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Supplementary Figures 

 

Supplementary Figure 1. Exploratory data analysis of the dataset using a ⅔ – ⅓ split 

a Pair plot analysis of ⅔ split cohort (n=2023) plotting the clinical target organ stages of skin, 

liver and GI involvement (stages 0-4, left to box and below). The target organ stage correlations 



4 
 

are presented as density plots. Patient numbers (n) of each subgroup are indicated right to 

each box. Higher n in each subgroup is shown by greater surface coverage. Density of aGVHD 

target organ combinations is indicated from light green to dark blue. b Target organ stage 

correlation matrix (Spearman) of the training cohort shows the distribution of single variables 

skin, liver and GI and their respective interactions. Range from -1.0 to +1.0, dark blue indicates 

full overlap. c Pair plot and d Target organ stage correlation matrix (Spearman) of ⅓ split cohort 

(n=996). Analysis, labels and colors as in a-b. 

  



5 
 

 

Supplementary Figure 2. Internal Validation and additional characteristics of PC1-based 

grading development, training cohort (n=2319) 

a Plotting of PC1 and overall survival (OS, days from HCT without censoring) reveals lower 

OS with increasing PC1. Each dot representing one patient with aGVHD. Colored dots 

representing Consensus grade I-IV (I=yellow, II=green, III=blue, IV=violet) indicate overlap 

between Consensus grades I & II and II & III on the PC1 axis. b Plotting of PC1 stages and 

OS (months from HCT, censoring < 12 months has not been considered in this representation, 

patients surviving > 12 months were censored at the 12 months dot) with a power function 

derived from maximal OS confirms lower OS with increasing PC1 within the first 12 months 

after HCT. Colors as in B. c 500-fold bootstrapping of PCA on training cohort sample (each 
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sample with size n=1546). The boxplot shows the eigenvalues of each PC (median, orange 

middle line; 25th, 75th percentile, box). The two lines outside of the box represent the 5th and 

95th percentile (whiskers). Single points outside the whiskers are outliers. Source data are 

provided as a source data file. d Color-coded plotting of PC1 stages against aGVHD organ 

involvement (combinations: 1:skin, red, 2: liver, yellow 3: GI, lime 4: skin and liver, green 5: 

skin and GI, blue 6; liver and GI, violet 7: skin and liver and GI purple). The circle size 

corresponds to the n of patients in each category. 
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Supplementary Figure 3. Visualization of different aGVHD grading methods using t-SNE, 

training cohort (n=2319) 

t-SNE as nonlinear dimensionality reduction method applied for visualizing grading in the 
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training cohort (n=2319) on two-dimensional data (tSNE1 and t-SNE2) with each dot 

representing a single patient. Patients are colored according to their corresponding severity 

grading (grade I, light green; grade II, dark green; grade III, teal, grade IV, blue). a PC1 4 

grades, b Hierarchical clustering 4 grades, c K-means 4 grades. d MAGIC 4 grades, e 

Consensus 4 grades, f IBMTR 4 grades. 
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Supplementary Figure 4. Visualization of different aGVHD grading methods using 

UMAP, training cohort (n=2319) 

Uniform Manifold Approximation and Projection (UMAP) as nonlinear dimensionality reduction 

method was applied for visualizing grading on data in two dimensions (UMAP1 and UMAP2) 

with each dot representing a single patient. Patients are colored according to their 

corresponding severity grading (grade I, light green; grade II, dark green; grade III, teal, grade 

IV, blue). a-c: Data driven aGVHD grading methods, a PC1 4 grades, b Hierarchical clustering 

4 grades, c K-means 4 grades. d-f: Conventional aGVHD grading methods, d MAGIC 4 

grades, e Consensus 4 grades, f IBMTR 4 grades. 
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Supplementary Figure 5. Visualization of ascending DBSCAN cluster numbers on UMAP 

output and OS association, training cohort (n=2319) 

