## **Supplementary information**

Supplementary Table 1: Demographics of individuals with GAS isolates included in this study

| Demographic           | GAS isolate from throat | 1    | GAS isolate from skin |      | Total  |      |
|-----------------------|-------------------------|------|-----------------------|------|--------|------|
|                       | n=357                   | %    | n=108                 | %    | N=465* | %    |
| Age                   |                         |      |                       |      |        |      |
| 5-9 years             | 219                     | 61.3 | 67                    | 62.0 | 286    | 61.5 |
| 10-15 years           | 138                     | 38.7 | 41                    | 38.0 | 179    | 38.5 |
| Ethnicity             |                         |      |                       |      |        |      |
| Māori                 | 118                     | 34.7 | 32                    | 29.6 | 150    | 33.5 |
| Pacific Peoples       | 108                     | 31.8 | 48                    | 44.4 | 156    | 34.8 |
| NZ European/Other     | 114                     | 33.5 | 28                    | 25.9 | 142    | 31.7 |
| Sex                   |                         |      |                       |      |        |      |
| Male                  | 214                     | 59.9 | 63                    | 58.3 | 277    | 59.6 |
| Female                | 143                     | 40.1 | 45                    | 41.7 | 188    | 40.4 |
| NZiDep - socio-econor | nic deprivation         |      |                       |      |        |      |
| 0 (least deprived)    | 5                       | 1.4  | 2                     | 1.9  | 7      | 1.5  |
| 1                     | 13                      | 3.7  | 6                     | 5.7  | 19     | 4.2  |
| 2                     | 19                      | 5.4  | 8                     | 7.5  | 27     | 5.9  |
| 3                     | 23                      | 6.6  | 8                     | 7.5  | 31     | 6.8  |
| 4                     | 18                      | 5.1  | 10                    | 9.4  | 28     | 6.1  |
| 5                     | 38                      | 10.9 | 11                    | 10.4 | 49     | 10.7 |
| 6                     | 57                      | 16.3 | 22                    | 20.8 | 79     | 17.3 |
| 7                     | 66                      | 18.9 | 13                    | 12.3 | 79     | 17.3 |
| 8 (most deprived)     | 111                     | 31.7 | 26                    | 24.5 | 137    | 30.0 |

<sup>\*</sup> Missing data, n=4

Supplementary Figure 1: Distribution of the 25 most common *emm*-types in the total dataset (n = 469) and by prioritised ethnic groupings. The *emm*-types are plotted in descending order of frequency (shown as number of isolates) and coloured by whether they are included in the 30-valent StreptAnova vaccine. Secondary y-axis shows the cumulative total proportion of isolates (red line) and the cumulative proportion of vaccine *emm*-type from the total isolates (red dashed line).



**Supplementary Table 2:** Contingency table for *emm*-type isolate count data and Chi-squared goodness-of-fit tests results

