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Text S1 

Regional gene expression maps 
Regional microarray expression data were obtained from 6 post-mortem brains (1 female, age = 24.0–
57.0) provided by the Allen Human Brain Atlas (AHBA; https://human.brain-map.org) [1]. Data 
was processed with the abagen toolbox (https://github.com/rmarkello/abagen) [2] using the 
Schaefer-400 surface-based atlas in MNI space. 

First, microarray probes were reannotated using data provided by Arnatkevic̆iūtė and 
colleagues [3]; probes not matched to a valid Entrez ID were discarded. Next, probes were filtered 
based on their expression intensity relative to background noise [4], such that probes with intensity 
less than the background in ≥ 50% or 25% of samples across donors were discarded. The threshold 
of ≥ 50% was used for correlated gene expression and developmental gene enrichment analyses, and 
≥ 25% was used for creating transcriptomics maps of neuronal subtypes, as it led to removal of fewer 
genes associated with these subtypes. When multiple probes indexed the expression of the same 
gene, we selected and used the probe with the most consistent pattern of regional variation across 
donors (i.e., differential stability) [5], calculated with: 

Δ!(𝑝) =
1
'"#(

 * * ρ,𝐵$(𝑝), 𝐵%(𝑝)/
"

%&$'(

")(

$&(

 

where 𝜌 is Spearman's rank correlation of the expression of a single probe, p, across regions in two 
donors 𝘪 and 𝘫, and N is the total number of donors. Here, regions correspond to the structural 
designations provided in the ontology from the AHBA. 

The MNI coordinates of tissue samples were updated to those generated via non-linear 
registration using the Advanced Normalization Tools (ANTs; 
https://github.com/chrisfilo/alleninf). Samples were assigned to brain regions by minimizing the 
Euclidean distance between the MNI coordinates of each sample and the nearest surface vertex. 
Samples where the Euclidean distance to the nearest vertex was more than 2 standard deviations 
above the mean distance for all samples belonging to that donor were excluded. To reduce the 
potential for misassignment, sample-to-region matching was constrained by hemisphere and gross 
structural divisions (i.e., cerebral cortex, subcortex/brainstem, and cerebellum, such that e.g., a 
sample in the left cerebral cortex could only be assigned to an atlas parcel in the left cerebral cortex) 
[3]. If a brain region was not assigned a sample from any donor based on the above procedure, the 
tissue sample closest to the centroid of that parcel was identified independently for each donor. The 
average of these samples was taken across donors, weighted by the distance between the parcel 
centroid and the sample, to obtain an estimate of the parcellated expression values for the missing 
region. All tissue samples not assigned to a brain region in the provided atlas were discarded.  

Inter-subject variation was addressed by normalizing tissue sample expression values across 
genes using a robust sigmoid function [6]: 
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where <𝓍> is the median and IQR𝓍 is the normalized interquartile range of the expression of a single 
tissue sample across genes. Normalized expression values were then rescaled to the unit interval: 
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Gene expression values were then normalized across tissue samples using an identical procedure. 
Samples assigned to the same brain region were averaged separately for each donor and then across 
donors, yielding a regional expression matrix. We then excluded the right hemisphere regions due 
to the sparsity of samples and large number of regions with no expression data. 

Transcriptomics maps of excitatory and inhibitory neuronal subtypes 
The RNA sequencing of isolated cortical neuronal nuclei and their data-driven clustering has 
previously identified 16 neuronal subtypes, consisting of eight excitatory and eight inhibitory 
subtypes [7]. We used the list of subtype-specific genes and estimated the spatial distribution of each 
subtype by taking the weighted average mRNA expression of genes associated with the subtype, 
weighting each gene by the fraction of its positive values using exon-only derived transcripts per 
million [8]. Of note, few of the genes associated with each neuronal subtype had no eligible 
expression data in the processed AHBA dataset and were omitted from the calculation of subtype-
specific gene expression (Table I). 

We observed significant correlations of the principal axis of laminar thickness covariance 
(LTC G1), asymmetry-based hierarchy and laminar-based hierarchy maps with the spatial variation 
of excitatory and inhibitory neuronal subtypes based on gene expression (Fig I) [1,2,7]. This finding 
was in line with previous work on the association of cortical hierarchy and microstructure with 
cortical microcircuits [8–10]. 
 

 
Fig I. Microcircuitry in association with cortical hierarchy and the principal axis of laminar 
thickness covariance. Spatial distribution of excitatory (a) and inhibitory (c) neuronal subtypes 
based on gene expression (left hemisphere), and their correlation with the principal axis of laminar 
thickness covariance (LTC G1) as well as asymmetry-based and laminar-based hierarchy (b, d). Bar 
length shows the correlation coefficient and its color represents the level of statistical significance 
from white (pvariogram, FDR > 0.05) to black (pvariogram, FDR < 0.001). The data and code needed to generate 
this figure can be found in https://zenodo.org/record/8410965. 
 