Nonlinear dimensionality reduction with UMAP applied on the training cohort (n=2319) 

revealing two-dimensional data (UMAP1 and t-UMAP2) with each dot representing a single 

patient. The UMAP output was clustered using DBSCAN and patients colored according to the 

corresponding DBSCAN cluster. Explorative Kaplan-Meier analysis was performed to illustrate 

the spread of the clusters. a DBSCAN with 4 clusters. Colors representing DBSCAN cluster 

aGVHD severity grades I-IV (grade I, light green; grade II, dark green; grade III, teal, grade IV, 

blue) b Kaplan-Meier OS curve with 95% confidence interval (CI) of 4 clusters. Strata were 

compared with the two-sided log-rank test. c 8 clusters. Colors representing DBSCAN cluster 

aGVHD severity grades I-VIII. d Kaplan-Meier OS curve with 95% CI of 8 clusters. Strata were 

compared with the two-sided log-rank test. e 12 clusters. Colors representing DBSCAN cluster 

aGVHD severity grades I-XII. f Kaplan-Meier OS curve with 95% CI of 12 clusters. Strata were 

compared with the two-sided log-rank test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

 

 

Supplementary Figure 6: Multivariate Cox regression analysis for 12 months OS using 

the PC1 aGVHD grades as time-dependent variable, test cohort (n=700) Other significant 

covariates for OS were some diagnoses (acute lymphoblastic leukemia (ALL), other diagno-

ses), year of HCT, EBMT risk score and cytomegalovirus positive serostatus of the recipient 

(CMV R+ serostatus). Age was no more significant once EBMT risk was included (which also 



13 
 

includes age). Horizontal bars represent 95% CI. P values were computed using the Wald 

test. The hazard ratio (HR) is a measure of the ratio of the hazard between two groups. A 

value of 1 is the reference. Source data are provided as a source data file. 
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Supplementary Figure 7. Cumulative incidence of NRM from the date of aGVHD 

diagnosis. Test cohort (n=700). a PC1 with 4 grades. Colors representing PC1 aGVHD 

grades I-IV (I, light green; II, dark green; III, teal; IV, blue) b HClust grades I-IV c K-means 4 

grades (grades I-IV) d MAGIC grades I-IV e Consensus grades I-IV f IBMTR grades I-IV. Error 

bands show 95% confidence interval. P values were computed using the two-sided Gray test. 
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Supplementary Figure 8. Cox-regression analysis of test cohort (n=700) for OS cen-

sored at 12 months. Patients without aGVHD (GVHD grade 0, n=735) served as com-

mon reference 

Illustrative comparison of hazard ratios (center boxes) between aGVHD classifications with 4 
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grades and a common reference cohort of patients with aGVHD grade 0 (same reference for 

both conventional and data-driven classifications). P values were computed using the Wald 

test. Source data are provided as a source data file. a PC1 4 grades b HClust c K-means 4 

grades d MAGIC e Consensus f IBMTR. Error bars show 95% confidence interval. 
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Supplementary Figure 9. Cumulative incidence of NRM of the K-means 14 clusters. Test 

cohort (n=700). Colors represent the different K-means aGVHD grades I-XIV. Strata are 

compared with the two-sided log-rank test. 
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Supplementary Tables 

Supplementary Table 1: Baseline characteristics of training and test cohort 

 Training set Validation set p 

n 2319 700  

Median age [IQR] 55.00 [44.00, 62.00] 53.00 [43.00, 62.00] 0.680 

Male sex, n (%) 1359 (58.6) 419 (59.9) 0.527 

Missing 3 (0.1) 3 (0.4)  

Diagnosis    

   AML 945 (40.8) 333 (47.6)  

   MDS 335 (14.4) 67 (9.6)  

   ALL 211 (9.1) 73 (10.4)  

   Chronic leukemia 101 (4.4) 60 (8.6)  

   MPN 248 (10.7) 51 (7.3)  

   Lymphoma 251 (10.8) 46 (6.6)  

   Myeloma 132 (5.7) 43 (6.1)  

   Other 89 (3.8) 19 (2.7)  