|                        | No. isolates                           |       |                 | Total isolates | <i>p</i> -value |
|------------------------|----------------------------------------|-------|-----------------|----------------|-----------------|
|                        | Māori                                  | Other | Pacific Peoples |                | •               |
| emm1                   | 21                                     | 29    | 11              | 61             | 0.003*          |
| emm100                 | 0                                      | 0     | 4               | 4              | 0.022*          |
| emm101                 | 4                                      | 1     | 9               | 14             | 0.041*          |
| emm103                 | 4                                      | 4     | 11              | 19             | 0.099           |
| emm104                 | 2                                      | 0     | 1               | 3              | 0.380           |
| emm108                 | 2                                      | 1     | 0               | 3              | 0.366           |
| emm11                  | 4                                      | 2     | 4               | 10             | 0.721           |
| emm110                 | 0                                      | 0     | 2               | 2              | 0.149           |
| emm114                 | 10                                     | 8     | 7               | 25             | 0.738           |
| emm116                 | 0                                      | 0     | 2               | 2              | 0.149           |
| emm118                 | 0                                      | 2     | 1               | 3              | 0.342           |
| emm12                  | 12                                     | 13    | 10              | 35             | 0.720           |
| emm124                 | 1                                      | 1     | 2               | 4              | 0.807           |
| emm15                  | 1                                      | 0     | 1               | 2              | 0.626           |
| emm183                 | 0                                      | 0     | 1               | 1              | 0.387           |
| emm19                  | 7                                      | 2     | 3               | 12             | 0.186           |
| emm2                   | 0                                      | 2     | 0               | 2              | 0.118           |
| emm217                 | 0                                      | 0     | 3               | 3              | 0.058           |
| emm22                  | 1                                      | 6     | 4               | 11             | 0.154           |
| emm225                 | 2                                      | 1     | 2               | 5              | 0.849           |
| emm28                  | 2                                      | 12    | 1               | 15             | <0.001*         |
| emm3                   | 10                                     | 2     | 7               | 19             | 0.091           |
| emm39                  | 0                                      | 0     | 4               | 4              | 0.022*          |
| emm4                   | 8                                      | 14    | 6               | 28             | 0.107           |
| emm41                  | 3                                      | 0     | 0               | 3              | 0.052           |
| emm42                  | 0                                      | 0     | 1               | 1              | 0.387           |
| emm44                  | 2                                      | 1     | 4               | 7              | 0.411           |
| emm49                  | 4                                      | 0     | 1               | 5              | 0.078           |
| emm53                  | 7                                      | 1     | 11              | 19             | 0.026*          |
| emm55                  | 0                                      | 1     | 3               | 4              | 0.191           |
| emm56                  | 1                                      | 1     | 0               | 2              | 0.590           |
| emm58                  | 1                                      | 1     | 1               | 3              | 0.998           |
| emm59                  | 2                                      | 0     | 2               | 4              | 0.391           |
| emm6                   | 6                                      | 6     | 7               | 19             | 0.973           |
| emm65                  | 2                                      | 3     | 4               | 9              | 0.736           |
| emm03<br>emm71         | $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ | 1     | 2               | 3              | 0.730           |
| emm74                  | 1                                      | 0     | 3               | 4              | 0.195           |
| emm7 <b>4</b><br>emm75 | 5                                      | 4     | 4               | 13             | 0.193           |
| emm76                  | 1                                      | 0     | 2               | 3              | 0.325           |
| emm70<br>emm77         | 0                                      | 3     | 0               | 3              | 0.393           |
| emm11<br>emm81         | 6                                      | 3     | 4               | 13             | 0.613           |
| emm81<br>emm82         | $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ | 0     | 2               | 4              | 0.391           |
| emm82<br>emm87         | 1                                      | 1     | 0               | 2              | 0.590           |
| етто /<br>етт89        | 15                                     | 17    | 7               | 40             | 0.390           |
| emm89<br>emm91         | 4                                      | 3     | 1               | 8              | 0.073           |
| emm91<br>emm92         | 1                                      |       | 3               | 5              | 0.399           |
|                        | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0     |                 | 3              | 0.486           |
| emm93                  |                                        |       | 3               |                |                 |
| emm95                  | 1                                      | 0     | 1               | 2              | 0.626           |
| emm98                  | 1                                      | 2     | I               | 4              | 0.740           |

<sup>\*</sup>Indicates a statistically significant values from the Chi-squared goodness-of-fit test. Statistically significant associations based on a low sample number (n<5) are indicated by italics.

**Supplementary Table 3:** Summary of datasets used for lineage-based phylogenetic analysis of the four most prevalent *emm*-types in the study population.

|       | <b>Isolates</b> | Context isolates | Context       | Number of | MLST | Subtypes | Reference |
|-------|-----------------|------------------|---------------|-----------|------|----------|-----------|
|       | (this study)    | (public)         | isolates (NZ) | Countries | (n)  | (n)      | strain    |
| emm1  | 59              | 226              | 6             | 13        | 4    | 14       | MGAS5005  |
| emm89 | 39              | 97               | 8             | 11        | 13   | 8        | MGAS23530 |
| emm12 | 35              | 162              | 8             | 13        | 15   | 24       | HKU16     |
| emm4  | 28              | 82               | 0             | 10        | 21   | 4        | MGAS10750 |



**Supplementary Figure 2**: Maximum likelihood phylogeny of 59 Auckland *emm1* genomes from this study with 226 global context isolates. The tree was inferred from 766 parsimony informative sites from a core genome alignment against the MGAS5005 reference genome. Annotation as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Heatmaps include (a) Context "black" = this study, "grey" = context isolates, (b) *rofA* mutations in shades of green, (c) Baps grouping and Lineage in shades of blue, (d) baps2 groupings and (e) *ermB* gene presence "red" = positive, "grey" = negative.



**Supplementary Figure 3**: Maximum likelihood phylogeny of 35 Auckland *emm12* genomes from this study with 162 global context isolates. The tree was inferred from 1,239 parsimony informative sites from a core genome alignment against the HKU16 M12 reference genome. Phylogenetic tree is annotated as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Heatmaps include (a) Context "black" = this study, "grey" = context isolates, (b) MLST typing, (c) Baps1 grouping, (d) Baps2 groupings.



