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PhenoSV: Interpretable phenotype-aware model for the

prioritization of genes affected by structural variants



Reviewer #1 (Remarks to the Author): 

The paper is in general very well written, and the authors proposed a phenotype-aware machine-

learning model, PhenoSV, enabling the interpretation of all types of SVs and genes within and 

outside SV. And the proposed method outperforms existing methods and identifies pathogenic SVs 

responsible for different phenotypes, as well as critically important genes directly or indirectly 

affected by SVs, which allows the prioritization of candidate SVs from a large candidate list and 

facilitate the interpretation of disease association studies. Overall, this work is very meaningful. 

There are some questions, which should be considered before it is considered for publication. 

1. In material and Methods, paragraph 2, the authors labeled pathogenic and likely pathogenic SVs 

as pathogenic, others as benign. As we know, the likely pathogenic SV may vary depending on the 

definition of disease group and the health group. Could we consider to either classify SV as three 

categories of pathogenic, likely pathogenic, and benign, or train a disease specific model. 

2. I noticed the imbalanced class number distribution in training/validation/test dataset. In training 

set, there are significantly more coding SVs (14,292) compared to non-coding SVs (330). 

Moreover, there is an imbalance in SV types, with fewer insertions, inversions, and translocations 

due to smaller number of these types in human genome. In that case, PhenoSV under-performed 

in non-coding SVs compared to coding SVs (AUCs in Figure.3). Is there a way to enhance those 

imbalanced classes by computational approaches or simulated datasets? 

3. In method part ‘Training, validation, and test datasets’, the authors filtered out common SVs 

from training set. However, some disease-risk SVs are germline SVs and commonly presented in 

large human cohorts. For example, the 32kb LCE3C/LCE3B deletion appears in 64% psoriasis-

related samples and 55% control samples (Rafael de Cid et al. Nature Genetic, 2009). GnomAD 

(Nature, 2020) also reported that there are on average 133.4 pLoF SVs per genome while for rare 

SVs, there are only 5.5 pLoF SVs. So, if I understand correctly, there are many disease-related but 

common SVs, which are needed to be predicted or associated with disease risks. Is there any 

change to remove the filter process? Or when comparing performances, consider common SVs and 

rare SVs independently? 

4. Another concern about those common SVs used for training process might overlapping with SVs 

in a new applied sample. Even rare SVs, token from multiple sources, are also possible to present 

in more than one sample. If one SV was chosen for training, and it also appears in a new-applied 

sample, the prediction result will be well but untrusted. It would be better to report any overlaps in 

training SVs with new-applied SVs (such as the 222 noncoding SVs in ASD dataset and 123 

dosage-sensitive rCNV segments). This will make prediction results more convincible and reliable. 

5. The web interface is very friendly for users since the large feature set and machine-learning 

model (PhenosvFile.tar, about 153GB). If possible, the authors could perform some model and 

feature interpretability analysis to transparentize how features and model involves in making 

decision. This will be helpful to reduce feature sizes and lightweight model architecture. Removal 

of non-decision-making features and redundant model parameters will not affect performances but 

result in much usability. Moreover, this will help to avoid the brute-force and black-box of utilizing 

machine-learning approaches. 

Reviewer #2 (Remarks to the Author): 

The authors present a nicely packaged machine learning method to simultaneously score the likely 

deleteriousness of structural variants and their constituent genes. The ability to derive gene-level 

scores is a very nice asset as more and more studies start accounting for the effect of structural 

variants. The multi-head attention architecture is a nice idea to model direct and indirect effect on 

the genes, and having a web browser and command line tools enable easy exploration and 

adoption of the prioritization information offered by this method. My queries and comments are 

below: 

Major comments: 

1. ChrX and Y are special - they were not included in this method. Though that is ok, some 

recognition of this fact should be made. 

2. Why is the strategy for training, validation, and hold-out done by chromosome? Is there a 



reason to avoid random sampling? By chromosome could introduce significant bias concerns due to 

genetic architecture differences by chromosome. 

Minor comments: 

1. Approximation of insertions, inversions, & translocations seem like a reasonable current 

implementation via proxy of deletions/duplications at break-ends. How sensitive is the 

approximation to the artificial 100bp size setting. 

2. Why does the AUC of larger test SVs (100kb - 1mb) decrease compared to smaller test SVs, 

when larger SVs tend to be more pathogenic? 

3. Why was allele frequency chosen not used for learning? 

4. What source is the allele frequency annotation? 

5. In portraying the value of PhenoSV in stratifying CRE-SVs in ASD, the conclusion is overstated. 

The test statistic should be comparing the transmission rate of predicted pathogenic CRE-SVs to 

either (a) predicated non-pathognoic or (b) overall transmission rate. If using (a), the effect size is 

very minimal such that there’s no statistical significance. 

6. Could we put a quantification on the extent of the significantly more epilepsy-related SVs as it 

pertains to the middle and right panel of Figure 4c? 

7. How does the performance of this method compared to a normal fine-mapping approach for 

gene prioritization in the rCNV paper? Are there and how often are there segments/genes that this 

method can prioritize that does not have fine-mapping evidence? 

Typos: 

1. Formatting: Figure 4 sub panels should be renamed to reflect order in text 

Reviewer #3 (Remarks to the Author): 

In the current manuscript, the authors present a machine learning method (phenoSV) to identify 

pathogenic SVs by integrating diverse features. Briefly, phenoSV performs segmentation and 

annotation of SV regions and extracts 238 distinct features to train a transformer-based machine 

learning model. Authors claim that their approach outperforms some existing methods for SV 

prioritization. Although the study is of interest and timely, various major concerns need to be 

addressed, which are listed below. 

1. The current classification of SVs as coding and non-coding could be clearer. Most larger SVs are 

likely to affect multiple coding and non-coding regions simultaneously. How does phenoSV handle 

these cases for prioritization? 

2. Authors claim that phenoSV is unique compared to other methods as it can prioritize all 

categories of SVs (beyond deletions and duplications). To do this, they convert different categories 

of SVs into proxy deletion and duplication by applying certain approximations. How do these 

approximations influence the underlying feature profile of the original SV compared to their proxy? 

For instance, will the original insertion have a similar feature profile to the transformed proxy 

deletions? 

3. SVs from certain chromosomes were used as hold-out and others as test sets. What was the 

rationale for this? Will the model performance remain intact upon randomly assigning SVs in these 

two groups? 

4. Why is the non-coding SV training set small? How will it affect the performance of the model? 

5. Why phenoSV performs worse for large coding SVs compared to smaller ones? Also, why 

genome-wide conservation score is not important for coding SVs? 

6. Authors should report precision-recall curves for their model beyond auROC plots. 

7. The number of SVs (beyond deletions and duplications) is very small, particularly for their non-

coding SVs. How will this influence the performance of the phenoSV model? 



8. Authors should comment on the potential issue of model overfitting with such a large amount of 

feature sets, many of which are likely to be highly correlated. 

9. The cut-off for classifying pathogenic vs. benign SVs is very lenient, as reported for their 

transmission analysis. How will a higher threshold for pathogenic SVs influence the overall result? 

10. The current phenoSV approach doesn't consider tissue-specificity for non-coding SVs. As 

discussed by the authors, this is one of the biggest drawbacks of phenoSV. Why can't authors 

utilize tissue-specific annotation or epigenomic signals in the current phenoSV framework? 



Response to Comments 

We thank reviewers for their generous and constructive comments on our manuscript titled 

“PhenoSV: Interpretable phenotype-aware model for the prioritization of genes affected by 

structural variants”. We have fully addressed these concerns, and we believe that the 

manuscript is substantially improved by addressing the reviewer’s comments. In addition to the 

additional analysis and results, we have also taken one reviewer’s suggestion seriously and 

established a light-version of the PhenoSV tool which results in ~10X reduction of file sizes to 

improve usability. The original reviewers’ comments are in bold font and our point-by-point 

responses are given below. The changes that we made in the main manuscript were highlighted 

in red fonts. 

Reviewer #1  

1. In material and Methods, paragraph 2, the authors labeled pathogenic and likely 

pathogenic SVs as pathogenic, others as benign. As we know, the likely pathogenic SV may 

vary depending on the definition of disease group and the health group. Could we consider to 

either classify SV as three categories of pathogenic, likely pathogenic, and benign, or train a 

disease specific model.  

