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Supplementary Materials 
 

Supplementary Notes 

 

PhenoSV-light training and testing 

We recognize that the most time-consuming step for executing PhenoSV involves annotating 

SVs, which requires querying 238 features for all genome segments impacted by SVs. To 

enhance the usability of PhenoSV, we developed a lightweight version of the model, aptly 

named PhenoSV-light. PhenoSV-light consists of 42 important features with much improved 

annotation efficiency and minimally compromised predictive accuracy. The selection of these 

42 important features was guided by feature importance results (Figure 3e-g), which 

demonstrated that combining all feature categories together led to the best results, 

outperforming the use of individual feature categories alone. Additionally, we observed that 

important features differed between coding SVs and noncoding SVs. Accordingly, we selected 

the top 5 important features from each of the 5 categories for coding SVs and noncoding SVs, 

respectively, resulting in the final set of 42 important features in total (Table S5). PhenoSV-

light was trained using the same training and validation datasets, and we utilized the same 

hyperparameters as those used during PhenoSV trainings. To test whether PhenoSV-light can 

be used as an effective alternative of the original PhenoSV model, we compared model 

performance between two models using the same test datasets in the main manuscript. Figure 

S2 demonstrates that PhenoSV-light achieved largely comparable prediction accuracy to 

PhenoSV, except for translocations. This indicates that PhenoSV-light offers a highly efficient 

alternative for most SV types. As a result, PhenoSV-light becomes a practical and effective 

option for various analyses, presenting a more accessible and time-saving approach for 

researchers using the PhenoSV tool. 

 

Sensitivity analysis of window size selection for SV proxies  

PhenoSV uses 100bp deletions to approximate impacts of insertions and noncoding 

breakpoints of inversions. To assess the influence of the window size settings on model 

predictions, we conducted sensitivity analysis by comparing PhenoSV predictions in the test 

dataset of insertions with window sizes being 50bp, 100bp, 150bp, 200bp, 300bp, and 500bp. 

As shown in Figure S3, PhenoSV predictions were highly correlated across different window 

sizes, ranging from 0.95 to 1, and the model’s overall performance achieved nearly identical 

AUCs. The results demonstrate the robustness and stability of PhenoSV predictions when 

choosing different window sizes for SV proxies.  

 

Splitting datasets by chromosomes and splitting datasets by random 

In this study, we implemented a chromosome-based splitting strategy to divide the training, 

validation, and hold-out test datasets. This approach ensures that SVs in validation and the 

hold-out sets do not overlap with SVs in the training set, which is a commonly used strategy to 

prevent information leakage and ensure reliability of our test results. StrVCTVRE is one of the 

examples that adopted this strategy, where they used leave-one-chromosome-out for cross 
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validation and utilized specific chromosomes from ClinVar as the hold-out test set. To assess 

the validity of the strategy of splitting by chromosomes, we conducted experiments using 

random splitting of the dataset. We kept the numbers of pathogenic SVs and benign SVs, 

coding SVs and noncoding SVs in the training, validation, and hold-out test datasets the same 

as in the chromosome-based strategy. The results, as shown in Table S6, indicated that random 

splitting led to improved performance in the hold-out test dataset for both coding SVs (AUC 

of random split: 0.948; AUC by chromosome: 0.911) and noncoding SVs (AUC of random 

split: 0.89; AUC by chromosome: 0.86), On the other hand, the performance in the independent 

test datasets for small SVs (AUC of random split: 0.876; AUC by chromosome: 0.874) and 

large SVs (AUC of random split: 0.769; AUC by chromosome: 0.770) remained nearly the 

same for both splitting strategies. Although the results indicated similar model performance 

metrics in the independent test datasets for both splitting approaches, it is crucial to 

acknowledge that random splitting may lead to inflated performance results within the hold-

out test set due to the potential presence of information leakage.  

