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Hyperparameters
We trained all neural network models using PyTorch and the Adam optimizer with batch size of
64. We used the common choice of N (0, I) for p(z) and a normal distribution for the variational
posterior q(z | x) for CGVAE, ccVAE, PoE, UniPort, and totalVI. For MoE, we followed the original
publication and used Laplace distributions for both the prior and the posterior. We employed a
grid search for each model and in each of the three datasets to find the optimal combination of the
following hyperparameters:

• learning rate (1e− 3 or 1e− 4)

• dimensionality of z (32 or 64)

• encoder hidden layers (none, 128, 256, 256-256, 256-128)

• dropout probability (10% or no dropout)

• use of batch normalization (yes or no)

In each case the decoder architecture was symmetric to that of the encoder. MoE has one more
hyperparameter: the number of samples (K) drawn from the posterior of z. For that we tried
K=10, or 20. During the grid search, we trained each configuration for a maximum of 500 epochs
and applied early stopping if the validation loss did not improve for more than 0.5% for longer
than 10 epochs.

totalVI and UniPort have hard-coded non-linear encoders, so that removed one option from the
encoder architecture and reduced the tested hyperparameter combinations to 64. UniPort has also
hard-coded dropout and batch normalization settings, further reducing the possible combinations
available to 16. MOFA+ and MCIA are linear models and for those we only optimized the number
of latent dimensions (32 or 64) per dataset. UniPort has also hard-coded a linear decoder which
we did not change. The validation loss was the criterion to select the best combination of hyper-
parameters for each model in each dataset with the exception of UniPort and MOFA+, which are
programmed to monitor the training loss.

Implementation details
When we pass an omic profile from modality m (xm

i ) into the encoder network, we obtain the
latent representation of that sample in the joint space of modality m via the distribution q(zi | xm

i ).
Exceptions to that are ccVAE and totalVI, which use concatenated profiles from all modalities.
Therefore, for those models, to calculate the parameters of q(zi | xm

i ), we set the second modality
to a vector of zero’s.

When both modalities are present, obtaining q(zi | x1
i ,x

2
i ) is straightforward for ccVAE and

totalVI (profiles are concatenated and passed through the encoder). For PoE, it is obtained by
multiplying the densities q(zi | x1

i ) and q(zi | x2
i ), which gives us a new Gaussian distribution. We

can then obtain a single embedding for sample i by taking the mean of this distribution.
In the case of MoE, however, this is not straightforward. q(zi | x1

i ,x
2
i ) is a mixture of q(zi | x1

i )
and q(zi | x2

i ) and the mean of that mixture distribution might be a vector that is very improbable
by both single-modality posteriors. During training, this is amended by drawing multiple samples
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from the variational posterior, but for our downstream analyses we need a single feature vector
per sample. CGVAE suffers from a similar issue, as its formulation does not provide a method
to obtain a single joint vector based on both modalities. For these two models, we obtained a
latent representation based on both modalities by concatenating the mean vectors of q(zi | x1

i ) and
q(zi | x2

i ).

MCIA

We used the R package omicade4 to run MCIA. Training this joint embedding on the PBMC data
was not possible due to extreme memory requirements (> 750GB), but we ran into convergence
problems in the remaining datasets too. To keep the number of latent factors comparable with the
neural networks, we ran MCIA with 32 and 64 latent factors, but both of these setting leads to run-
time convergence errors and did not yield any output in all three datasets (GE+ME, GE+CNV,
RNA+ATAC). We then started decreasing the number of factors from 32 in steps of 4 until we
could obtain an output.

MOFA+

We ran MOFA+ with 32 and 64 latent factors in CPU mode (i.e. without the GPU acceleration
feature), using the MOFA2 R package. All the settings were left to their default values, except
for the early stopping parameter (called "convergence mode"), which we set to ’medium’. For the
CITE-Seq dataset and for the timing experiments, we did use the GPU mode. MOFA+ includes
a post-processing step where factors not explaining any variance are removed, which is why we
got models with other than 32 or 64 factors in Tables S4, S9, and S11. We applied the built-in
"select_model" function to select the best of the two models.

totalVI

Using totalVI with batch and/or individual information as covariates can enhance its performance,
but this requires a fine-tuning step on the test data to allow the model to make predictions on
unseen data. To ensure a fair comparison without information leaks from the test data, we assumed
that all cells came from the same batch. The rest of the experiment followed the approach of ccVAE.

Numerical stability

Passing large numbers (such as RNA-Seq or ADT raw counts) through the encoders can lead to
numerical issues cause divergences during training. To prevent that, we feed the log-transformed
counts to the encoder, while the decoder still reconstructs the raw counts1. We did that for the
gene expression data in RNA+ATAC-Seq dataset and for both gene and protein expression data
in the CITE-Seq dataset.