We thank the reviewer for the comments. The pathogenicity of SVs can indeed vary depending 

on disease definitions, and the labels in ClinVar dataset sometimes have ambiguities as well 

(There are labels of "benign," "benign/likely benign," "likely pathogenic," "pathogenic," 

"pathogenic/likely pathogenic," "uncertain significance," in addition to "conflicting 

interpretations of pathogenicity.") In response to the reviewer's suggestion, we have carefully 

considered the issue of treating SV classification as a multi-category task, as well as the training 

of disease specific models. First, treating SV pathogenicity labels as a binary variable is a 

commonly employed strategy in existing machine learning-based models, such as in CADD-SV, 

SVFX, and StrVCTVRE. The main reason is that binary classification can facilitate minimization of 

loss function and increase interpretability of models on a quantitative scale: Therefore, we 

focused our model training on distinguishing between pathogenic SVs and benign SVs using 

binary labels. However, this approach allows for a straightforward interpretation and the 

continuous confidence scores (ranging from 0 to 1) can be used to infer the probabilities of an 

SV being pathogenic in general, irrespective of disease types. In the next step, when phenotype 

or disease information is available, we use the information to further fine-tune the score to 

reflect the pathogenicity of variants with respect to specific diseases. To further address the 

reviewer’s question, we have now tested the quantitative score over the three categories 

“benign”, “likely pathogenic” and “pathogenic”, and we observed increasing trend of the 

predictive scores (Figure S5). This additional analysis is now described in the supplementary 

materials (section ‘Ambiguities of pathogenicity labels with different disease definitions’,

page 2, paragraph 3). Second, training a disease-specific model with combined inputs of SV 

features and patient’s phenotype terms can be appealing, compared to our current procedure 

of training a general model and then fine-tune model output using phenotype terms (when 

available). We indeed experimented this strategy previously but encountered the practical 

problem that most of the training samples do not have corresponding phenotype information 



(or even disease information). With reduced sample size, the results are not satisfactory even in 

cross validation settings. Furthermore, as there are almost 18,000 possible HPO terms, adding 

raw HPO terms greatly increased the model complexities even when phenotype embedding is 

used in the predictive model. Thus, we opt to a generic model and utilize extra genotype-

phenotype associations (e.g. Phen2Gene) to infer SV-disease associations. This procedure has 

the advantage of working on both relatively common diseases with general disease descriptors 

(such as disease name only without HPO terms) and rare diseases with more specific phenotype 

terms (such as a list of HPO terms). 

2. I noticed the imbalanced class number distribution in training/validation/test dataset. In 

training set, there are significantly more coding SVs (14,292) compared to non-coding SVs 

(330). Moreover, there is an imbalance in SV types, with fewer insertions, inversions, and 

translocations due to smaller number of these types in human genome. In that case, PhenoSV 

under-performed in non-coding SVs compared to coding SVs (AUCs in Figure.3). Is there a way 

to enhance those imbalanced classes by computational approaches or simulated datasets? 

We thank the reviewer for raising this important question. This is due to the much better 

understanding and disease annotation of coding variants (which may directly disrupt gene 

products) versus noncoding variants (which may target regulatory regions that influence levels 

of gene expression). While we recognize the class imbalance of coding SVs vs noncoding SVs, 

we did not adopt simulation approaches to artificially generate structural variants, or 

under/over sampling strategies to balance the numbers of coding SVs and noncoding SVs. The 

main reason is that the performance of computational approaches critically depends on how 

the simulation is performed for noncoding variants, yet it is difficult to justify what is the 

appropriate simulation strategy for the pathogenicity of noncoding SVs. To address this 

problem, we made the coding SVs and noncoding SVs “look alike” in the input feature space to 

alleviate the class imbalance issue. Specifically, we segmented coding SVs into sequences of 

noncoding and coding regions that the SVs impact directly. If we only input the noncoding 

regions that noncoding SVs impact directly, the coding SVs and noncoding SVs are 

straightforward to be distinguished by the model through features such as exon annotations. 

Thus, for noncoding SVs, we segmented coding and noncoding regions within a given distance 

or TAD (see Methods, SVs segmentation). Only masks of attention heads between coding SVs 

and noncoding SVs are different. In this way, we essentially incorporated into the model the 

information that noncoding SVs learned from a large number of coding SVs. To further address 

the reviewer’s comments and explain this strategy, we have expanded the description in 

Methods (session ‘SV segmentation’, page 18, paragraph 2) and also added additional 

discussions in the supplementary material (section ‘Imbalanced number of coding SVs and 

noncoding SVs for training’, page 3, paragraph 2). 

In Methods, SV segmentation session: 

We add zero-padding segments as pseudo noncoding segments at the front and end of every 
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imbalance between the numbers of coding SVs and noncoding SVs in our training dataset. To 
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between coding SVs and noncoding SVs in the input feature space. See supplementary materials 

for more detailed discussions.

3. In method part ‘Training, validation, and test datasets’, the authors filtered out common 

SVs from training set. However, some disease-risk SVs are germline SVs and commonly 

presented in large human cohorts. For example, the 32kb LCE3C/LCE3B deletion appears in 

64% psoriasis-related samples and 55% control samples (Rafael de Cid et al. Nature Genetic, 

2009). GnomAD (Nature, 2020) also reported that there are on average 133.4 pLoF SVs per 

genome while for rare SVs, there are only 5.5 pLoF SVs. So, if I understand correctly, there are 

many disease-related but common SVs, which are needed to be predicted or associated with 

disease risks. Is there any change to remove the filter process? Or when comparing 

performances, consider common SVs and rare SVs independently? 

Because common SVs are less likely to be pathogenic than rare SVs, filtering out common SVs 

can help decrease false positive rate in the training dataset. Moreover, by removing common 

SVs, PhenoSV is steered to capture features that distinguish SV pathogenicity, rather than being 

confounded by the distinction between rare and common SVs. The challenge in clinical 

interpretation of SVs is to identify highly penetrant variants with large effect sizes, rather than 

finding disease associated polymorphisms as they usually serve as proxy markers for another 

disease-casual genetic mutation within a linkage disequilibrium block. 

We thank the reviewer for bringing up the issue on LCE3C/LCE3B deletions. We also 

investigated the 32kb LCE3C/LCE3B deletion (chr1:152583066-152615265) as mentioned. This 

deletion was not in our training dataset, and PhenoSV predicted this SV to be benign with a 

score of 0.009 (when examining genes separately: LCE3C has a score of 0.008 while LCE3B has a 

score of 0.011). We then searched the genome region of this deletion in ClinVar and found a 

203kb copy number loss that covers the entire 32kb region and contains both LCE3C/LCE3B, yet 

this copy number loss is asserted as being benign (VCV000152664.1, chr1: 152526704-

152729716, GRCh38). Therefore, this SV (which is a genetic polymorphism) may be associated 

with diseases with small effect sizes of OR=1.4, but a complete loss of the region does not 

impact disease status. To further address the reviewer’s comments, we have added discussions 

in supplementary materials (session ‘Interpretations of disease-associated common SVs’, page 

4, paragraph 2), indicating the focus on highly penetrant structural variants that may directly 

impact genome function. 

4. Another concern about those common SVs used for training process might overlapping 

with SVs in a new applied sample. Even rare SVs, token from multiple sources, are also 

possible to present in more than one sample. If one SV was chosen for training, and it also 

appears in a new-applied sample, the prediction result will be well but untrusted. It would be 

better to report any overlaps in training SVs with new-applied SVs (such as the 222 noncoding 



SVs in ASD dataset and 123 dosage-sensitive rCNV segments). This will make prediction 

results more convincible and reliable. 

Thank you for the comment and this is indeed an important factor to consider in the analysis. 