 

Potential issues of model overfitting 

Given the large feature set used in the PhenoSV model, we acknowledge the potential risks of 

overfitting, particularly if there are strongly correlated features. To address this concern and 

mitigate the overfitting issue, we employed several techniques during our analysis. First, we 

implemented model regularization techniques, including drop-out layers and weight decays, 

during the model training process. These regularization methods help prevent the model from 

becoming overly sensitive to the training data, reducing the risk of overfitting and enhancing 

its generalization. Second, we took the precaution of splitting our training, validation, and hold-

out test datasets by chromosomes to avoid information leakage and maintain the integrity of 

the test results. Thirdly, comparable performance between PhenoSV and PhenoSV-light 

demonstrated that the large feature set is less of a concern in terms of leading to overfitting 

(Figure S2). Taken together, the PhenoSV model has been designed and trained with careful 

attention to overfitting issues.  

 

Ambiguities of pathogenicity labels with different disease definitions 

The pathogenicity assessment of SVs can exhibit variability based on disease delimitations, 

and even the labels within the ClinVar dataset may sometimes introduce ambiguities. 

Specifically, the labels include: "benign," "benign/likely benign," "likely pathogenic," 

"pathogenic," "pathogenic/likely pathogenic," "uncertain significance," and "conflicting 

interpretations of pathogenicity." To handle this issue, two strategies are worthy of 

considerations: treating SV classification as a multi-category task, or training disease specific 

models. However, PhenoSV adopted a distinct strategy by training a generic model by treating 

SV pathogenicity labels as a binary variable. First, treating SV pathogenicity labels as a binary 

variable is a commonly employed strategy in existing machine learning-based models, such as 

in CADD-SV, SVFX, and StrVCTVRE. The main reason is that binary classification can 

facilitate minimization of loss function and increase interpretability of models on a quantitative 

scale. Therefore, we focused our model training on distinguishing between pathogenic SVs and 
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benign SVs using binary labels. However, this approach allows for a straightforward 

interpretation and the continuous confidence scores (ranging from 0 to 1) can be used to infer 

the probabilities of an SV being pathogenic in general, irrespective of disease types. In the next 

step, when phenotype or disease information is available, we use the information to further 

fine-tune the score to reflect the pathogenicity of variants with respect to specific diseases. To 

test whether PhenoSV can keep the ordinal information of SV pathogenicity (benign, likely 

pathogenic, and pathogenic) even trained with binary labels, we compared the predicted 

PhenoSV scores over the three categories “benign”, “likely pathogenic” and “pathogenic” in 

the hold-out test dataset. As shown in Figure S5, the median pathogenicity score predicted by 

PhenoSV is 0.05 for benign SVs, 0.85 for likely pathogenic SVs, and 0.91for pathogenic SVs. 

This increasing trend suggested the advantage of training SV pathogenicity using binary labels. 

Second, training a disease-specific model with combined inputs of SV features and patient’s 

phenotype terms can be appealing, compared to our current procedure of training a general 

model and then fine-tune model output using phenotype terms when available. However, to 

implement this strategy, we encountered the practical problem that most of the training samples 

do not have the corresponding phenotypes or even the disease information. With reduced 

sample size, the results are not satisfactory even in cross validation settings. Furthermore, as 

there are almost 18,000 possible HPO terms, adding raw HPO terms greatly increased the 

model complexities even when phenotype embedding is used in the predictive model. Thus, 

we opt to a generic model and utilize extra genotype-phenotype associations (e.g. Phen2Gene) 

to infer SV-disease associations. This procedure has the advantage of working on both 

relatively common diseases with general disease descriptors (such as disease name only 

without HPO terms) and rare diseases with more specific phenotype terms (such as a list of 

HPO terms). 

