
Preliminaries of FL Building Blocks 

Let us consider a network of 𝐾 devices, each with a local dataset 𝐷𝑘 for 𝑘 ∈ 1,2,… , 𝐾. Each local 

dataset is composed of 𝑛𝑘 examples, represented by tuples (𝑥𝑘,𝑖 ,𝑦𝑘,𝑖 ) for 𝑖𝜖1,2,… , 𝑛𝑘 [ 1 - 6 ] . The goal 

of FTL is to train a global model 𝑓 that can make predictions based on new examples given by (𝑥, 𝑦), 

using the information from all the decentralized datasets 𝐷𝑘[ 1 - 6 ] . One way to perform FTL is through 

federated averaging [1-12]. This involves training a local model 𝑓𝑘 on each decentralized dataset 𝐷𝑘, and 

then averaging the model weights across all the devices to create the global model: 
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Another approach is to use a federated learning server, which coordinates the training process across 

the decentralized datasets [ 1 - 6 ] . The server sends a global model 𝑓 to each device, and the device uses 

its local data samples to compute model updates ∆𝑓𝑘 [ 1 - 6 ] .  The server then aggregates the updates to 

create a new global model:  
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One effective optimization technique for both local model training and model updating is stochastic 

gradient descent (SGD) [1-12]. The objective is to reduce the discrepancy between the predicted image 

or loss functions and the ground truth image [ 1 - 6 ] . After building the global model using the FL 

concept, the model is fine-tuned in each center separately to have knowledge from different centers and 

specified for each center separately (transfer learning) [ 1 - 6 ] .  

 

Differential Privacy 

By introducing noise to the data, differential privacy protects individuals’ privacy within a dataset  [3]. 

Differential privacy aims to ensure that the inclusion or exclusion of any individual from the dataset has 

no appreciable influence on the outcomes of statistical analysis [3, 13]. This is accomplished using a 

randomization mechanism, such as the Laplace or Gaussian mechanisms, to introduce noise into the data 

[3, 13-17]. The privacy budget 𝜀, representing the maximum amount of privacy loss deemed acceptable, 

determines how much noise is added to the data [3]. The “sensitivity” of the function, also known as the 

difference in probability between any two outcomes, is a common way to define the privacy budget [13-

17]. The maximum change in the function’s output brought on by including or excluding a single subject 

in the dataset is referred to as the sensitivity [3, 13-17]. 

If algorithm M is randomized, it's considered (ϵ,δ)-differentially private when, for any two closely 

related datasets D1 and D2, and any specified event E in set R, the differences in the algorithm's output 

distributions for these datasets are within the bounds of (𝑒| |𝜖, 𝛿)[3, 13-17]. This means that, for any event 

E, the probability of the event occurring in the output distribution of the algorithm on the dataset 𝐷1is no 

more than 𝑒𝜖 times the probability of the event occurring in the output distribution of the algorithm on 

the dataset 𝐷2, plus 𝛿 [3]. If 𝛿 = 0, and 𝛿 > 0, the algorithm is termed pure differentially private (DP) and 

approximate DP, respectively [3]. 

The Gaussian noise mechanism is an effective technique for implementing DP [3, 13-17]. It adds zero-

mean multivariate Gaussian noise with a standard deviation of 𝜎. 𝜓𝑓
 
, to the output of a function 𝑓 with 

L2-sensitivity 𝜓𝑓, which is defined as the maximum difference in the output of the function for any two 



neighboring datasets [3]. The parameter 𝜎 is chosen based on 𝜓𝑓
2
 and 𝛿. Gaussian noise can be applied 

to local model parameters before server aggregation, to global parameters on the server before 

distribution, and during local training[3]. 

 

 

 



Supplemental Table 1. Summary statistics of quantitative parameters for different approaches. 