Table I. Category and number of genes associated with each neuronal subtype. 

https://zenodo.org/record/8410965
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Neuronal subtype Category Number of genes 
Total (excluded) 

Excitatory   
Ex1 CPN 14 (0) 
Ex2 GN 9 (1) 
Ex3 GN 4 (0) 
Ex4 SCPN 12 (1) 
Ex5 SCPN 8 (0) 
Ex6 SCPN 33 (0) 
Ex7 CThPN 3 (0) 
Ex8 CThPN 57 (5) 
Inhibitory   
In1 VIP+ RELN+ NDNF+ 2 (0) 
In2 VIP+ RELN- NDNF- 4 (0) 
In3 VIP+ RELN+ NDNF- 12 (0) 
In4 VIP- RELN+ NDNF+ 6 (0) 
In5 CCK+ nNOS+ CB+ 7 (2) 
In6 PV+ CRHBP 4 (0) 
In7 SOM+ CB+ NPY+ 6 (0) 
In8 SOM+ nNOS+ 1 (0) 

 
CPN: cortical projection neuron, GN: granule neuron, SCPN: subcortical projection neuron, CThPN: 
corticothalamic projection neuron, SOM: somatostatin, NPY: neuropeptide Y, CB: calbindin-D-28k, 
VIP: vasoactive intestinal peptide, RELN: reelin, nNOS: neuronal nitric oxide synthase, PV: 
parvalbumin, CCK: cholecystokinin, NDNF: neuron-derived neurotrophic factor; CRHBP: 
corticotropin releasing hormone binding protein. 

Correlated gene expression matrix 
The correlated gene expression matrix was computed by correlating the regional gene expression 
patterns between the regions and across all genes, followed by its Z-transformation. 

Further supporting shared genetic effects between regions with similar laminar thickness, 
we observed a correlation of r = 0.24 (pspin = 0.010) between LTC and the correlated gene expression 
matrix. This matrix shows the correlation of gene expression between regions and across all genes, 
based on transcriptomics data obtained from the Allen Human Brain Atlas (AHBA; Fig II) [1,2].  
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Fig II. Correlated gene expression in association with laminar thickness covariance. The gene 
expression data from Allen Human Brain Atlas (left) was used to create correlated gene expression 
(CGE) matrix, showing inter-regional similarity of gene expression profiles (middle), which was 
compared to the laminar thickness covariance matrix (LTC; right). The data and code needed to 
generate this figure can be found in https://zenodo.org/record/8410965. 

Partial least squares regression of LTC G1 with gene expression maps and 
developmental enrichment analysis 
We used partial least squares regression (PLS) to identify genes that show high alignment in their 
regional expression variability with the LTC G1 within the left hemisphere. The scikit-learn package 
(https://scikit-learn.org/stable/) [11] was used to perform single-component PLS between the 
parcellated map of LTC G1 on one side, and the regional expression of all genes on the other side. 
We then ranked the genes based on the absolute value of their weights and selected the top 500 
genes, which were subsequently divided into genes with positive and negative weight. Next, we fed 
the list of top genes with positive and negative alignment to LTC G1 to the online cell-type specific 
expression analysis (CSEA) developmental expression tool (http://genetics.wustl.edu/jdlab/csea-
tool-2/) [12], which involves comparison of the genes against developmental expression profiles 
from the BrainSpan Atlas of the Developing Human Brain (http://www.brainspan.org), and for 
each developmental stage and brain structure reported the inverse log of Fisher's Exact p-values 
corrected using Benjamini-Hochberg approach and based on the specificity index (pSI) threshold of 
0.05. 

We identified distinct sets of genes expressed preferentially at the opposite ends of the LTC 
G1 in adulthood based on the AHBA data, and investigated their developmental enrichment using 
the BrainSpan dataset [12]. We observed distinct spatiotemporal patterns for the expression of each 
set of genes associated with the rostral versus caudal ends of the LTC G1. Specifically, within the 
cerebral cortex, genes preferentially expressed at the caudal end of LTC G1 are mainly expressed in 
mid fetal and post-pubertal stages, while genes with higher expression at the rostral end of LTC G1 
were expressed in late fetal and pre-pubertal stages of development (Fig III). 

 

 

https://zenodo.org/record/8410965
https://scikit-learn.org/stable/
http://genetics.wustl.edu/jdlab/csea-tool-2/
http://genetics.wustl.edu/jdlab/csea-tool-2/
http://www.brainspan.org/
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Fig III. Developmental enrichment of genes expressed in alignment with the principal axis of 
laminar thickness covariance. The average expression of top genes with regional expressions 
aligned to the principal axis of laminar thickness covariance (LTC G1), over-expressed rostrally 
(blue) or caudally (yellow) in the left hemisphere, and their spatiotemporal developmental 
enrichment. The data and code needed to generate this figure can be found in 
https://zenodo.org/record/8410965. The clip-arts are based on Ref. [13] published under CC BY 
4.0 (https://creativecommons.org/licenses/by/4.0/). 
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