For the rCNV segment dataset, we excluded those SVs with over 70% reciprocal overlap with 

any SVs in our training dataset (see Materials and Methods, page 17 paragraph 4). For the 

epilepsy and autism datasets, we tried to use the same strategy to filter out noncoding SVs with 

over 70% reciprocal overlap with any noncoding SVs of the training dataset. Because the 

number of noncoding SVs we used for training is small, we did not find any noncoding SVs in 

these two datasets exceeding the threshold. To further address this concern, we now define 

percentage overlap as the percentage of bases of an SV that can be covered by any SVs in pre-

defined dataset. The average numbers of percentage overlap in epilepsy and autism datasets 

with training noncoding SVs are 0.54% and 0.25%, respectively. In comparison, the average 

percentage overlap of rCNV segments with all training SVs is 29%. Therefore, the statistics show 

that the test results in these unlabeled datasets are reliable. We clarified this point in the 

revised manuscript (in Materials and Methods, session ‘Training, validation, and test 

datasets’, page 17 paragraph 3). 

In Materials and Methods, Training, validation, and test datasets: 
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with noncoding SVs in the training dataset.

5. The web interface is very friendly for users since the large feature set and machine-learning 

model (PhenosvFile.tar, about 153GB). If possible, the authors could perform some model 

and feature interpretability analysis to transparentize how features and model involves in 

making decision. This will be helpful to reduce feature sizes and lightweight model 

architecture. Removal of non-decision-making features and redundant model parameters will 

not affect performances but result in much usability. Moreover, this will help to avoid the 

brute-force and black-box of utilizing machine-learning approaches.

We thank the reviewer for this valuable comment, which prompted us to make substantial 

changes to increase the usability of the model. Detailed descriptions of the additional analysis 

are now documented in the revised manuscript (Discussion, page15, paragraph1; 

supplementary materials, session ‘PhenoSV-light training and testing’, page1, paragraph 1). 

Specifically, we first performed performance evaluations and recognized that the most time-

consuming part for running PhenoSV is the annotation step, which involves querying 238 

features for all genome segments impacted by SVs (this step is bound by disk I/O operations 

using the genome wig files). To address this hurdle, we carefully analyzed our feature 

importance results of PhenoSV (Figure 3e-g) and used this information as a guide to select a 

subset of features to train a lightweight version of PhenoSV, aptly named PhenoSV-light.  

PhenoSV-light is trained with only 42 important features, making the annotation step more 



efficient. Specific considerations when selecting the PhenoSV-light feature set lie in two folds: 

(1) We ensured that the chosen features encompass all five categories, as it has been 

established that all feature categories together yield the best results (Figure 3g). (2) Specifically, 

we selected the top 5 important features from each category for both coding SVs and 

noncoding SVs, leading to the derivation of the 42 important feature set (Figure 3e-f).  We then 

compared model performance between PhenoSV and PhenoSV-light using the same test 

datasets in the main manuscript. Based on our results, PhenoSV-light demonstrates largely 

comparable prediction accuracy to PhenoSV, except for translocations (Figure S2). This 

indicates that PhenoSV-light offers a highly efficient alternative for most SV types with minimal 

compromise in predictive accuracy. Accordingly, we revised the discussion part of our 

manuscript, with more details about PhenoSV-light in supplementary materials. Finally, we 

have made modifications to the web server to use the light version optionally. 

In Discussion: 
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approach for users, we developed PhenoSV-light, which is a lightweight version of PhenoSV using 
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Reviewer #2 

Major comments: 

1. ChrX and Y are special - they were not included in this method. Though that is ok, some 

recognition of this fact should be made. 

Thank you for raising this comment. We acknowledge the intrinsic differences between 

autosomes and sex chromosomes in the interpretation of structural variants, which may 

introduce biases if such differences are not appropriately addressed. Moreover, some features 

such as JARVIS and gwRVIS lack scores for sex chromosomes. In light of these considerations, in 

the previous version of the manuscript, we did not include chrX/chrY to ensure the reliability 

and validity of our findings. Instead, we focused our training efforts for PhenoSV on autosomes. 

Nevertheless, we completely agree with the reviewer that it is important to address sex 

chromosomes in genomic analyses. Therefore, we have now performed exploratory analysis to 

use the autosomal models to interpret chrX/chrY variants (we had to treat some of the missing 

features with imputed values). We found that PhenoSV that is trained on autosomes performed 



well in sex chromosomes with AUC of 0.94 (95% CI: 0.93 – 0.95). In the revised manuscript, we 

have described this additional analysis in revised manuscript (Results, session ‘PhenoSV 

accurate predicts pathogenicity of both coding SVs and noncoding SVs’, page 7 paragraph 1), 

and added discussions on sex chromosomes (Discussion, page 14 paragraph 2). 

In Results, PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs: 
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observed lower AUCs of large SVs than small SVs in the independent test set for all models 
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located on sex chromosomes (2,034 pathogenic and 1,934 benign SVs). As shown in Figure S6, 

PhenoSV generalizes well for SVs on sex chromosomes, achieving an AUC of 0.94 (95% CI: 0.93-

0.95).

2. Why is the strategy for training, validation, and hold-out done by chromosome? Is there a 

reason to avoid random sampling? By chromosome could introduce significant bias concerns 

due to genetic architecture differences by chromosome. 

Since structural variants can overlap with each other or influence each other (for example, 

when residing in the same TAD) in the same chromosome, splitting the dataset into 

training/validation/hold-out data sets by chromosomes is a commonly used strategy in 

literature to prevent information leakage from training dataset to validation/hold-out test set. 

For example, StrVCTVRE used leave-one-chromosome-out for cross validation, and also used 

chr1, chr3, chr5, and chr7 from ClinVar as the hold-out test set. We certainly acknowledge the 

existence of genetic architecture differences by chromosomes; here the hypothesis is that if the 

model trained on specific chromosomes can perform well in other chromosomes, then the 

model must have extracted useful features that are not dependent on chromosomes. To 

further assess the validity of the strategy of splitting by chromosomes, as suggested by the 

reviewer, we also conducted experiments using random splitting of the dataset. As shown in 

Table S8, random splitting led to improved performance in the hold-out test dataset for both 

coding SVs (AUC of random split: 0.948; AUC by chromosome: 0.911) and noncoding SVs (AUC 

of random split: 0.89; AUC by chromosome: 0.86), On the other hand, the performance in the 

independent test datasets for small SVs (AUC of random split: 0.876; AUC by chromosome: 

0.874) and large SVs (AUC of random split: 0.769; AUC by chromosome: 0.770) remained nearly 

identical for both splitting strategies. Despite these results, it is important to acknowledge that 

random splitting may lead to inflated performance results within the hold-out test set due to 

some extent of information leakage. To clarify the rationale of splitting by chromosomes, we 

revised the methods part of the manuscript (Materials and Methods, session ‘Training, 

validation, and test datasets’, page 16 paragraph 2), and we also added results of using the 



random split strategy in the supplementary materials (supplementary materials, section 

‘Splitting datasets by chromosomes and splitting datasets by random’, page 1, paragraph 3). 

In Materials and Methods, Training, validation, and test datasets: 

38 HEA?I I>8H8 /2HR 6DCI4?C?C= DCAP 78A8JDCH 4C7 7LEA?64JDCHR ?CID IG4?C?C=R M4A?74JDCR 4C7 >DA7Z

out test datasets based on chromosomes that can produce almost balanced datasets to prevent 
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numbers for these splits were selected to produce balanced datasets concerning pathogenic SVs 

and benign SVs. The training set has 14,292 coding SVs (6,609 pathogenic and 7,683 benign) and 

330 noncoding SVs (165 pathogenic and 165 benign) from chromosomes 1-10 and 17-22.

Minor comments:

1. Approximation of insertions, inversions, & translocations seem like a reasonable current 

implementation via proxy of deletions/duplications at break-ends. How sensitive is the 

approximation to the artificial 100bp size setting. 

We thank the reviewer for this question. To address the question, we have performed 

sensitivity analysis to study how window sizes influence PhenoSV predictions. We focused on 

the test dataset of insertions to compare PhenoSV predictions using various window sizes:  

50bp, 100bp, 150bp, 200bp, 300bp, and 500bp, since translocations and coding inversions do 

not use proxies with specific window sizes. Our findings revealed that PhenoSV predictions 

were highly correlated across different window size settings (Figure S3). The results 

demonstrate the robustness and stability of PhenoSV predictions when choosing different 

window sizes for SV proxies. We added the sensitivity analysis into supplementary materials 

(supplementary materials, session ‘Sensitivity analysis of window size selection for SV 

proxies’, page1, paragraph 2).   