  
Approach MAE MSE PSNR SSIM 

      

Mean ± SD CeBa 0.42 ± 0.21 1.15 ± 2.03 24.76 ± 1.87 0.71 ± 0.15 

CeZe 0.32 ± 0.23 0.89 ± 2.41 25.85 ± 1.96 0.75 ± 0.15 

FTL 0.28 ± 0.15 0.63 ± 1.53 26.32 ± 1.85 0.80 ± 0.1       

CI95% CeBa 0.38 to 0.47 0.73 to 1.58 24.37 to 25.15 0.68 to 0.74 

CeZe 0.27 to 0.37 0.38 to 1.39 25.44 to 26.26 0.72 to 0.79 

FTL 0.25 to 0.31 0.31 to 0.95 25.94 to 26.71 0.78 to 0.82 
 

 

  



Supplemental Table 2. Summary statistics of quantitative parameters for different centers trained for each center separately (CeBa) and tested on 

all test sets (centers 1-8). i.e., column Center 1 represents the results of testing on the whole test set when training is performed only using the 

Center 1 data set. All test sets represent the results of models, in which training and testing are performed at the same center (whole 20% of the 
clean dataset).  

 

Quantitative metric Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 Center 7 Center 8 All Test Set  

MAE 0.70 ± 0.27 0.52 ± 0.33 0.67 ± 0.29 0.56 ± 0.28 0.66 ± 0.19 0.55 ± 0.31 0.90 ± 0.41 0.73 ± 0.26 0.42 ± 0.21 

MSE 2.45 ± 2.03 2.41 ± 2.69 2.94 ± 3.48 1.95 ± 2.22 2.83 ± 2.61 2.04 ± 2.32 3.03 ± 3.13 3.71 ± 2.93 1.15 ± 2.03 

PSNR 22.90 ± 1.95 23.7 ± 2.80 22.6 ± 1.91 23.65 ± 2.01 22.7 ± 1.98 23.8 ± 2.44 22.3 ± 1.65 21.9 ± 1.82 24.76 ± 1.87 

SSIM 0.61 ± 0.11 0.73 ± 0.17 0.66 ± 0.14 0.70 ± 0.15 0.56 ± 0.09 0.72 ± 0.16 0.53 ± 0.10 0.60 ± 0.12 0.71 ± 0.15 

CI 95%  

MAE 0.64 to 0.76 0.45 to 0.59 0.61 to 0.74 0.50 to 0.62 0.62 to 0.70 0.48 to 0.61 0.82 to 0.99 0.68 to 0.78 0.38 to 0.47 

MSE 2.02 to 2.87 1.85 to 2.98 2.21 to 3.67 1.49 to 2.42 2.29 to 3.37 1.55 to 2.52 2.38 to 3.68 3.10 to 4.32 0.73 to 1.58 

PSNR 22.50 to 23.30 23.10 to 24.30 22.20 to 23.00 23.20 to 24.10 22.20 to 23.10 23.30 to 24.30 22.00 to 22.70 21.50 to 22.30 24.37 to 25.15 

SSIM 0.58 to 0.63 0.69 to 0.76 0.63 to 0.69 0.67 to 0.73 0.54 to 0.58 0.68 to 0.75 0.51 to 0.55 0.58 to 0.63 0.68 to 0.74 

 

 
 

 

 
 

 

 

 

 

  



Supplemental Table 3. Summary statistics of quantitative parameters for the different centers using FTL and tested on all test sets (centers 1-8). 

i.e., column Center 1 represents the results of testing on the whole data set when training is performed only using the Center 1 data set. All test sets 

represent the results of models, in which training and testing are performed at the same center (whole 20% of the clean dataset). 

 
Quantitative metric Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 Center 7 Center 8 All Test Set  

MAE 0.41 ± 0.20 0.33 ± 0.18 0.37 ± 0.22 0.33 ± 0.15 0.33 ± 0.15 0.37 ± 0.19 0.62 ± 0.36 0.33 ± 0.17 0.28 ± 0.15 

MSE 1.05 ± 1.66 0.8 ± 1.70 1.16 ± 2.74 0.70 ± 1.59 0.74 ± 1.46 0.89 ± 1.52 2.07 ± 3.03 0.84 ± 1.83 0.63 ± 1.53 

PSNR 25.00 ± 1.96 25.77 ± 1.91 25.00 ± 1.86 25.87 ± 1.64 25.74 ± 1.85 25.30 ± 1.76 23.49 ± 1.97 25.63 ± 2.02 26.32 ± 1.85 

SSIM 0.73 ± 0.09 0.78 ± 0.13 0.71 ± 0.16 0.78 ± 0.12 0.77 ± 0.12 0.75 ± 0.15 0.72 ± 0.08 0.78 ± 0.12 0.80 ± 0.10 

CI 95%  

MAE 0.37 to 0.45 0.29 to 0.36 0.33 to 0.42 0.29 to 0.36 0.29 to 0.36 0.33 to 0.4 0.55 to 0.70 0.29 to 0.36 0.25 to 0.31 