Supplementary Figure 4. Analysis of the *emm4* genomes (A) Maximum likelihood phylogeny of 28 Auckland *emm4* genomes from this study with 82 global context isolates. The tree was inferred from 26,868 parsimony informative sites from a core genome alignment against the MGAS10750 M4 reference genome. Phylogenetic tree is annotated as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Inner ring refers to study context "black" = this study, "grey" = context isolates, and outer ring refers to Baps clusters. (B) Maximum likelihood phylogeny of 24 Auckland *emm4* genomes in the dominant sequence cluster (Baps2) from this study with 67 global contexts. The tree was inferred from 1,227 parsimony informative sites from a core genome alignment against the MGAS10750 M4 reference genome. Phylogenetic tree is annotated as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Heatmaps include (a) Study context "black" = this study, "grey" = context isolates, (b) MLST typing.



**Supplementary Figure 5: Analysis of the** *emm89* **genomes. (A)** Maximum likelihood phylogeny of 39 Auckland *emm89* genomes from this study with 97 global context isolates. The tree was inferred from 21,052 parsimony informative sites from a core genome alignment against the MGAS23530 reference genome. Phylogenetic tree is annotated as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Inner ring refers to study context "black" = this study, "grey" = context isoaltes, and outer ring refers to Baps clusters. **(B)** Maximum likelihood phylogeny of 33 Auckland *emm4* genomes isolates of the dominant sequence cluster (Baps1) from this study with 78 global contexts. The tree was inferred from 2,106 parsimony informative sites from a core genome alignment against the MGAS23530 reference genome. Phylogenetic tree is annotated as follows; tip colour refers to country of origin for each genome "dark blue" = Aotearoa/New Zealand. Heatmaps include (a) Context "black" = this study, "grey" = context isolates, (b) MLST typing.

## **Supplementary Table 4:** Summary of virulence gene prevalence within Auckland GAS isolates.

| Class                | Gene     | No isolates positive* (%) | Unique variants (amino acid) |
|----------------------|----------|---------------------------|------------------------------|
| Streptodornase/DNAse | spd1/mf2 | 187 (40%)                 | 5                            |
|                      | spd2/mf1 | 469 (100%)                | 13                           |
|                      | spd3/mf3 | 206 (44%)                 | 8                            |
|                      | spd4/mf4 | 17 (4%)                   | 1                            |
|                      | sda      | 94 (20%)                  | 2                            |
|                      | sdn      | 69 (15%)                  | 4                            |
| Superantigens        | speG     | 349 (75%)                 | 17                           |
|                      | smeZ     | 157 (34%)                 | 3                            |
|                      | speC     | 157 (34%)                 | 3                            |
|                      | speJ     | 157 (34%)                 | 3                            |
|                      | speA     | 82 (17%)                  | 6                            |
|                      | ssa      | 76 (16%)                  | 1                            |
|                      | speL     | 75 (16%)                  | 7                            |
|                      | speK     | 72 (15%)                  | 6                            |
|                      | speH     | 71 (15%)                  | 5                            |
|                      | speI     | 41 (9%)                   | 1                            |
|                      | speR     | 21 (4%)                   | 4                            |
|                      | speM     | 14 (3%)                   | 4                            |
|                      | speQ     | 12 (3%)                   | 3                            |
| Capsule              | hasA     | 469 (100%)                | 25                           |
|                      | hasB     | 371 (80%)                 | 41                           |
|                      | hasC     | 289 (62%)                 | 36                           |
| Regulators           | mgal     | 136 (29%)                 | 12                           |
| _                    | mga2     | 315 (67%)                 | 40                           |
|                      | rofA     | 328 (70%)                 | 42                           |
|                      | nra      | 107 (22%)                 | 11                           |
| Other                | sla      | 97 (20%)                  | 2                            |
|                      | ska1     | 170 (36%)                 | 14                           |
|                      | ska2     | 297 (63%)                 | 48                           |
|                      |          |                           |                              |

## **Supplementary Table 5:** Summary of antimicrobial resistance gene prevalence within Auckland GAS isolates.

| Class          | Gene         | No isolate positive (%) |
|----------------|--------------|-------------------------|
| Aminoglycoside | aph(3')-IIIa | 1 (<1%)                 |
| Macrolide      | erm(A)       | 3 (1%)                  |
| Macrolide      | erm(B)       | 7 (1%)                  |
| Aminoglycoside | mef(A)       | 2 (<1%)                 |
| Aminoglycoside | msr(D)       | 2 (<1%)                 |
| Tetracycline   | tet(M)       | 74 (16%)                |
| Tetracycline   | tet(O)       | 1 (<1%)                 |