2. Why does the AUC of larger test SVs (100kb - 1mb) decrease compared to smaller test SVs, 

when larger SVs tend to be more pathogenic?  

We initially had the same question as the reviewer. As shown in Figure 3b-c, all models except 

for CADD-SV yielded lower AUCs in the test set of large SVs. This finding aligns with the results 

presented in the StrVCTVRE paper, where the authors reported higher AUCs for SVs categorized 

as either small(<30kb) or large (>500kb) than those with mid-length (30kb-500kb). The model 

performance decrease for larger SVs could be attributed to potential ascertainment biases 

between the test dataset of small SVs and the test dataset of large SVs, due to the differences 

in SV detection technologies. Specifically, larger SVs with sizes over 100kbp are primarily 

detected by microarrays (with imprecise breakpoints) and are more likely to be reported in 

literature. On the other hand, smaller SVs, ranging from 50bp to 100kbp, are commonly 

identified using Next-Generation Sequencing (NGS) techniques; most of these SVs are not 

reported in literature or documented in databases unless there is clear evidence for 

pathogenicity. Since previous studies did not specifically discuss this issue, we have now added 

discussions in the revised manuscript (Results, session ‘PhenoSV accurately predicts 



pathogenicity of both coding SVs and noncoding SVs’, page 7 paragraph 1) and supplementary 

materials (session ‘Potential ascertainment biases between the test dataset of small and large 

SVs’, page 5, paragraph 2). 

In Results, PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs: 

More importantly, PhenoSV can generate interpretable results by making <>/.6-B;:? ;: @5/

4/:/ 8/F/8K G56-5 6? + -;99;: 8696@+B;: 0;> @>+.6B;:+8 9+-56:/O8/+>:6:4 9/@5;.?L Notably, we 

observed lower AUCs of large SVs than small SVs in the independent test set for all models 

except CADD-SV (Figure 3b-cQL (56? </>0;>9+:-/ ./->/+?/ 0;> 8+>4/> ')? -;E8. ,/ +D>6,E@/. @;

<;@/:B+8 +?-/>@+6:9/:@ ,6+?/? +>6?/ 0>;9 .6?<+>6B/? 6: @5/ @/-5:6=E/? E?/. 0;> ') ./@/-B;:

P?// ?E<<8/9/:@+>I 9+@/>6+8?QL !..6B;:+88IKM

3. Why was allele frequency chosen not used for learning? 

It is well known that allele frequency inversely correlates with the functional significance of 

mutations, due to purifying selection pressure. We intentionally omitted allele frequency as a 

feature in training PhenoSV to avoid potential ascertainment biases when selecting training 

dataset. Instead, since allele frequency information was not part of the features used in 

PhenoSV's training, we can employ allele frequency as a performance metric to assess whether 

PhenoSV scores exhibited expected negative correlation with allele frequency. This analysis 

provided insights into PhenoSV's predictive capabilities and its association with allele frequency 

in the context of pathogenicity prediction. In response to this comment, we have now added 

discussions in the revised manuscript (Results, session ‘PhenoSV accurately predicts 

pathogenicity of both coding SVs and noncoding SVs’, page 7 paragraph 2). 

In Results: PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs  

#L8 ID I>8 EG8H8C68 D9 ELG?9P?C= H8A86JDC EG8HHLG8R 4AA8A8 9G8FL8C6P ?H 8OE86I87 ID ?CM8GH8AP

6DGG8A4I8 N?I> I>8 9LC6JDC4A H?=C?;64C68 D9 BLI4JDCH51T 0D 4MD?7 EDI8CJ4A 4H68GI4?CB8CI 5?4H8H

7LG?C= I>8 H8A86JDC D9 IG4?C?C= 74I4H8IR N8 78A?58G4I8AP 8O6AL787 4AA8A8 9G8FL8C6P 9GDB I>8 ?CELI

feature set during the training of PhenoSV. However, we can now employ allele frequency as a 

E8G9DGB4C68 B8IG?6 ID 8M4AL4I8 N>8I>8G EG87?6I87 ->8CD/2 H6DG8H 8O>?5?I87 I>8 4CJ6?E4I87

C8=4JM8 6DGG8A4JDC N?I> 4AA8A8 9G8FL8C6P ?C I>8 >DA7ZDLI I8HI H8IT 0>8 8HJB4JDC D9 4AA8A8

frequencies was carried out based on gnomAD-SV database 52. As expected, PhenoSV scores are 

C8=4JM8AP 6DGG8A4I87 N?I> /2 4AA8A8 9G8FL8C6PR N>8G8 G4G8G /2H 4G8 BDG8 A?@8AP ID 58 E4I>D=8C?6

(Spearman’s rho = -0.19, p-value <0.0001). 

4. What source is the allele frequency annotation? 

(5+:7? 0;> <;6:B:4 ;E@L */ E?/. 4:;9!#O') 0;> /?B9+B:4 ') +88/8/ 0>/=E/:-IL (; -8+>60I @56?K

we revised the manuscript (Results, session ‘PhenoSV accurately predicts pathogenicity of 

both coding SVs and noncoding SVs’, page 7 paragraph 2). 



In Results: PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs  

#L8 ID I>8 EG8H8C68 D9 ELG?9P?C= H8A86JDC EG8HHLG8R 4AA8A8 9G8FL8C6P ?H 8OE86I87 ID ?CM8GH8AP

6DGG8A4I8 N?I> I>8 9LC6JDC4A H?=C?;64C68 D9 BLI4JDCH51T 0D 4MD?7 EDI8CJ4A 4H68GI4?CB8CI 5?4H8H

7LG?C= I>8 H8A86JDC D9 IG4?C?C= 74I4H8IR N8 78A?58G4I8AP 8O6AL787 4AA8A8 9G8FL8C6P 9GDB I>8 ?CELI

feature set during the training of PhenoSV. However, we can now employ allele frequency as a 

E8G9DGB4C68 B8IG?6 ID 8M4AL4I8 N>8I>8G EG87?6I87 ->8CD/2 H6DG8H 8O>?5?I87 I>8 4CJ6?E4I87

C8=4JM8 6DGG8A4JDC N?I> 4AA8A8 9G8FL8C6P ?C I>8 >DA7ZDLI I8HI H8IT 0>8 8HJB4JDC D9 4AA8A8

frequencies was carried out based on gnomAD-SV database 52. As expected, PhenoSV scores are 

C8=4JM8AP 6DGG8A4I87 N?I> /2 4AA8A8 9G8FL8C6PR N>8G8 G4G8G /2H 4G8 BDG8 A?@8AP ID 58 E4I>D=8C?6

(Spearman’s rho = -0.19, p-value <0.0001). 

5. In portraying the value of PhenoSV in stratifying CRE-SVs in ASD, the conclusion is 

overstated. The test statistic should be comparing the transmission rate of predicted 

pathogenic CRE-SVs to either (a) predicated non-pathogenic or (b) overall transmission rate. If 

using (a), the effect size is very minimal such that there’s no statistical significance. 

We agree with the reviewer. We compared the transmission rate between predicted pathogenic 

$&: >1;0 79+*1);+* (+51/5 $&:B !<+ ;6 ;0+ 3141;+* :'473+ :1@+ 6, ;0+ )6069;A ;0+ +-+); :1@+

*1-+9+5)+ DNIS =: MKSE (+;>++5 7';06/+51) 7';+95'3 $&: '5* (+51/5 7';+95'3 $&: 1: 56;

?@+B?B-+88I ?64:62-+:@L (; +..>/?? @56? -;99/:@K G/ @;:/. .;G: ;E> -;:-8E?6;: +:. >/F6?/. @5/

>/?E8@ ?/-B;: PResults, session ‘!*'./"# &'2'0-+.'1 &+1'$1'40',$2'& )'.'1 +.&+0'%2,3 $('%2'&

by noncoding SVs’, page 11 paragraph 1).