 

Imbalanced numbers of coding SVs and noncoding SVs for training 

There exists significant class imbalance between the numbers of coding SVs and noncoding 

SVs in the training dataset due to the much better understanding and disease annotation of 

coding variants (which may directly disrupt gene products) versus noncoding variants (which 

may target regulatory regions that influence levels of gene expression). While we recognize 

this issue, we did not adopt simulation approaches to artificially generate structural variants or 

under/over sampling strategies, to balance the numbers of coding SVs and noncoding SVs. The 

main reason is that the performance of computational approaches critically depends on how the 

simulation is performed for noncoding variants, yet it is difficult to justify what is the 

appropriate simulation strategy for the pathogenicity of noncoding SVs. Instead, to alleviate 

the class imbalance issue, we made the coding SVs and noncoding SVs “look alike” in the 

input feature space. Specifically, we segmented coding SVs into sequences of noncoding and 

coding regions that the SVs impact directly. If we only input the noncoding regions that 

noncoding SVs impact directly, the coding SVs and noncoding SVs are straightforward to be 

distinguished by the model through features such as exon annotations. Thus, for noncoding 

SVs, we segmented coding and noncoding regions within a given distance or TAD (see 

Methods, SVs segmentation). Only masks of attention heads between coding SVs and 
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noncoding SVs are different. In this way, we essentially incorporated into the model the 

information that noncoding SVs learned from large number of coding SVs.  

 

Interpretations of disease-associated common SVs 

In this study, we filtered out common SVs from the training dataset. The rationale behind this 

step lies in the fact that removing common SVs can help decrease false positive rate in the 

training dataset. Moreover, by removing common SVs, PhenoSV is steered to capture features 

that predicts SV pathogenicity, rather than being confounded by the distinction between rare 

and common SVs. Although some disease-risk SVs are germline SVs and commonly presented 

in large human cohorts, we anticipate that the challenge in clinical interpretation of SVs is to 

identify highly penetrant variants with large effect sizes, rather than finding disease associated 

polymorphisms as they usually serve as proxy markers for another disease-casual genetic 

mutation within a linkage disequilibrium block. For example, a 32kb LCE3C/LCE3B deletion 

(chr1: 152583066-152615265, GRCh38) has been shown to be associated with risk of 

psoriasis1, and it appears in 64% psoriasis patients and 55% controls. Since this deletion was 

not in our training dataset, we investigated this common variant using PhenoSV. PhenoSV 

predicted this SV to be benign with a score of 0.009. When examining genes separately, 

LCE3C has a score of 0.008 while LCE3B has a score of 0.011. We then searched the genomic 

region of this deletion in ClinVar and found a 203kb copy number loss that covers the entire 

32kb region and contains both LCE3C/LCE3B, yet this copy number loss is asserted as being 

benign (VCV000152664.1, chr1: 152526704-152729716, GRCh38). Therefore, this SV, which 

is a genetic polymorphism, may be associated with diseases with small effect sizes of OR=1.4, 

but a complete loss of the region does not impact disease status.  

 

Different thresholds of PhenoSV scores in transmission analysis 

To explore whether different thresholds of PhenoSV scores when defining pathogenic and 

benign SVs will change the conclusion in the transmission analysis, we re-conducted the 

analysis by assigning the top 30% SVs as pathogenic and the bottom 30% SVs as benign based 

on PhenoSV score quantiles. (Paternal SVs: <=0.31 as benign, >=0.58 as pathogenic, Maternal 

SVs: <=0.37 as benign, >=0.71 as pathogenic). We compared the original results using 0.5 as 

the cut-off value (Table S7) and the new results using quantile scores as the cut-off values 

(Table S8). We found that different thresholds do not influence the overall conclusion of the 

analysis. Specifically, predicted pathogenic paternal SVs exhibited over-transmission pattern 

to cases with the transmission rate being 0.71 (0.5 cutoff, binomial test p-value = 0.01) and 

0.72 (quantile cutoff, binomial test p-value=0.02), respectively. Predicted benign SVs have 

transmission rate being 0.64 (0.5 cutoff, binomial test p-value = 0.04) and 0.68 (quantile cutoff, 

binomial test p-value = 0.07), respectively. Consistent with our original analysis, we observed 

a slightly larger effect size of over-transmission pattern for paternally inherited pathogenic SVs 

than benign SVs. Due to the small sample sizes, no statistical significance was achieved when 

comparing transmission rate between predicted paternal pathogenic SVs and predicted benign 

paternal SVs (0.5 cutoff: two-sided proportion test: p-value=0.656; quantile cutoff: p-

value=0.910). 
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Potential ascertainment biases between the test dataset of small and large SVs 

As shown in Figure 3b-c, all models except for CADD-SV yielded lower AUCs in the test set 

of large SVs than those in the test set of small SVs. This finding aligns with the results 

presented in the StrVCTVRE2 paper, where the authors reported higher AUCs for SVs 

categorized as either small(<30kb) or large (>500kb) than those with mid-length (30kb-500kb). 

