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Supplementary files 

S1.xlsx: 

This Excel file contains all the results we obtained when using a number of imputation m = 42. 

The file is composed by: 

- sheet “mean_measures_m42” containing the colored table (Figure 5) showing and detailing the average 

measures obtained by the tested imputation algorithms across the three outcomes. 

- sheets “RB_mean” (see also Supplementary Figure S1), “MSE_mean” (see also Supplementary Figure 

S2), “ER_mean” (see also Supplementary Figure S3), and “CR_mean” contain the four win-tie-loss 

tables (for the RB measure, the MSE measure, the ER measure, the CR measure) obtained by summing 

the wins, ties, losses obtained by each model over the three outcome variables.  

On the right, each of the four sheets contains the mean of the win-tie-loss tables over the three outcomes, 

where the wins, ties, and losses are computed by comparing the models on the rows to the models on 

the column by a paired-sided paired rank sign test .  

The grid shows numbers in the range [-3, +3]; they are computed by representing each win by a +1 

value, each tie as a 0 value, each loss as a -1 value.  

S2.xlsx: 

This Excel file has the same structure of S1.xlsx; it details all the results we obtained when using a number of 

imputation m = 5. 

S3_MCAR.xlsx: 

This Excel file has the same structure of S1.xlsx and S2.xslx; it details all the results we obtained when simulating 

MCAR missingness in the amputated datasets. 

S4_MNAR.xlsx:  

This Excel file has the same structure of S1.xlsx and S2.xslx and S3_MCAR.xlsx; it details all the results we 

obtained when simulating MNAR missingness in the amputated datasets.  
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Supplementary Figures: 

 

Figure S1: Column “average absolute value of RB across predictors and outcomes” reports the average RB measure across the hospitalization, 

invasive ventilation, and patients’ survival outcomes (the table is also made available in Supplementary file S1 – sheet “RB_mean”). Columns 

“wins”, “ties”, “losses” report the sum of, respectively,  wins, ties, and losses computed by comparing the (absolute value of the) RB measures 

over the three outcomes (the corresponding win-tie-loss grid is shown  in the Supplementary material). The comparison between two models over 

an outcome variable is performed with a sided Wilcoxon signed-rank test comparing the distribution of the (absolute) RB values for all the predictor 

variables. The winner is the model achieving the lowest RB distribution. All the models but missRanger with no pmm and using the outcome 

variables in the imputation model are obtaining RB ≤ 0, meaning that the computed estimates are systematically lower than those computed on 

the complete dataset. missRanger with outcome variable in the imputation model and no pmm is instead bringing to the computation of inflated 

estimates. 
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Figure S2: Column “average MSE across predictors and outcomes” reports the average MSE measure across the hospitalization, invasive 

ventilation, and patients’ survival outcomes (the table is also made available in Supplementary file S1 – sheet “MSE_mean”). Columns “wins”, 

“ties”, “losses” report the sum of, respectively, wins, ties, and losses computed by comparing the MSE measures over the three outcomes (the 

corresponding win-tie-loss grid is shown  in the Supplementary material). The comparison between two models over an outcome variable is 

performed with a sided Wilcoxon signed-rank test comparing the distribution of the MSE values for all the predictor variables. The winner is the 

model achieving the lowest MSE distribution. The detailed win-tie-loss grids are reported in the Supplementary material. 
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Figure S3: In column “average ER across outcomes” we report the average ER measure across the hospitalization, invasive ventilation, and patients’ 

survival outcomes (the table is also made available in Supplementary file S1 – sheet “ER_mean”). Columns “wins”, “ties”, “losses” report the sum 

of, respectively,  wins, ties, and losses computed by comparing the distributions of the ER measures over the three outcomes. Since we would like 

each [ERi] (i ∈  {1, … , d}) estimate to be as nearest as possible to 1, for the comparison between two models over an outcome variable we used a 

sided Wilcoxon signed-rank test to compare the following distribution for each model f(ERi) =  ‖1 − ERi‖. The detailed win tie loss grids are 

reported in the supplementary material.  
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Figure S4: Hospitalization event: estimates obtained on the complete dataset obtained by listwise deletion (top-left) and on the full dataset by the 

MI estimation pipelines that use the best missRanger (top-right), Amelia (bottom-left), and Mice (bottom-right) models. For missRanger we used 

no pmm, we did not use the outcome variables in the imputation model, we one-hot encoded categorical predictors and binned numeric predictors 

(age, BMI, and Hba1c), and we used an univariate imputation order given by the decreasing number of missing values; for Mice-norm we included 

the outcome variables in the imputation model, we used an univariate imputation order given by the increasing number of missing values; for 

Amelia we included the outcome variables in the imputation model. 
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Figure S5: Invasive ventilation event: estimates obtained on the complete dataset obtained by listwise deletion (top-left) and on the full dataset by the 

MI estimation pipelines that using the best missRanger (top-right), Amelia (bottom-left), and Mice (bottom-right) models. For missRanger we used 

no pmm, we did not use the outcome variables in the imputation model, we one-hot encoded categorical predictors and binned numeric predictors 

(age, BMI, and Hba1c), and we used an univariate imputation order given by the decreasing number of missing values; for Mice-norm we included 

the outcome variables in the imputation model, we used an univariate imputation order given by the increasing number of missing values; for Amelia 

we included the outcome variables in the imputation model.  
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Figure S6: Death event: estimates obtained on the complete dataset obtained by listwise deletion (top-left) and on the full dataset by the MI estimation 

pipelines that using the best missRanger (top-right), Amelia (bottom-left), and Mice (bottom-right) models. For missRanger we used no pmm, we 

did not use the outcome variables in the imputation model, we one-hot encoded categorical predictors and binned numeric predictors (age, BMI, and 

Hba1c), and we used an univariate imputation order given by the decreasing number of missing values; for Mice-norm we included the outcome 

variables in the imputation model, we used an univariate imputation order given by the increasing number of missing values; for Amelia we included 

the outcome variables in the imputation model. 