In Results: PhenoSV determines disease-related genes indirectly affected by noncoding SVs  

!<8G HIG4J9P?C= ".$Z/2H ?CID E4I>D=8C?6 [!&'"$#%# $ "!#) and benign (!&'"$#%# < 0.5) groups 

LH?C= ->8CD/2R N8 D5H8GM87 I>8 DM8GZIG4CHB?HH?DC E4K8GC D9 E4I8GC4AAP ?C>8G?I87 ".$Z/2H BDG8

evident for predicted pathogenic ones (29/41; transmission rate = 71%; binomial test p-value = 

0.01) than predicted benign ones (38/59; transmission rate = 64%; binomial test p-value = 0.04), 

4 HA?=>IAP A4G=8G 8:86I H?Q8 D9 DM8GZIG4CHB?HH?DC E4K8GC N4H D5H8GM87 9DG E4I8GC4AAP ?C>8G?I87

pathogenic SVs (29/41; transmission rate = 71%; binomial test p-value = 0.01) than benign SVs 

[`eYbfS IG4CHB?HH?DC G4I8 j caiS 5?CDB?4A I8HI EZM4AL8 j ]T]a\T !AI>DL=> HI4JHJ64A H?=C?;64C68

N4H CDI 46>?8M87 7L8 ID A?B?I87 H4BEA8 H?Q8H [E4I>D=8C?6 /2H MH 58C?=C /2HR EGDEDGJDC I8HI EZ

value=0.656), these results suggest the values of PhenoSV in determining pathogenic genes 

59,5<-+>7C )/-+>-, *C 9:9+:,593 %'=F When classifying pathogenic CRE-SVs and benign CRE-SVs, 

,5/-<-9> >4<-=4:7,= :. !&'"$#%# [HL6> 4H IDE 4C7 5DKDB `]i FL4CJA8H\ 64C 58 LH87 4C7 N8

.:?9, >4)> ,5/-<-9> >4<-=4:7,= ,: 9:> 592?-9+- >4- :@-<)77 +:9+7?=5:9 :. >4- )9)7C=5=

(supplementary materials, Table S9-S10).

6. Could we put a quantification on the extent of the significantly more epilepsy-related SVs 

as it pertains to the middle and right panel of Figure 4c? 



As observed in the middle and the right panel of Figure 4c, epilepsy-related SVs are enriched in 

@5/ <+B/:@ 4>;E< -;9<+>/. @; @5/ -;:@>;8 4>;E<L (; =E+:B0I @56? /:>6-59/:@K G/ E?/. @5/

/:>6-59/:@ ?-;>/K G56-5 6? ./2:/. +? 6:@/4>+@/. -E9E8+BF/ +1/-@/. ?+9<8/ :E9,/>? ;0

<+B/:@? ;F/> -;:@>;8? P>/<>/?/:@/. ,I +>/+? ;0 ;>+:4/ ?5+./? 6: $64E>/ V.QL $;> @56? -+8-E8+B;:K

>+ <:+* ;0+ <77+9 (6<5* 6, ;0+ )65;963:C PLS )65.*+5)+ 15;+9='3:B %0+ +591)04+5; :)69+: ,69

overall SV, max epilepsy gene, and the closest epilepsy gene are 9.05, 51.24, and 18.36, 

>/?</-BF/8IL

(5/ ?@+B?B-? -;:2>9? ;E> -;:-8E?6;: 6: @5/ 9+6: 9+:E?->6<@ @5+@ @5/>/ +>/ ?64:62-+:@8I 9;>/

/<68/<?IO>/8+@/. ')? 6: @5/ <+B/:@ 4>;E<K G56-5 .; :;@ :/-/??+>68I +1/-@ @5/ :/+>/?@ /<68/<?I

4/:/?L !--;>.6:48IK G/ >/F6?/. @5/ $64E>/ V. P;>646:+8 $64E>/ V-Q ,I +::;@+B:4 @5/ /:>6-59/:@

score.

In Figure 4d:

(d) #6?<8+I/. +>/ -E9E8+BF/ +1/-@/. ?+9<8/ :E9,/>? PIO+H6?Q G6@5 !&' P8/3 <+:/8QK !&'"$#%# 6, ;0+ 46:; '-+);+*

epilepsy gene (middle panel), and !&'"$#%#  of the nearest epilepsy gene (right panel) larger than given thresholds 

PHO+H6?Q ;0 SWR <+B/:@? P>/. 86:/Q +:. SWR -;:@>;8? ;: +F/>+4/ P,8E/ 86:/QL ";:2./:-/ 6:@/>F+8? ;0 -;:@>;8? P,8E/

?5+./?Q +>/ -+8-E8+@/. ,I >+:.;98I ?+9<86:4 SWR ?+9<8/? 0>;9 TTU -;:@>;8? 0;> SRR B9/?L !>/+ ;0 ;>+:4/ ?5+./?

>/<>/?/:@ /:>6-59/:@ ?-;>/K ./2:/. +? 6:@/4>+@/. -E9E8+BF/ :E9,/> ;0 +1/-@/. <+B/:@ ?+9<8/? ;F/> E<</>

(6<5* 6, ;0+ PLS )65.*+5)+ 15;+9='3 6, )65;963:B

7. How does the performance of this method compared to a normal fine-mapping approach 

for gene prioritization in the rCNV paper? Are there and how often are there segments/genes 

that this method can prioritize that does not have fine-mapping evidence?

The rCNV paper derived gene-level pHaplo and pTriplo scores; these are gene-level scores that 

are not related to specific mutations or specific phenotypes. On the other hand, gene-level 

PhenoSV scores would vary among different structural variants impacting the genes and 

patients’ phenotypes. Thus, these two methods are not directly comparable.  

To address the second question, we take the SV case we investigated in the main manuscript as 

an example (Figure 4b, chr16: 28473235-30186830, deletion, GRCh38). This SV deletes the 

entire KIF22 gene. The original paper (Middelkamp, S.et al. Genome Med, 2019) predicted this 

gene to be the tier3-level driver gene for the SV pathogenicity. PhenoSV predicted the 



pathogenicity score as 0.92 in general and 0.72 with phenotype information. While the pHaplo 

:)69+ 6, ;01: /+5+ 1: 653? HBILA 15*1)';15/ *+3+;165 ;63+9'5)+ D7"'736 :)69+: THBOM 15*1)';+ ;0';

the average effect sizes of deletions are as strong as the loss-of-function of genes known to be 

)65:;9'15+* '/'15:; 796;+15 ;9<5)';15/ ='91'5;: D6** 9';16 TJBNE D#'9)@+>:21 +; '3BA JHJHEEB

Typos: 

1. Formatting: Figure 4 sub panels should be renamed to reflect order in text

As suggested, we renamed Figure 4 sub panel labels to reflect order in text. 

Reviewer #3  

1. The current classification of SVs as coding and non-coding could be clearer. Most larger SVs 

are likely to affect multiple coding and non-coding regions simultaneously. How does 

phenoSV handle these cases for prioritization?

Thanks for pointing out the confusion. In this study, we define any SVs affecting one or more 

coding regions as coding SVs, otherwise as noncoding SVs. We have revised our manuscript 

shown below to clarify this point (Materials and Methods, session ‘Training, validation, and 

test datasets’, page 15 paragraph 3). 

In Materials and Methods, Training, validation, and test datasets:  

(- ,-09- +:,593 %'= )= >4- :9-= :@-<7); A5>4 )> 7-)=> L*; :9 )9C -B:9= :. ;<:>-59H+:,593 3-9-=

466DG7?C= ID &$+",#$ Ma] 4CCDI4JDCH 63, otherwise as noncoding SVs. It is important to note 

that coding SVs include SVs covering coding regions exclusively, as well as those covering both 

coding and noncoding regions. Conversely, noncoding SVs only cover noncoding regions.

2. Authors claim that phenoSV is unique compared to other methods as it can prioritize all 

categories of SVs (beyond deletions and duplications). To do this, they convert different 

categories of SVs into proxy deletion and duplication by applying certain approximations. 

How do these approximations influence the underlying feature profile of the original SV 

compared to their proxy? For instance, will the original insertion have a similar feature profile 

to the transformed proxy deletions? 