The decreased model performance for larger SVs could be attributed to potential ascertainment 

biases between the test dataset of small SVs and the test dataset of large SVs, due to the 

differences in SV detection technologies. Specifically, larger SVs with sizes over 100kbp are 

primarily detected by microarrays (with imprecise breakpoints) and are more likely to be 

reported in literature. On the other hand, smaller SVs, ranging from 50bp to 100kbp, are 

commonly identified using Next-Generation Sequencing (NGS) techniques; most of these SVs 

are not reported in literature or documented in databases unless there is clear evidence for 

pathogenicity.  
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Supplementary tables and figures 

 

 

Figure S1. Feature importance for two novel SVs measured by input x gradient. Displayed are 20 features (y-

axis) with largest (positive, red) input x gradient values (x-axis) and 20 features with smallest (negative, blue) 

input x gradient values (x-axis). Features with positive input x gradient values are ones driving 𝑝𝑠𝑣 to 1. Features 

with negative input x gradient values are ones driving 𝑝𝑠𝑣  to 0. (a) deletion at chr15:48452562-48463240, 

GRCh38 (b) insertion at chr16:30712369-30712370, GRCh38 
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Figure S2. Comparison of model performance between PhenoSV (238 features) and PhenoSV-light (42 features). 

(a) Model AUCs in the hold-out test dataset for coding SVs (n=1,385 pathogenic and n=1,174 benign SVs, solid 

lines) and noncoding SVs (n=57 pathogenic and n=57 benign SVs, dashed lines). (b-c) Model AUCs in the 

independent test datasets of small coding SVs (n=383 pathogenic and n=366 benign SVs) with sizes ranging from 

50bp to 100kbp and large coding SVs (n=1,208 pathogenic and n=801 benign SVs) with sizes ranging from 

100kbp to 1Mbp. (d) Model AUCs in the test datasets of insertions (n=175 pathogenic SVs and n=175 benign 

SVs), inversions (n=20 pathogenic SVs and n=20 benign SVs), and translocations (n=68 pathogenic fusion 

transcripts and n=38 benign fusion transcripts). Source data are provided as a Source Data File. 
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Figure S3. Impacts of window size on PhenoSV predictions. (a) Displayed are Pearson’s correlation coefficients 

between PhenoSV_size1 predictions and PhenoSV_size2 predictions. (b) Model AUCs. Window sizes were set 

as 50bp, 100bp, 150bp, 200bp, 300bp, and 500bp. Test dataset of insertions (n=175 pathogenic SVs and n=175 

benign SVs) was used for evaluation. Source data are provided as a Source Data File. 
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Figure S4. Precision-recall curves for PhenoSV. (a) Model auPRCs in the hold-out test dataset for coding SVs 

(n=1,385 pathogenic and n=1,174 benign SVs) and noncoding SVs (n=57 pathogenic and n=57 benign SVs). (b) 

Model auPRCs in the independent test datasets of small coding SVs (n=383 pathogenic and n=366 benign SVs) 

with sizes ranging from 50bp to 100kbp and large coding SVs (n=1,208 pathogenic and n=801 benign SVs) with 

sizes ranging from 100kbp to 1Mbp. (c) Model auPRCs in the test datasets of insertions (n=175 pathogenic SVs 

and n=175 benign SVs), inversions (n=20 pathogenic SVs and n=20 benign SV), and translocations (n=68 

pathogenic fusion transcripts and n=38 benign fusion transcripts). Source data are provided as a Source Data File. 
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Figure S5. Boxplots of predicted PhenoSV score distributions in the hold-out test dataset for coding SVs from 

