

Protocol Info: Jason D Limberis, Joel Ernst, John Metcalfe, Alina Nalyvayko . selSeq: A method for the enrichment of nonpolyadenylated RNAs including enhancer and long non-coding RNAs for sequencing. protocols.io https://protocols.io/view/selse q-a-method-for-theenrichment-of-non-polyadencrymv7u6

Created: Mar 28, 2023

Last Modified: Jun 12, 2023

PROTOCOL integer ID: 79597

selSeq: A method for the enrichment of nonpolyadenylated RNAs including enhancer and long noncoding RNAs for sequencing

Jason D Limberis¹. John Joel Ernst¹, Metcalfe¹, Alina Nalyvayko¹

¹University of California, San Francisco

Jason D Limberis University of California, San Francisco

ABSTRACT

Non-polyadenylated RNA includes a large subset of crucial regulators of RNA expression and constitutes a substantial portion of the transcriptome, playing essential roles in gene regulation. For example, enhancer RNAs are long non-coding RNAs that perform enhancer-like functions, are bi-directionally transcribed, and usually lack polyA tails. This paper presents a novel method, *sel*Seq, that selectively removes mRNA and pre-mRNA from samples to enable the selective sequencing of crucial regulatory elements, including non-polyadenylated RNAssuch as long non-coding RNA, enhancer RNA, and non-canonical mRNA.

MATERIALS

Required

 SuperScript® III First-Strand Synthesis System Thermo Scientific Catalog #18080-051
RNase H - 1,250 units New England Biolabs Catalog #M0297L
TURBO DNase 2 U/uL Fisher Scientific Catalog #AM2239

X Agencourt RNAClean XP Magnetic Beads Beckman Coulter Catalog #A63987

🔀 Ethanol Contributed by users

A thermocycler and a qPCR machine

A magnetic rack

Optional

Luna Universal Probe One-Step RT-qPCR Kit - 200 rxns New England Biolabs Catalog #E3006S

8 Eukaryotic 18S rRNA Endogenous Control (FAM™/MGB probe, non-primer 8 limited) Thermo Fisher Catalog #4333760F

X TaqMan[™] GAPDH Control Reagents (human) **Thermo Fisher Catalog #402869**

rRNA depletion oligos

Prewarm SuperScript III 10X Buffer to 📳 Room temperature

poly-A tailed cDNA synthesis

1 Mix the following in a 0.2ml tube

A	В
Component	Volume (µl)
Total RNA	1
Oligo dTs	1.5
10 mM dNTP mix	1.5
Nuclease-free H2O	10

poly-A tailed cDNA reaction synthesis components

2 7m Denature sample RNA/primer mixture for 🚫 00:05:00 at 🖁 65 °C then cool to 🔮 4 °C for

≥ 🕑 00:02:00

3 Spin tube briefly and add the following and mix by pipetting

A	В
Component	Volume (µl)
10X SuperScript III Buffer	2
25mM MgCl2	4
0.1M DTT	2
Superscript III Reverse Transcriptase	2

poly-A tailed cDNA reaction synthesis components


Optional: rRNA depletion

4 Add in the appropriate rRNA depletion oligos for you sample

2

55m

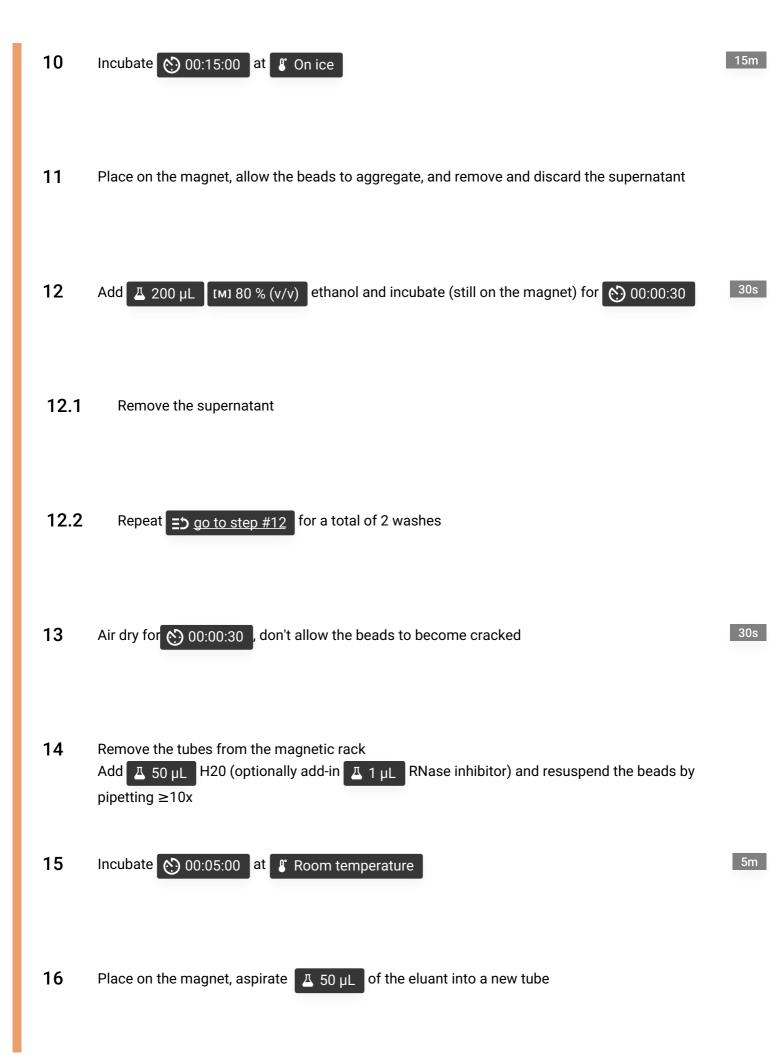
Incubate 📲 90 °C	for 👏 00:02:00	and ramp down to	l Room temperature	at 📱 0.1 °C
per second then pro	oceed to the next s	tep		

poly-A tailed (and ribosomal) DNA depletion

7 Add in the following components and mix gently by pipetting

A	В
Component	Volume (µl)
10X Turbo DNase Buffer	4
Turbo DNase	4
Nuclease-free H2O	10

DNase treatment components



Bead cleanup

9 Add 90 µl (1.8X) of resuspended RNAClean XP Beads to the sample Mix by pipetting 10x

30m

Optional: One-step RT-qPCR quantification

17

A	В
Component	Volume (µl)
Luna Universal Probe One-Step Reaction Mix (2X)	5
Luna WarmStart RT Enzyme Mix (20X)	0.5
TaqMan GAPDH Control Reagents (human; 20x)	0.5
TaqMan 18S rRNA Control Reagents (eukaryotic; 20x)	0.5
RNA	2
Nuclease-free H2O	1.5

Luna RT-qPCR one-step quantification

18

A	В	С	D	E
Step	Temp (C)	Time (s)	Cycles	Ramp Rate (C/s)
Reverse transcription	55	600	1	2.73
Denaturation	95	60	45	2.73
Denaturation	95	10		2.73
Amplification	60	30		2.11
Capture	60	0		-

Cycle parameters for QuantStudio 3