We thank the reviewer for this comment. One of the unique aspects of PhenoSV is that we 

attempted to build models beyond simple deletions and duplications. The feature profiles of 

these SV types can be different from those of proxies. For example, an insertion might inhibit 

gene expression by disrupting the promoter of this gene, regardless of the exact sequence 

within the insertion. Thus, the proxy will include the information of regulatory element, but the 

original feature profile will not. We have added a statement (Materials and Methods, 

session ’PhenoSV for insertions, inversions, and translocations’, page 21 paragraph 2) to clarify 

these differences. 

In Materials and Methods, PhenoSV for insertions, inversions, and translocations: 



!AI>DL=> ->8CD/2 N4H IG4?C87 LH?C= 78A8JDCH 4C7 7LEA?64JDCHR ?I 64C 58 474EI87 ID /2 IPE8H D9

?CH8GJDCHR ?CM8GH?DCHR 4C7 IG4CHAD64JDCHT 38 IG84I 78A8JDCH 4C7 7LEA?64JDCH 4H I>8 54H?6 9DGBH

D9 /2H 8O8GJC= 9LC6JDC4A ?BE46IH DC =8C8H 4C7 4EEGDO?B4I8 I>8 ?BE46IH D9 ?CH8GJDCHR

?CM8GH?DCHR 4C7 IG4CHAD64JDCH LH?C= 78A8JDCH 4C7 7LEA?64JDCH [Figure S1), though the original 

.-)>?<- ;<:07-= :. >4-=- %' >C;-= +)9 *- ,5/-<-9> .<:8 >4:=- :. ;<:B5-=F %DG 4C ?CH8GJDCR N8

B4?CAP 6DCH?78G ?IH ?BE46IH DC 7?HGLEJC= I>8 AD64A =8CDB8 8A8B8CI 5P IG84JC= ?I 4H 4 ^]]5E

78A8JDC 68CI8G87 4I I>8 ?CH8GJDC 5G84@ED?CI [Figure S1b). For an inversion,

3. SVs from certain chromosomes were used as hold-out and others as test sets. What was 

the rationale for this? Will the model performance remain intact upon randomly assigning 

SVs in these two groups? 

Thank you for this comment which was also raised by another reviewer. We reproduce the 

response below: 

Since structural variants can overlap with each other or influence each other (for example, 

when residing in the same TAD) in the same chromosome, splitting the dataset into 

training/validation/hold-out data sets by chromosomes is a commonly used strategy in 

literature to prevent information leakage from training dataset to validation/hold-out test set. 

For example, StrVCTVRE used leave-one-chromosome-out for cross validation, and also used 

chr1, chr3, chr5, and chr7 from ClinVar as the hold-out test set. We certainly acknowledge the 

existence of genetic architecture differences by chromosomes; here the hypothesis is that if the 

model trained on specific chromosomes can perform well in other chromosomes, then the 

model must have extracted useful features that are not dependent on chromosomes. To 

further assess the validity of the strategy of splitting by chromosomes, as suggested by the 

reviewer, we also conducted experiments using random splitting of the dataset. As shown in 

Table S8, random splitting led to improved performance in the hold-out test dataset for both 

coding SVs (AUC of random split: 0.948; AUC by chromosome: 0.911) and noncoding SVs (AUC 

of random split: 0.89; AUC by chromosome: 0.86), On the other hand, the performance in the 

independent test datasets for small SVs (AUC of random split: 0.876; AUC by chromosome: 

0.874) and large SVs (AUC of random split: 0.769; AUC by chromosome: 0.770) remained nearly 

identical for both splitting strategies. Despite these results, it is important to acknowledge that 

random splitting may lead to inflated performance results within the hold-out test set due to 

some extent of information leakage. To clarify the rationale of splitting by chromosomes, we 

revised the manuscript (Material and Methods, session ‘Training, validation, and test 

datasets’, page 16 paragraph 2), and we also added results of using the random split strategy in 

the supplementary materials (section ‘Splitting datasets by chromosomes and splitting 

datasets by random’, page 1, paragraph 3). 

In Materials and Methods, Training, validation, and test datasets: 

38 HEA?I I>8H8 /2HR 6DCI4?C?C= DCAP 78A8JDCH 4C7 7LEA?64JDCHR ?CID IG4?C?C=R M4A?74JDCR 4C7 >DA7Z

out test datasets based on chromosomes that can produce almost balanced datasets to prevent 

4CP ?C9DGB4JDC A84@4=8 4C7 ID 8CHLG8 I>8 G8A?45?A?IP D9 DLG I8HI G8HLAIH. The chromosome 

numbers for these splits were selected to produce balanced datasets concerning pathogenic SVs 



and benign SVs. The training set has 14,292 coding SVs (6,609 pathogenic and 7,683 benign) and 

330 noncoding SVs (165 pathogenic and 165 benign) from chromosomes 1-10 and 17-22.

4. Why is the non-coding SV training set small? How will it affect the performance of the 

model? 

Despite the existence of a large number of observed noncoding SVs, the majority of them are 

classified as benign, and only a limited number of them were classified as pathogenic (due to 

the difficulty of relating noncoding variants to function in the absence of clearcut functional or 

clinical evidence). This class imbalance can introduce potential biases into our model. To 

address this issue, we opted to balance the training dataset by matching an equal number of 

pathogenic and benign noncoding SVs. This step ensures that the model does not solely predict 

noncoding SVs as benign, which could lead to unreliable model performance. Thus, the number 

of noncoding SVs in our training dataset is small. Given the challenge of training a noncoding 

SV-specific model with such a small dataset, we trained the model for both coding SVs and 

noncoding SVs together. By doing so, the noncoding SVs can benefit from the information 

learned from coding SVs, resulting in an improved model performance. To further address the 

reviewer’s comments, we have added additional discussions and explanations in the 

supplementary materials (session ‘Imbalanced numbers of coding SVs and noncoding SVs for 

training’, page 3, paragraph 2). 

5. Why phenoSV performs worse for large coding SVs compared to smaller ones? Also, why 

genome-wide conservation score is not important for coding SVs?

For the first question, as shown in Figure 3b-c, all models except for CADD-SV yielded lower 

AUCs in the test set of large SVs. This finding aligns with the results presented in the StrVCTVRE 

paper, where the authors reported higher AUCs for SVs categorized as either small(<30kb) or 

large (>500kb) than those with mid-length (30kb-500kb). The model performance decrease for 

larger SVs could be attributed to potential ascertainment biases between the test dataset of 

small SVs and the test dataset of large SVs, due to the differences in SV detection technologies. 

Specifically, larger SVs with sizes over 100kbp are primarily detected by microarrays (with 

imprecise breakpoints) and are more likely to be reported in literature. On the other hand, 

smaller SVs, ranging from 50bp to 100kbp, are commonly identified using Next-Generation 

Sequencing (NGS) techniques; most of these SVs are not reported in literature or documented 

in databases unless there is clear evidence for pathogenicity. Since previous studies did not 

specifically discuss this issue, we have now added discussions in the revised manuscript 

(Results, session ‘PhenoSV accurately predicts pathogenicity of both coding SVs and 

noncoding SVs’, page 7 paragraph 1). 

For the second question, our results indeed showed that genome-wide conservative features 

also played an important role in coding SVs (Figure 3e-f), but their contribution was relatively 

less pronounced compared to their impact on noncoding SVs. Since much larger fraction of 

coding regions tend to be evolutionarily conserved than noncoding regions, it is harder to 

differentiate pathogenic vs benign coding SVs solely using those conservative features. 



In results, PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs:  

*DG8 ?BEDGI4CIAPR ->8CD/2 64C =8C8G4I8 ?CI8GEG8I45A8 G8HLAIH 5P B4@?C= EG87?6JDCH DC I>8 =8C8

A8M8AR N>?6> ?H 4 6DBBDC A?B?I4JDC 9DG IG47?JDC4A B46>?C8ZA84GC?C= B8I>D7HT Notably, we 

observed lower AUCs of large SVs than small SVs in the independent test set for all models except 

CADD-SV (Figure 3b-c\T 0>?H E8G9DGB4C68 786G84H8 9DG A4G=8G /2H 6DLA7 58 4KG?5LI87 ID EDI8CJ4A

4H68GI4?CB8CI 5?4H8H 4G?H8 9GDB 7?HE4G?J8H ?C I>8 I86>C?FL8H LH87 9DG /2 78I86JDC [H88

HLEEA8B8CI4GP B4I8G?4AH\T !77?JDC4AAPR U

6. Authors should report precision-recall curves for their model beyond auROC plots.

Thanks for the comment. We added precision-recall curves in Figure S4, and accordingly revised 

our main manuscript. (Results, session ‘PhenoSV accurately predicts pathogenicity of both 

coding SVs and noncoding SVs’, page 6 paragraph 2). 