ClinVar (n=1,109 pathogenic SVs, n=276 likely pathogenic SVs, and n=1,174 benign SVs). Median (center line), 

IQR (box limits), and outliers (points) that exceeding 1.5x IQR were shown in the boxplot.  
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Figure S6. PhenoSV performance for sex chromosomes of chrX and chrY. (a) model AUC (0.94, 95% CI: 0.93-

0.95) (b) model auPRC (0.94). PhenoSV performance was evaluated in the sex chromosome test dataset (2,034 

pathogenic and 1,934 benign SVs). Source data are provided in the Source Data File. 
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Table S1. Model performance before and after calibrating PhenoSV scores     

Dataset 
Before Calibration After Calibration 

AUC ACC SEN SPE AUC ACC SEN SPE 

Hold-out test Coding (1385+, 1174-) 0.911 0.839 0.852 0.825 0.911 0.842 0.857 0.824 

Hold-out test Noncoding (57+, 57-) 0.86 0.658 0.93 0.386 0.86 0.816 0.719 0.912 

Independent test, Coding Small (383+, 366-) 0.874 0.777 0.731 0.825 0.874 0.776 0.731 0.822 

Independent test, Coding Large (1208+, 801-) 0.77 0.667 0.514 0.899 0.77 0.67 0.519 0.898 

Test insertion (175+, 175-) 0.99 0.937 0.989 0.886 0.99 0.937 0.983 0.891 

Test inversion (20+, 20-) 0.898 0.875 0.8 0.95 0.95 0.875 0.75 1 

Test translocation (68+, 38-) 0.836 0.731 1 0.222 0.836 0.731 1 0.222 
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Table S2. Counts of COSMIC CNVs that have overlapping genomic regions with 

rCNVs and corresponding HPO terms  

Tumor Type HPO SV Number 

bone osteosarcoma HP:0002669 34 

breast carcinoma HP:0003002 428 

central nervous system glioma HP:0009733 15 

central nervous system 

medulloblastoma 
HP:0002885 24 

large intestine carcinoma HP:0100834 8 

liver carcinoma HP:0002896 178 

lung carcinoma HP:0100526 21 

pancreas carcinoma HP:0002894 454 

prostate carcinoma HP:0012125 1661 

endometrium carcinoma HP:0012114 17 

skin malignant melanoma HP:0002861 7 

Total   2847 

 

 

 

 

 

 

 

 

 

  



 14 

Table S3. Overlapped rCNV segments and COSMIC CNVs affecting three types of genes, 

including those associated with inherited diseases, those associated with cancers and those 

associated with both inherited diseases and cancers. 

rCNV rCNV ID 
# of COSMIC CNVs  

(coding) 

# of COSMIC CNVs  

(noncoding) 

16p11.2 
merged_DEL_segment_16p11.2_A; 

merged_DUP_segment_16p11.2_A 
0 5 

17p11.2 
merged_DUP_segment_17p11.2; 

merged_DEL_segment_17p11.2 
8 43 

17q11.2 merged_DEL_segment_17q11.2 10 55 

18p11.23-

p11.32 
merged_DUP_segment_18p11.23-p11.32 2 0 

Total   20 103 
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Table S4. Comparision between PhenoSV and SvAnna in prioritizing phenotype-

associated SVs.  

Dataset PhenoSV SvAnna 

Coding SVs, hold out test set (n=1,007) 83.81% 97.12% 

Coding SVs, independent test set (n=494) 50% 20.64% 

Noncoding SVs (n=193)  22.28% 8.29% 

Insertions and inversions (n=149) 96.76% 87.92% 

Values in the table are the percentage of simulated SV profiles whose true pathogenic SVs are prioritized within 

top 20 among ~19000 SVs 
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Table S5. Features in PhenoSV-light model  