MSE 0.70 to 1.40 0.44 to 1.15 0.58 to 1.73 0.37 to 1.03 0.43 to 1.04 0.57 to 1.21 1.44 to 2.71 0.46 to 1.22 0.31 to 0.95 

PSNR 24.59 to 25.41 25.37 to 26.17 24.61 to 25.39 25.53 to 26.22 25.35 to 26.13 24.93 to 25.67 23.08 to 23.90 25.21 to 26.05 25.94 to 26.71 

SSIM 0.71 to 0.75 0.75 to 0.80 0.68 to 0.75 0.75 to 0.80 0.75 to 0.80 0.72 to 0.78 0.70 to 0.73 0.75 to 0.81 0.78 to 0.82 

 
 

 

 

 



Supplemental Table 4. Comparison of image quality between CT-ASC and FLT-ASC The P-value is 

based on the McNemar test; P-value$ is based on the marginal homogeneity test. 

Region Image Quality P-value P-value$ 

Head and Neck Excellent 0.640 0.793 

High 0.071 

Average 0.107 

Poor 0.421 

Very poor 0.990 

Chest Excellent 0.604 0.151 

High <0.001 

Average <0.001 

Poor 0.690 

Very poor 0.990 

Chest Abdomen Interval Excellent 0.990 <0.001 

High <0.001 

Average 0.184 

Poor <0.001 

Very poor 0.990 

Abdomen Excellent 0.990 0.001 

High <0.004 

Average 0.421 

Poor <0.001 

Very poor 0.150 

Pelvis Excellent 0.999 0.324 

High <0.001 

Average 0.026 

Poor 0.254 

Very poor 0.045 

Extremities Excellent 0.992 0.979 

High 0.583 

Average 0.780 

Poor 0.990 

Very poor 0.990 

All regions Excellent 0.990 0.002 

High <0.001 

Average <0.001 

Poor <0.001 

Very poor 0.990 

 

 

 

 

 



Supplemental Table 5. Comparison of diagnostic confidence between CT-ASC and FLT-ASC. The P-

value is based on the McNemar test; P-value$ is based on the marginal homogeneity test. 

 

 

 

Region Diagnostic confidence P-value P-value$ 

Head and Neck Excellent 0.640 0.901 

High 0.121 

Average 0.107 

Poor 0.640 

Very poor 0.990 

Chest Excellent 0.641 0.021 

High <0.001 

Average <0.001 

Poor 0.640 

Very poor 0.990 

Chest Abdomen 

Interval 

Excellent 0.990 <0.001 

High <0.001 

Average 0.049 

Poor <0.001 

Very poor 0.990 

Abdomen Excellent 0.472 <0.001 

High <0.001 

Average 0.788 

Poor <0.001 

Very poor 0.150 

Pelvis Excellent 0.999 0.333 

High 0.003 

Average 0.158 

Poor 0.254 

Very poor 0.002 

Extremities Excellent 0.990 0.993 

High 0.578 

Average 0.754 

Poor 0.990 

Very poor 0.990 

All regions Excellent 0.990 0.002 

High <0.001 

Average <0.001 

Poor <0.001 

Very poor 0.990 



 

Supplemental Table 6. Comparison of artifact between CT-ASC and FLT-ASC. The P-value is based on 

the McNemar test; P-value$ is based on the marginal homogeneity test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region Artifact P-value P-value$ 

Chest Abdomen Interval-
Motion 

None <0.001 0.009 

Minor <0.001 

Moderate <0.001 

Major <0.001 

Unacceptable 0.990 

Abdomen-Hallo None 0.995 <0.001 

Minor <0.001 

Moderate <0.001 

Major 0.003 

Unacceptable 0.031 

Pelvis-Hallo None <0.001 <0.001 

Minor 0.002 

Moderate <0.001 

Major 0.150 

Unacceptable 0.048 



 

 

 

 

 

Supplemental Figure 1. Neural network architecture implemented in the current study. 

  



 

Supplemental Figure 2. Comparison between various scenarios using different quantitative metrics.
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