In Results: PhenoSV accurately predicts pathogenicity of both coding SVs and noncoding SVs 

!H CDI 4AA B8I>D7H 64C EGD7L68 H6DG8H N?I> C4ILG4A 6>D?68H D9 I>G8H>DA7H I>4I 7?HJC=L?H> 58IN88C

E4I>D=8C?6 4C7 58C?=C /2HR N8 LH87 I>8 4G84 LC78G I>8 G868?M8GZDE8G4JC= 6>4G46I8G?HJ6 6LGM8

[!1"\ 4H E8G9DGB4C68 B8IG?6 ID 6DBE4G8 7?:8G8CIB8I>D7HT38 4AHD G8EDGI87 466LG46PR H8CH?JM?IPR

)9, =;-+50+5>C :. $4-9:%' 59 table S3, and area under the precision-recall curves (auPRC) in Figure 

S4. 

7. The number of SVs (beyond deletions and duplications) is very small, particularly for their 

non-coding SVs. How will this influence the performance of the phenoSV model? 

PhenoSV was trained only using deletions and duplications, including coding SVs and noncoding 

SVs. Since the number of insertions, inversions, and translocations in existing labeled datasets 

are too small to train a model directly, we only used those SVs as test datasets to evaluate the 

performance of PhenoSV, when approximating their impacts using deletion/duplication proxies. 

Thus, the number of insertions, inversions, and translocations will not influence PhenoSV 

performance. We clarified this point in the revised manuscript (Discussion, page 14 paragraph 

2). 

In Discussion: 

(C 477?JDCR B46>?C8ZA84GC?C=Z54H87 BD78AH A4G=8AP G8AP DC 8O?HJC= A458A87 74I4H8IH 9DG IG4?C?C=

4C7 I8HJC=T /?C68 I>8 CLB58G D9 ?CH8GJDCHR ?CM8GH?DCHR 4C7 IG4CHAD64JDCH ?C I>8 8O?HJC= A458A87

datasets are too small to train a model directly, ->8CD/2 LH87 78A8JDCH 4C7 7LEA?64JDCH ID

4EEGDO?B4I8 I>8 ?BE46IH D9 ?CH8GJDCHR ?CM8GH?DCHR 4C7 IG4CHAD64JDCH these SV types to 

DM8G6DB8 74I4 A?B?I4JDCHT )458A87 ?CH8GJDCHR ?CM8GH?DCHR 4C7 IG4CHAD64JDCH N8G8 DCAP LH87 4H

>-=> ,)>)=->= >: -@)7?)>- >4- ;-<.:<8)9+- :. $4-9:%' )9, A577 9:> 592?-9+- $4-9:%'



performance. 'DN8M8GR N8 H>DLA7 46@CDNA87=8 I>4I I>8 I8HI 74I4H8I D9 ?CM8GH?DCH ?H HJAA HB4AA

4C7 LH8GH H>DLA7 58 BDG8 64LJDLH N>8C ?CI8GEG8JC= G8HLAIH DC ?CM8GH?DCHT

8. Authors should comment on the potential issue of model overfitting with such a large 

amount of feature sets, many of which are likely to be highly correlated. 

We acknowledge the reviewer’s concern regarding the potential risk of overfitting by using a 

large feature set, especially if there are strongly correlated features. To address the concern on 

potential overfitting, we employed several techniques during our analysis. First, we 

implemented model regularization techniques, including drop out layers and weight decays 

during model training process. These regularization methods can prevent the model from being 

too sensitive to the training data and thus can reduce the risk of overfitting. Second, we split 

our training/validation/hold-out test dataset by chromosomes to ensure the lack of overlaps 

between SVs across the dataset, and also utilized different independent test datasets for 

reliable performance evaluations. Third, in the revised manuscript, as suggested by another 

reviewer, we also introduced a light-weight version of PhenoSV (PhenoSV-light) trained with 

only 42 important features. Our results suggest that PhenoSV-light exhibited largely 

comparable prediction accuracy to PhenoSV, except for translocations (Figure S2). Accordingly, 

we added the discussion on overfitting issues (supplementary materials, session ‘Potential 

issues of model overfitting’, page2, paragraph2). 

9. The cut-off for classifying pathogenic vs. benign SVs is very lenient, as reported for their 

transmission analysis. How will a higher threshold for pathogenic SVs influence the overall 

result? 

To address the reviewer’s concern, we re-conducted the transmission analysis by assigning the 

top 30% SVs as pathogenic and the bottom 30% SVs as benign based on PhenoSV score 

quantiles. (Paternal SVs: <=0.31 as benign, >=0.58 as pathogenic, Maternal SVs: <=0.37 as 

benign, >=0.71 as pathogenic). Below, we compared the original results with 0.5 as the cut-off 

value (Table R1) and the new results (Table R2). We found that different thresholds do not 

influence the overall conclusion of the analysis. Specifically, predicted pathogenic paternal SVs 

exhibited over-transmission pattern to cases with the transmission rate being 0.71 (0.5 cutoff, 

binomial test p-value = 0.01) and 0.72 (quantile cutoff, binomial test p-value=0.02), 

respectively. Predicted benign SVs have transmission rate being 0.64 (0.5 cutoff, binomial test 

p-value = 0.04) and 0.68 (quantile cutoff, binomial test p-value = 0.07), respectively. Consistent 

with our original analysis, we observed a slightly larger effect size of over-transmission pattern 

for paternally inherited pathogenic SVs than benign SVs. Due to the small sample sizes, no 

statistical significance has achieved when comparing transmission rate between predicted 

pathogenic SVs and predicted benign SVs (0.5 cutoff: proportion test: p-value=0.656; quantile 

cutoff: p-value=0.910). The manuscript is revised to reflect these new analysis (Results, session 

‘PhenoSV determines disease-related genes indirectly affected by noncoding SVs’, page 11 

paragraph 1). We also added detailed analysis results in supplementary materials (session 

‘Different thresholds of PhenoSVs scores in transmission analysis’, page4, paragraph 3) 



In Results: PhenoSV determines disease-related genes indirectly affected by noncoding SVs: 

!<8G HIG4J9P?C= ".$Z/2H ?CID E4I>D=8C?6 [!&'"$#%# $ "!#) and benign (!&'"$#%# < 0.5) groups 

LH?C= ->8CD/2R N8 D5H8GM87 I>8 DM8GZIG4CHB?HH?DC E4K8GC D9 E4I8GC4AAP ?C>8G?I87 ".$Z/2H BDG8

evident for predicted pathogenic ones (29/41; transmission rate = 71%; binomial test p-value = 

0.01) than predicted benign ones (38/59; transmission rate = 64%; binomial test p-value = 0.04), 

4 HA?=>IAP A4G=8G 8:86I H?Q8 D9 DM8GZIG4CHB?HH?DC E4K8GC N4H D5H8GM87 9DG E4I8GC4AAP ?C>8G?I87

pathogenic SVs (29/41; transmission rate = 71%; binomial test p-value = 0.01) than benign SVs 

[`eYbfS IG4CHB?HH?DC G4I8 j caiS 5?CDB?4A I8HI EZM4AL8 j ]T]a\T !AI>DL=> HI4JHJ64A H?=C?;64C68

N4H CDI 46>?8M87 7L8 ID A?B?I87 H4BEA8 H?Q8H [E4I>D=8C?6 /2H MH 58C?=C /2HR EGDEDGJDC I8HI EZ

value=0.656), these results suggest the values of PhenoSV in determining pathogenic genes 

59,5<-+>7C )/-+>-, *C 9:9+:,593 %'=F When classifying pathogenic CRE-SVs and benign CRE-SVs, 

,5/-<-9> >4<-=4:7,= :. !&'"$#%# [HL6> 4H IDE 4C7 5DKDB `]i FL4CJA8H\ 64C 58 LH87 4C7 N8

.:?9, >4)> ,5/-<-9> >4<-=4:7,= ,: 9:> 592?-9+- >4- :@-<)77 +:9+7?=5:9 :. >4- )9)7C=5=

(supplementary materials, Table S9-S10).