gcpercent_mean remap_crm_max 

cadd_max utr5_max 

hi_max lncrna_max 

pli_max encode_els_max 

pHaplo_max loeuf_min 

omimgene_max gene_sum 

metalr_max superenhancer_sum 

mvp_max tad_stability_sum 

mpc_max chromhmm_8 

ccrs_max chromhmm_14 

revel_max conshmm_50_7 

cdts_max conshmm_50_32 

gwrvis_max conshmm_50_49 

atac_esc_max conshmm_100_28 

dnase_esc_max conshmm_100_38 

h2afz_esc_max conshmm_100_41 

h3k4me3_esc_max conshmm_100_47 

H3K9me3_esc_max conshmm_100_52 

H3K27me3_esc_max conshmm_100_86 

H3K36me3_esc_max conshmm_100_87 

POLR2A_esc_max SV type 
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Table S6. Model performance of splitting by chromosomes and splitting by random    

Dataset 
Split by chromosomes Split by random 

AUC ACC SEN SPE AUC ACC SEN SPE 

Hold-out test Coding (1385+, 

1174-) 
0.911 0.842 0.857 0.824 0.948 0.871 0.909 0.827 

Hold-out test Noncoding (57+, 

57-) 
0.86 0.816 0.719 0.912 0.89 0.781 0.667 0.895 

Independent test, Coding Small 

(383+, 366-) 
0.874 0.776 0.731 0.822 0.876 0.796 0.791 0.801 

Independent test, Coding Large 

(1208+, 801-) 
0.77 0.67 0.519 0.898 0.769 0.669 0.54 0.863 
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Table S7. Transmission analysis with pathogenicity threshold of 0.5. 

  
PhenoSV 

stratification 

paternal 

total 

father 

transmitted 

father 

untransmitted 

father  

transmitted rate 

Two-sided 

binomial 

test of 

father p 

maternal 

total 

mother 

transmitted 

 mother 

untransmitted  

mother 

transmitted 

 rate 

Two-

sided 

binomial 

test of 

mother 

p 

case 

all 100 67 33 0.67 (0.57, 0.76) 0. 0008737 79 47 32 0.59 (0.48, 0.70) 0.1147 

predicted 

pathogenic 
41 29 12 0.71 (0.54, 0.84) 0.01151 47 28 19 0.60 (0.44, 0.74) 0.243 

predicted  

benign 
59 38 21 0.64 (0.51, 0.76) 0.03634 32 19 13 0.59 (0.41, 0.76) 0.3771 

control 

all 26 16 10 0.62 (0.41, 0.80) 0.3269 17 10 7 0.59 (0.33, 0.82) 0.6291 

predicted 

pathogenic 
11 7 4 0.64 (0.31, 0.89) 0.5488 13 8 5 0.62 (0.32, 0.86) 0.5811 

predicted 

benign 
15 9 6 0.60 (0.32, 0.84) 0.6072 4 2 2 0.50 (0.07, 0.93) 1 
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Table S8. Transmission analysis with pathogenicity threshold of 30% and 70% quantiles. 

  
PhenoSV 

stratification 

paternal 

total 

father 

transmitted 

father 

untransmitted 

father  

transmitted rate 

Two-sided 

binomial 

test of 

father p 

maternal 

total 

mother 

transmitted 

 mother 

untransmitted  

mother 

transmitted 

 rate 

Two-

sided 

binomial 

test of 

mother 

p 

case 

all 100 67 33 0.67 (0.57, 0.76) 0.0008737 79 47 32 0.59 (0.48, 0.70) 0.1147 

predicted 

pathogenic 
29 21 8 0.72 (0.53, 0.87) 0.02412 24 11 13 0.46 (0.25, 0.67) 0.8388 

predicted  

benign 
31 21 10 0.68 (0.49, 0.83) 0.07076 25 12 13 0.48 (0.28, 0.69) 1 

control 

all 26 16 10 0.62 (0.41, 0.80) 0.3269 17 10 7 0.59 (0.33, 0.82) 0.6291 

predicted 

pathogenic 
9 6 3 0.67 (0.30, 0.93) 0.5078 5 2 3 0.4 (0.05, 0.85) 1 

predicted 

benign 
7 4 3 0.57 (0.18, 0.90) 1 4 2 2 0.5 (0.07, 0.93) 1 
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