**Supplementary Table 6: Theoretical coverage provided by the 30-valent StreptAnova vaccine.** Values are presented assuming cross-opsonisation or no cross-opsonisation in the prioritised ethnic groups, VE – Vaccine *emm*-type, NVE – Non-vaccine *emm*-type, CO – cross opsonisation.

|               | Total             |              | Māori         |              | Pacific Peoples |              | Other         |              |
|---------------|-------------------|--------------|---------------|--------------|-----------------|--------------|---------------|--------------|
|               | No. emm           | No. isolates | No. emm types | No. isolates | No. emm types   | No. isolates | No. emm types | No. isolates |
|               | types (%)         | (%)          | (%)           | (%)          | (%)             | (%)          | (%)           | (%)          |
| Total emm     | 49 (100)          | 469 (100)    | 36 (100)      | 157 (100)    | 43 (100)        | 163 (100)    | 32 (100)      | 149 (100)    |
| types and     |                   |              |               |              |                 |              |               |              |
| isolates      |                   |              |               |              |                 |              |               |              |
| Assuming no c | cross-opsonisatio | n            |               |              |                 |              |               |              |
| VE in         | 21 (42.9)         | 329 (70.2)   | 18 (50.0)     | 117 (74.7)   | 18 (41.9)       | 84 (51.2)    | 19 (59.4)     | 128 (86.0)   |
| dataset       |                   |              |               |              |                 |              |               |              |
| NVE in        | 28 (57.1)         | 140 (29.8)   | 18 (50.0)     | 40 (25.3)    | 25 (58.1)       | 79 (48.8)    | 13 (40.6)     | 21 (14.0)    |
| dataset       |                   |              |               |              |                 |              |               |              |
| Assuming cros | ss-opsonisation   |              |               |              |                 |              |               |              |
| CO positive   | 29 (59.2)         | 372 (79.4)   | 22 (61.1)     | 128 (81.6)   | 26 (60.5)       | 111 (67.9)   | 22 (68.8)     | 133 (89.3)   |
| and VE in     |                   |              |               |              |                 |              |               |              |
| dataset       |                   |              |               |              |                 |              |               |              |
| CO negative   | 20 (40.8)         | 97 (20.6)    | 14 (38.9)     | 29 (18.4)    | 17 (39.5)       | 52 (32.1)    | 10 (31.3)     | 16 (10.7)    |
| and NVE in    |                   |              |               |              |                 |              |               |              |
| dataset       |                   |              |               |              |                 |              |               |              |

**Supplementary Table 7: Theoretical coverage provided by the TeeVax vaccine.** Values are presented assuming cross-opsonisation or no cross-opsonisation and prioritised ethnic groups. VT – Vaccine *tee*-type, NVT – Non-vaccine *tee*-type, CR – cross reactivity only observed in two additional *tee*-types in this dataset *tee*18.2 and *tee*28.1

|                                     | Total                |                  | Māori             |                  | Pacific Peoples          |                  | Other                    |                  |
|-------------------------------------|----------------------|------------------|-------------------|------------------|--------------------------|------------------|--------------------------|------------------|
|                                     | No. tee<br>types (%) | No. isolates (%) | No. tee types (%) | No. isolates (%) | No. <i>tee</i> types (%) | No. isolates (%) | No. <i>tee</i> types (%) | No. isolates (%) |
| Total tee<br>types and<br>isolates  | 35 (100)             | 469 (100)        | 27 (100)          | 157 (100)        | 31 (100)                 | 163 (100)        | 25 (100)                 | 149 (100)        |
| Assuming No C                       | Cross-reactivity     |                  |                   |                  |                          |                  |                          |                  |
| VT in dataset                       | 18 (51.4)            | 353 (75.2)       | 18 (66.6)         | 114 (72.6)       | 17 (54.8)                | 119 (73.0)       | 14 (56.0)                | 120 (80.5)       |
| NVT in dataset                      | 17 (48.6)            | 116 (24.8)       | 16 (33.4)         | 43 (27.4)        | 14 (45.2)                | 44 (27.0)        | 11 (44.0)                | 29 (19.5)        |
| Assuming Cro                        | ss-reactivity        |                  |                   |                  |                          |                  |                          |                  |
| CR positive<br>and VT in<br>dataset | 20 (57.2)            | 381 (81.2)       | 18 (66.6)         | 126 (80.2)       | 19 (61.2)                | 128 (78.5)       | 15 (60.0)                | 127 (85.2)       |
| CR negative and NVT in dataset      | 15 (42.8)            | 88 (18.8)        | 9 (33.4)          | 31 (19.8)        | 12 (38.8)                | 35 (21.4)        | 10 (40.0)                | 22 (14.8)        |