Missing 7 (0.3) 8 (1.1)  

Karnofsky at HCT   <0.001 

≥80 1796 (77.4) 635 (90.7)  

≥90 1162 (50.1) 577 (82.4)  

Missing 360 (15.5) 44 (6.3)  

Female donor, n (%) 775 (33.4) 195 (27.9) 0.752 

Missing 3 (0.1) 131 (18.7)  

Graft source, n (%)   <0.001 

   PBSC 2106 (90.8) 561 (80.1)  

   BM 207 (8.9) 25 (3.6)  

Missing 6 (0.3) 114 (16.3)  

Donor type, n (%)    

   MRD 486 (21.0) 116 (16.6)  

   MMRD (incl. haplo) 62 (2.7) 10 (1.4)  

   Unrelated donor HCT 1683 (72.6) 461 (65.9)  

- MUD 533 (23.0) 335 (47.9)  

- Unrelated, not specified 899 (38.8) 0 (0.0)  

- MMUD 251 (10.8) 126 (18.0)  

Missing 88 (3.8) 113 (16.1)  

CMV serostatus, n (%)   

   CMV D-/R- 668 (28.8) 189 (27.0) 0.013 

   CMV D-/R+ 426 (18.4) 93 (13.3)  

   CMV D+/R- 259 (11.2) 47 (6.7)  

   CMV D+/R+ 874 (37.7) 253 (36.1)  

Missing 92 (4.0) 118 (16.9)  

RIC, n (%) 734 (31.7) 437 (62.4) <0.001 

Missing 89 (3.8) 113 (16.1)  

TBI, n (%) 704 (30.4) 175 (25.0) 0.536 

Missing 85 (3.7) 118 (16.9)  

ATG (%) 1582 (68.2) 506 (72.3) <0.001 

Missing 260 (11.2) 118 (16.9)  
Abbreviations: IQR, interquartile range; AML, acute myeloid leukemia; MDS, myelodysplastic 
syndromes; ALL, acute lymphoblastic leukemia; MPN, myeloproliferative neoplasm; PBSC, peripheral 
blood stem cells; BM, bone marrow; MRD, matched related donor; MMRD, mismatched related donor; 
haplo, haploidentical donor; MUD, matched unrelated donor; MMUD, mismatched unrelated donor; 
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CMV, cytomegatovirus; D, donor serostatus; R, recipient serostatus; RIC, reduced intensity 
conditioning; TBI, total body irradiation; ATG, anti-thymocyte globulin. P values were calculated using 
chi-square test; t-test was used for age. 

 

 

 

Supplementary Table 2: Core outcomes of training and test cohort 

 Training set Validation set 

Acute GVHD 2319 (100) 700 (100) 

PC1 grades, n (%)   

PC1 grade I 1815 (78.3) 443 (63.3) 

PC1 grade II 282 (12.2) 96 (13.7) 

PC1 grade III 170 (7.3) 137 (19.6) 

PC1 grade IV 52 (2.2) 24 (3.4) 

MAGIC grades, n (%)   

MAGIC I 1018 (43.9) 265 (37.9) 

MAGIC II 837 (36.1) 183 (26.1) 

MAGIC III 314 (13.5) 143 (20.4) 

MAGIC IV 150 (6.5) 109 (15.6) 

Chronic GVHD, n (%)   

   No 974 (42.0) 380 (54.3) 

   Yes 1344 (58.0) 257 (36.7) 

Missing 1 (0.0) 63 (9.0) 

Relapse at 12 months, n (%) 477 (20.6%) 103 (14.7%) 

Alive at 12 months, n (%) 1576 (66.0%) 488 (69.7%) 
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Supplementary Methods 

