}_{1\alpha}^2] + E[\hat{\sigma}_{1\epsilon}^2]} = \frac{\sigma_{3\alpha}^2 \left(\frac{Km-1}{T(KTm-K-T+1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} - \frac{K-1}{KTm-K-T+1} \right)}{\sigma_{3\epsilon}^2 + \sigma_{3\alpha}^2 \left(\frac{(K-1)(Tm-1)}{KTm-K-T+1} + \frac{m-1}{T(KTm-K-T+1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} \right)}.
$$

We will assume that $\sigma_{3\epsilon}^2 + \sigma_{3\alpha}^2 = 1$, so that $\sigma_{3\epsilon}^2 = 1 - \sigma_{3\alpha}^2$, and $\rho_d = \sigma_{3\alpha}^2$. Substituting this into the equation above gives:

$$
\hat{\rho}_e = \frac{\rho_d \left(\frac{Km-1}{T(KTm-K-T+1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} - \frac{K-1}{KTm-K-T+1} \right)}{1 + \rho_d \left(\frac{K+T-Tm}{KTm-K-T+1} + \frac{m-1}{T(KTm-K-T+1)} \sum_{t=1}^T \sum_{s=1}^T r_d^{|t-s|} \right)}.
$$

Rearranging this equation gives the following polynomial in r_d , which we propose solving to find values of r_d and ρ_d that are aligned with the estimate of the aggregate intracluster correlation ρ_e , yielding Equation (7) in the main text:

$$
(T-1)r_d + (T-2)r_d^2 + (T-3)r_d^3 + \dots + 2r_d^{T-2} + r_d^{T-1} + \frac{T}{2} \left(1 - \frac{\hat{\rho}_e}{\rho_d} \frac{KTm - K - T + 1}{Km - 1 - \hat{\rho}_e m + \hat{\rho}_e} - \frac{(K - 1 + \hat{\rho}_e K + \hat{\rho}_e T - \hat{\rho}_e T m)}{Km - 1 - \hat{\rho}_e m + \hat{\rho}_e} \right) = 0.
$$

For this equation to be equivalent to the approximation in Equation (8), we need

$$
\frac{K T m - K - T + 1}{K m - 1 - \hat{\rho}_e m + \hat{\rho}_e} - \frac{\rho_d}{\hat{\rho}_e} \frac{(K - 1 + \hat{\rho}_e K + \hat{\rho}_e T - \hat{\rho}_e T m)}{K m - 1 - \hat{\rho}_e m + \hat{\rho}_e}
$$

to be approximately equal to T . Rearranging this gives

$$
T\frac{Km-1-\rho_d+\rho_d m}{Km-1-\hat{\rho}_em+\hat{\rho}_e}+\frac{(1-K)(\hat{\rho}_e+\rho_d)-\rho_d \hat{\rho}_e K}{\hat{\rho}_e(Km-1-\hat{\rho}_em+\hat{\rho}_e)},
$$

Prepared using sagej.cls

which will be close to T when Km is large relative to $\rho_d m$, $\rho_e m$ and K.

Finally, Kasza and Forbes¹³ shows that if the exchangeable model is fit to data generated according to the block exchangeable model (with an equal number of participants m in each of K clusters over T periods), then the following relationships will hold:

$$
E[\hat{\sigma}_{1\epsilon}^2] = \sigma_{2\epsilon}^2 + \sigma_{\gamma}^2 \frac{(KT - K - T + 1)m}{KTm - K - T + 1}
$$

$$
E[\hat{\sigma}_{1\alpha}^2] = \sigma_{2\alpha}^2 + \sigma_{\gamma}^2 \frac{K(m - 1)}{KTm - K - T + 1}.
$$

Hence, by replacing estimators of variance components with their expected values, the intracluster correlation estimated under the exchangeable model can be written as:

$$
\hat{\rho_e} = \frac{E[\hat{\sigma}_{1\alpha}^2]}{E[\hat{\sigma}_{1\alpha}^2] + E[\hat{\sigma}_{1\epsilon}^2]} = \frac{\sigma_{2\alpha}^2 (KTm - K - T + 1) + \sigma_{\gamma}^2 K(m - 1)}{KTm - K - T + 1 + \sigma_{\gamma}^2 (m - 1)(1 - T)}.
$$

We will assume that $\sigma_{2\epsilon}^2 + \sigma_{2\alpha}^2 + \sigma_{\gamma}^2 = 1$, so that $\sigma_{2\alpha}^2 = r_b \rho_b$, and $\sigma_{\gamma}^2 = \rho_b (1 - r_b)$. Substituting this into the equation above gives Equation 9 in the main text.

References

- 1. Hemming K, Kasza J, Hooper R, Forbes A, and Taljaard M. A tutorial on sample size calculation for multiple-period cluster randomized parallel, cross-over and stepped-wedge trials using the shiny crt calculator. *International Journal of Epidemiology* 2020; 49 :979–995.
- 2. Hussey MA and Hughes JP. Design and analysis of stepped wedge cluster randomized trials. *Contemporary Clinical Trials* 2007; 28:182–191.
- 3. Girling AJ and Hemming K. Statistical effciency and optimal design for stepped cluster studies under linear mixed effects models. *Statistics in Medicine* 2016; 35: 2149–2166.
- 4. Hooper R, Teerenstra S, de Hoop E and Eldridge S. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials. *Statistics in Medicine* 2016; 35: 4718–4728.
- 5. Kasza J, Hemming K, Hooper R, Matthews JNS, and Forbes AB. Impact of non-uniform correlation structure on sample size and power in multiple-period cluster randomised trials. *Statistical Methods in Medical Research* 2019; 28:703–716.
- 6. Ouyang Y, Li F, Preisser JS, Taljaard M. Sample size calculators for planning stepped-wedge cluster randomized trials: a review and comparison, *International Journal of Epidemiology* 2022; dyac123, https://doi.org/10.1093/ije/dyac123.
- 7. Korevaar E, Kasza J, Taljaard M, Hemming K, Haines T, Turner EL, Thompson JA, Hughes JP, and Forbes AB Intra-cluster correlations from the CLustered OUtcome Dataset bank to inform the design of longitudinal cluster