Table R1. Transmission analysis with pathogenicity threshold of 0.5. 

Table R2. Transmission analysis with pathogenicity threshold of 30% and 70% quantiles. 

10. The current phenoSV approach doesn't consider tissue-specificity for non-coding SVs. As 

discussed by the authors, this is one of the biggest drawbacks of phenoSV. Why can't authors 

utilize tissue-specific annotation or epigenomic signals in the current phenoSV framework?

PhenoSV 

stratification

paternal 

total

father 

transmitted

father 

untrans

mitted

father 

transmitted rate
father p

maternal 

total

mother 

transmitted

mother 

untransmitt

ed

mother 

transmitted rate

mother 

p

all 100 67 33 0.67 (0.57, 0.76) 0.0008737 79 47 32 0.59 (0.48, 0.70) 0.1147

predicted 

pathogenic
41 29 12 0.71 (0.54, 0.84) 0.01151 47 28 19 0.60 (0.44, 0.74) 0.243

predicted benign 59 38 21 0.64 (0.51, 0.76) 0.03634 32 19 13 0.59 (0.41, 0.76) 0.3771

all 26 16 10 0.62 (0.41, 0.80) 0.3269 17 10 7 0.59 (0.33, 0.82) 0.6291

predicted 

pathogenic
11 7 4 0.64 (0.31, 0.89) 0.5488 13 8 5 0.62 (0.32, 0.86) 0.5811

predicted benign 15 9 6 0.60 (0.32, 0.84) 0.6072 4 2 2 0.50 (0.07, 0.93) 1

case

control

PhenoSV 

stratification

paternal 

total

father 

transmitted

father 

untrans

mitted

father 

transmitted rate
father p

maternal 

total

mother 

transmitted

mother 

untransmitt

ed

mother 

transmitted rate

mother 

p

all 100 67 33 0.67 (0.57, 0.76) 0.0008737 79 47 32 0.59 (0.48, 0.70) 0.1147

predicted 

pathogenic
29 21 8 0.72 (0.53, 0.87) 0.02412 24 11 13 0.46 (0.25, 0.67) 0.8388

predicted benign 31 21 10 0.68 (0.49, 0.83) 0.07076 25 12 13 0.48 (0.28, 0.69) 1

all 26 16 10 0.62 (0.41, 0.80) 0.3269 17 10 7 0.59 (0.33, 0.82) 0.6291

predicted 

pathogenic
9 6 3 0.67 (0.30, 0.93) 0.5488 5 2 3 0.4 (0.05, 0.85) 1

predicted benign 7 4 3 0.57 (0.18, 0.90) 1 4 2 2 0.5 (0.07, 0.93) 1

case

control
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and epigenomics features. We did not pursue this approach for the following reasons: First, it 
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this process, we have updated the user manual of the PhenoSV GitHub repository, providing 

./@+68/. 4E6.+:-/ ;: 5;G @; 6:-;><;>+@/ E?/>O./2:/. (!# +::;@+B;:?L (56? E<.+@/ 6? +8?;

described in the revised manuscript (Discussion, page 14 paragraph 2).

In Discussion:

/?C68 CDI 4AA A458A87 /2H >4M8 I>8 6DGG8HEDC7?C= JHHL8 HDLG68 ?C9DGB4JDC 4C7 0!# 4CCDI4JDCH

4G8 JHHL8Z78E8C78CIR N8 LH87 4 HL5ZDEJB4A 7?HI4C68Z54H87 HIG4I8=P ID 78I8GB?C8 I>8

64C7?74I8 =8C8 H8IH 9DG 4AA /2H 7LG?C= IG4?C?C=T +8M8GI>8A8HHR JHHL8ZHE86?;6 0!# 4CCDI4JDCH 64C

*- ?=-, >: ,-<5@- 8:<- ,-09-, +)9,5,)>- 3-9- =->= A4-9 ?=593 $4-9:%'F This capability is 

facilitated by the current command-line tool of PhenoSV, which enables users to employ their 

DNC 0!# 4CCDI4JDCHR HL6> 4H JHHL8ZHE86?;6 0!#R 9DG HE86?;6 4C4APH8HT !H BDG8 8OE8G?B8CI4A

74I4R A?@8 '?Z" 74I4R 586DB8H 4M4?A45A8 4C7 8OE4C7 8O?HJC= JHHL8ZHE86?;6 =8CDB8 4CCDI4JDCHR

8:<- -1+5-9> );;<:)+4-= A577 *- -B;7:<-, .:< .?<>4-< 58;<:@-8-9>=F (C 477?JDCR



Reviewer #1 (Remarks to the Author): 

The authors have addressed all of my concerns. No further suggestions. 

Reviewer #2 (Remarks to the Author): 

The authors have very thoughtfully and seriously addressed my comments as well as the 

comments of the other reviewers. Although no method or model can be perfect, I am satisfied that 

the manuscript and accompanying model will be useful for the field. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed the majority of the concerns. However, their current framework has 

significant limitations and potential applicability for identifying pathogenic SVs that drive disease 

by affecting non-coding regions on the genome. This drawback is primarily due to the limited 

training sample size and lack of tissue-specific epigenomic/ functional genomics data for training 

their non-coding SV model. A clear acknowledgment/elaboration of this issue in the discussion 

section is warranted.



Response to Comments 

We thank again for reviewers’ generous and constructive comments on our manuscript titled 

“PhenoSV: Interpretable phenotype-aware model for the prioritization of genes affected by 

structural variants”. We have fully addressed these concerns. The changes that we made in the 

main manuscript were highlighted in red fonts. 

Reviewer #1 (Remarks to the Author):
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Reviewer #2 (Remarks to the Author):
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3*"3 3*& -".42$1+03 ".% "$$/-0".6+.) -/%&, 5+,, #& 42&'4, '/1 3*& (&,%7

Reviewer #3 (Remarks to the Author):

The authors have addressed the majority of the concerns. However, their current framework 

1(: :2062/*(6; 4252;(=76: (6+ 87;,6=(4 (8842*()242;B -79 2+,6=-B260 8(;170,62* %': ;1(; +92@,

+2:,(:, )B (.,*=60 676H*7+260 9,0276: 76 ;1, 0,675,F &12: +9(A)(*3 2: 8925(924B +?, ;7 ;1,

4252;,+ ;9(26260 :(584, :2C, (6+ 4(*3 7- =::?,H:8,*2/* ,820,6752*G -?6*=76(4 0,6752*: +(;(

-79 ;9(26260 ;1,29 676H*7+260 %' 57+,4F " *4,(9 (*367A4,+05,6;G,4()79(=76 7- ;12: 2::?, 26

;1, +2:*?::276 :,*=76 2: A(99(6;,+F

According to the reviewer’s suggestion, we further addressed the limitation in the Discussion 

section (page 14, paragraph 2). 

Similarly, the number of noncoding SVs is limited in our training dataset. To train a model that can 

accurately predict the pathogenicity of noncoding SVs, we devised a strategy that makes the input 

features of coding SVs and noncoding SVs “look alike” (see Supplementary Materials). This 

%4463%'- )2%&0)( ;7 83 ;90.>) .2*361%932 *631 '3(.2, "#7 83 )2-%2') 8-) 86%.2.2, *36 232'3(.2,

"#7A $)8@ 8-) 7'%6'.8= 3* 4%8-3,)2.' 232'3(.2, "#7 .2 3;6 86%.2.2, %2( 8)792, (%8%7)8@ %032, <.8-

8-) 0%'/ 3* 977;)B74)'.+' *;2'932%0 %2238%9327@ 6)1%.27 % 238%&0) 0.1.8%932 8-%8 6)5;.6)7

further improvement once appropriate datasets become available.