Non-linear data-driven approaches to the grading of aGVHD: Uniform Manifold Approximation 

and Projection (UMAP)1, 2 and t-Distributed Stochastic Neighbor Embedding (tSNE)3 were 

employed as previously described for visualizing different aGVHD grading systems in a 2-

dimensional space. In short, tSNE uses a t-distribution curve to determine the similarity 

between all data points in the high-dimensional-space. The resulting similarity scores are 

stored in a matrix. tSNE then randomly plots the high dimensional data in 2 dimensions and 

again calculates a similarity matrix. Finally, the two similarity score matrices (of the high-

dimensional and the 2-dimensional data) are compared within multiple iteration steps until both 

matrices are similar. Perplexity values between 1 and 751 in increments of 50 were tested, 

each with different iterations of 5, 10, 20, 50, 100, 200, 500 and 1000. We decided to use a 

perplexity of 51 with 10 iteration steps to represent aGVHD phenotypes in a 2D-plot. We also 

employed UMAP because it does not randomly plot the high dimensional data in 2 dimensions 

at initialization. Here again, low dimensional similarity scores based on a t-distribution curve 

are calculated and points are adjusted based on this score. We tested the n-neighbor values 

2, 4, 16, 32, 64, 100 and 256, each with different minimum distances of 0.0125, 0.05, 0.2 and 

0.8. DBSCAN is a density-based clustering that can be employed on UMAP output. The epsilon 

parameter specifies the distance between points to form clusters. For comparison with 

conventional grading, DBSCAN settings were configured to result in 4 clusters (corresponding 

to an epsilon set to 6)4. We further explored parameter settings on the output of UMAP, 

resulting in 5 to 13 clusters with epsilon set to 5.2, 5, 4, 2, 1.2, 1, 0.85, 0.79 and 0.78, 

respectively. 

aGVHD phenotype composition: We comparatively analyzed the numbers and proportions of 

clinical aGVHD phenotypes (i.e. aGVHD organ-involvement compositions) in all data-driven 

aGVHD classifications as well as in the most relevant conventional grading system, MAGIC. 

Both absolute and relative contribution of phenotypes and overall heterogeneity were 

displayed using a multi-color scheme. The results are presented next to the respective 
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outcome association (e.g. Figure 6). Detailed list of the involved phenotypes are provided in 

the supplementary tables 3-13. 

Analysis of redistributed patients: Some grading systems categorized a high number of 

aGVHD phenotypes in a single grade. Within these categories (e.g. in MAGIC grade III), we 

identified patients that were attributed to distinct aGVHD severity grades in other aGVHD 

grading systems, which we coined redistributed patients (e.g. MAGIC grade III patients that 

were classified by PC1 as grade II). These redistributed patients were analyzed separately 

from the remaining patients of the same severity grade and compared for differences in clinical 

outcome to dissect heterogeneity within selected large classification categories.   

Description of institutional transplant protocols and practices: The studied patients received 

HCT for treatment of hematological malignancies. Donor search was performed by the 

respective transplant office at each institution in collaboration with donor-databases. Donors 

were HLA-matched related donors (MRD), mismatched-related and haploidentical related 

donors (MMRD, 10/10 HLA-A-, -B, -C, -DRB1, -DQB1 matched unrelated donors (MUD), or 

mismatched unrelated donors (MMUD). HLA-DPB1 was not considered for donor-recipient 

matching. The conditioning regimen was chosen by the treating physician considering 

diagnosis, age, comorbidities and donor constellation. Patients received the same early 

supportive and follow-up care. With the beginning of the conditioning regimen until discharge, 

all in patients were treated in reverse isolation single rooms with high-efficacy particle air 

filtration. Antiviral prophylaxis during neutropenia consisted of intravenous aciclovir at 250 mg 

three times daily. Antifungal prophylaxis consisted of oral posaconazole at 200 mg three times 

daily from day+1 with a minimal duration until day +100. Colony stimulating factors were not 

routinely applied. As pneumocystis-jirovecii pneumonia prophylaxis patients received either 

monthly pentamidin inhalation or oral cotrimoxazol at 960 mg three times per week from day 

+30. Only, irradiated red blood cell and platelet transfusions and in-line leukocyte-filtered 

products were used. Patients in both training and test cohorts received a pharmacological 

aGVHD prophylaxis including calcineurin inhibitors, most frequently in combination with either 

methotrexate or mycophenolate mofetil. Patients with higher GVHD risk (in particular those 
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with MUD and MMUD) were assigned to additional in vivo T cell depletion using anti-T-

Lymphocyte globulin (ATG). In Essen, Heidelberg and Berlin, the preferred calcineurin inhibitor 

based GVHD prophylaxis was ciclosporin plus methotrexate (MTX), while in Hamburg and 

Hannover it was the combination of ciclosporin and mycophenolate mofetil (MMF). Ciclosporin 

was applied intravenously at 3 mg/kg bodyweight starting from day -1 before HCT e.g. in 

combination with 15 mg/m2 MTX on day +1 und 10 mg/m2 MTX on days +3, +6 and +11 after 

HCT. Normal early ciclosporin target blood levels (range, 150-250 ng/ml) were controlled three 

times weekly. MMF was started intravenously on day 0 at 30mg/kg bodyweight/day split into 

2-3 daily doses. Following drug oralisation, MMF was continued orally depending on the 

protocol e.g. until day +28 for MRD/MUD or until day +35 (MMUD, MMRD). Polyvalent rabbit-

ATG was applied at a dosage of 10 mg/kg bodyweight on days -4, -3 and -2 (cumulative 

dosage: ATG 30 mg/kg) or at a dosage of 20 mg/kg bodyweight on days -4, -3 and -2 

(cumulative dosage: ATG 60 mg/kg). Before patient discharge, intravenous ciclosporin was 

substituted orally. Inpatients had daily medical visits until discharge around day+30. 

Outpatients were followed weekly until day+100. 
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Supplementary note 1: Non-linear data-driven approaches to the grading of aGVHD 

In addition to the linear data science methods described in the main manuscript, we also 

explored common non-linear approaches on the data to address its heterogeneity, such as t-

SNE (Suppl. Figure 3) and UMAP (Suppl. Figure 4). Both methods identified distinct patient 

clusters, illustrated as conflating dots, each dot representing one patient, and comparatively 

visualized the patient distributions in the data-driven and conventional grading systems. 

Additional, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) using 4 

grades following UMAP dimensionality reduction did not deliver satisfactory results, yet when 

dissecting the cohort into 8 to 12 DBSCAN clusters, its association with OS covered a broad 

spectrum of patient outcomes with distinct strata (Suppl. Figure 5). This approach holds 

potential for integrating biomarker features. 

 

Supplementary note 2: Additional K-Means clustering with 14 clusters 

Following the observation of a late plateau of the silhouette index on the development cohort 

at 14 K-means clusters (Figure 4C), we also explored a classification system leveraging these 

14 K-means clusters on the independent test cohort (Suppl. Figure 9). Here, we found a slightly 

lower AIC of 2516 as well as a CI of 0.71, when validated on the test cohort. However, this 

system suffered from insufficiencies in the association with clinical outcome: 1) Numerous of 

the 14 severity grades were no distinct in OS or NRM, 2) the grades’ severity did not align 

linearly in Cox regression with multiple jumps in the test cohort and 3) many of the cohorts 

were assembled only very few patients. We therefore did not further follow this approach. 
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Supplementary note 3: Employed R Libraries 

 

ggplot2:  

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. 

readxl: 

Hadley Wickham and Jennifer Bryan (2019). readxl: Read Excel Files. R package version 

1.3.1. URL: https://CRAN.R-project.org/package=readxl 

survival: 

Terry M. Therneau, Patricia M. Grambsch (2000). _Modeling Survival Data: Extending the 

Cox Model_. Springer, New York. ISBN 0-387-98784-3. 

survminer: 

Alboukadel Kassambara, Marcin Kosinski and Przemyslaw Biecek (2021). survminer: 

Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. URL: https://CRAN.R-

project.org/package=survminer 

cmprsk: 

Bob Gray (2022). cmprsk: Subdistribution Analysis of Competing Risks. R package version 

2.2-11. URL: https://CRAN.R-project.org/package=cmprsk 

dplyr: 

Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2022). dplyr: A Grammar 

of Data Manipulation. R package version 1.0.8. URL: https://CRAN.R-

project.org/package=dplyr 

ggstatsplot: 

Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach. Journal of 

Open Source Software, 6(61), 3167, doi:10.21105/joss.03167 

dynpred: 

Hein Putter (2015). dynpred: Companion Package to "Dynamic Prediction in Clinical Survival 

Analysis". R package version 0.1.2. URL: https://CRAN.R-project.org/package=dynpred 

tidyr:  

Hadley Wickham and Maximilian Girlich (2022). tidyr: Tidy Messy Data. R package version 

1.2.0. URL: https://CRAN.R-project.org/package=tidyr 

Rtsne: 

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. 

Journal of Machine Learning Research 9(Nov):2579-2605, 2008. 

L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine 

Learning Research 15(Oct):3221-3245, 2014. 

Jesse H. Krijthe (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using a 

Barnes-Hut Implementation, URL: https://github.com/jkrijthe/Rtsne 

 

https://cran.r-project.org/package=readxl
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dynpred
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umap: 

Tomasz Konopka (2022). umap: Uniform Manifold Approximation and Projection. R package 

version 0.2.8.0. URL: https://CRAN.R-project.org/package=umap 

tidyverse: 

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 

1686, URL: https://doi.org/10.21105/joss.01686 

writexl: 

Jeroen Ooms (2021). writexl: Export Data Frames to Excel 'xlsx' Format. R package version 

1.4.0. URL: https://CRAN.R-project.org/package=writexl 

aod: 

Lesnoff, M., Lancelot, R. (2012). aod: Analysis of Overdispersed Data. R package version 

1.3.1, URL: http://cran.r-project.org/package=aod 

tableone: 

 Kazuki Yoshida and Alexander Bartel (2022). tableone: Create 'Table 1' to Describe 

Baseline Characteristics with or without Propensity Score Weights.  R package version 

0.13.2. URL: https://CRAN.R-project.org/package=tableone 

timeROC: 

Paul Blanche, Jean-Francois Dartigues, Helene Jacqmin-Gadda (2013). Estimating and 

Comparing time-dependent areas under receiver operating characteristic curves for 

censored event times with competing risks. Statistics in Medicine, 32(30), 5381-5397. URL:   

http://onlinelibrary.wiley.com/doi/10.1002/sim.5958/full 

 

 

Supplementary note 4: Employed Python libraries 

 

scikit-learn 

Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.  

numpy 

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 

585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2.  

scipy 

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant et al.. (2020) SciPy 1.0: Fundamental 

Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.  

pandas  

McKinney W, others. Data structures for statistical computing in python. In: Proceedings of 

the 9th Python in Science Conference. 2010. p. 51–6. 

 

https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=tableone
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Matplotlib 

J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science & Engineering, 

vol. 9, no. 3, pp. 90-95, 2007.  

seaborn 

Waskom ML. seaborn: statistical data visualization. Journal of Open Source Software. 

2021;6(60):3021. doi: 10.21105/joss.03021.  

PyYAML 

LibYAML, release 0.2.5, 2020-06-01 URL: https://github.com/yaml/pyyaml.org or 

https://pyyaml.org/ 

 

 

 

Supplementary References 

 

1. Becht E, et al. Dimensionality reduction for visualizing single-cell data using UMAP. 

Nat Biotechnol,  (2018). 

 

2. MCInnes L, Healy, J., Melville, J. UMAP: Uniform Manifold Approximation and 

Projection for Dimension Reduction.  (2018). 

 

3. Maaten LVd. Visualizing data using t-SNE. Journal of Machine Learning Research 9, 

2579-2605 (2008). 

 

4. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering 

clusters in large spatial databases with noise. In: Proceedings of the Second 

International Conference on Knowledge Discovery and Data Mining). AAAI Press 

(1996). 

 

 

 

https://github.com/yaml/pyyaml.org