Quantification of joint signal
To show whether a specific dimension (zj) of the latent space of a model has encoded information
about an input modality Xm, we estimated their mutual information (MI) as follows:

MI(Xm, zj) =

∫∫
p(xm, zj)log(

p(xm, zj)

p(xm)p(zj)
) dzj dx

m =

=

∫∫
p(xm)p(zj |xm)log(

p(xm)p(zj |xm)

p(xm)p(zj)
) dzj dx

m =

=

∫
p(xm)

∫
p(zj |xm)log(

p(zj |xm)

p(zj)
) dzj dx

m =

=

∫
p(xm)DKL(p(zj)||p(zj |xm)) dxm =

= EXm [DKL(p(zj)||p(zj |xm))] (1)

We used the variational posterior q(zj |xm) to approximate p(zj |xm) (which makes the term
inside the expectation the same as the KL regularisation term of VAEs) and furthermore used the

1https://docs.scvi-tools.org/en/stable/api/reference/scvi.module.VAE.html
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training data to approximate the intractable expectation over the input modality. For a training
set of size N this gives us:

MI(Xm, zj) ≈
1

N

N∑
i=1

DKL(p(zj)||p(zj |xm
i )) (2)

Directly comparing MI(X1, zj) to MI(X2, zj) is not fair, because their values depend on the
entropy of X1 and X2 respectively and a modality with higher entropy can give higher mutual
information. Instead, we devised a statistical test to test for each latent factor zj whether its mutual
information to each modality is statistically significant. To obtain a null distribution, we destroyed
the relationship between Xm and z by randomly permuting the features of Xm, (m = 1, 2), and
then feeding the perturbed data into the encoder to obtain values for the latent variables, which
we used to estimate the mutual information between the randomized Xm and zj . We repeated this
permutation procedure 10,000 times and calculated the one-sided permutation p-values for each
modality for each factor.

Cell type abundance bias in imputation of CITE-seq data
We investigated whether the association between RNA imputation performance and cell type
abundance is due to bias introduced by using the 5,000 most variable features. We adopted an
alternative pre-selection of genes: Using the COSG package, we identified the 30 most informative
markers for each of the 30 level-2 cell types based on cosine similarity. Some genes were in the
top-30 list for multiple level-2 cell types, giving us in total 819 unique marker genes.

We then re-trained the joint embeddings methods that can predict RNA from ADT (MOFA+,
CGVAE, ccVAE, MoE, and PoE) using the 819 marker genes as RNA features instead of the 5,000
most variable genes. We did not optimize the models’ hyperparameters again, but rather used the
optimal settings from our previous search. We also re-trained the GLM baseline to predict the
819 marker genes from the ADT features. The imputation accuracy per cell type using the two
feature sets is shown in Figure S7a. The Figure shows that training on the 819 marker genes does
improve the median imputation performance for rare cell types, but also for the most frequent cell
type (CD14+ Monocytes).

To ensure that our findings were not affected by the difference in the number of genes in the
two datasets, we repeated the experiment this time comparing the 819 marker genes to the 819
most variable genes that were not labeled as markers (Figure S7b). The models were not retrained
on 819 most variable genes not labeled as markers, instead their performance was taken from
the model that included all 5,000 genes. The results are very similar when compared to those in
Figure S7a, further solidifying our findings.

Time benchmarking
We compared the time it takes to run one training epoch for MOFA+, CGVAE, ccVAE, PoE, MoE,
UniPort and totalVI as a function of training set size using the CITE-Seq data. We excluded MCIA
from this because it does not do epoch-based training and does not run in our system for this large
dataset. Next to the original dataset with 117,730 cells in the training set, we also trained on
sub-sampled versions with 5%, 10%, 20% and 50% of the training data. We trained all methods
using their optimal hyperparameter settings (Table S11) for 10 epochs on the same system with
2 CPUs and 1 NVIDIA Tesla P100 GPU. We ignored the first epoch as GPUs often require a
few “warm-up” iterations before achieving steady state performance and recorded the run time
of epochs 2-10. For the neural network models we used python3.11 and pytorch 2.0, while for
MOFA+ we used the python virtual environment recommended by the developer of the package.
Figure S9 shows the runtime of each model as a function of training set size.

We quantified the run-time of one iteration on the training dataset (epoch) for each tool, but
there are many factors that affect the total time it takes the user to run each tool that are hard
to take into account in our benchmark: First, the total number of iterations until convergence
depends on many variables, such as learning rate, learning rate schedule, and batch size. Also,
for a larger dataset the parameters are updated more times per epoch (because there are more
batches) and that means that the number of epochs required for convergence might be smaller for
larger datasets. Second, the optimal architecture for each method might be different and what is
the optimal architecture can highly depend on training set size (e.g. depth of encoder/decoder).
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Third, an important factor is whether the training data fit in memory. Pre-loading all data into
memory accelerates the training time remarkably compared to loading each batch from the disk
each time, but this of course comes at the cost of O(N) memory. In our system, it was possible to
pre-load everything into memory, but this will not be possible for a dataset with e.g. 1 million cells.
Then disk speed starts becoming an influential factor in training time. Despite these limitations,
our benchmarking still provides valuable information on the scalability of the tested methods.
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Supplementary Figures
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Figure S1: Predictive performance (AIC, y−axis) of progression-free survival of gene expression
data trained in the joint space of gene expression and methylation (blue) or gene expression and
copy number(orange) based on different joint embedding methods (x−axis).
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Figure S2: For each model (x-axis) we show the number of latent factors (number of neurons in
bottleneck layer, y-axis), that have significantly high MI with both input modalities (joint, green),
only one modality (gray and cyan), and neither modality (black) for the following datasets: (a)
TCGA GE + ME, (b) TCGA GE + CNV, (c) RNA + ATAC-Seq, (d) CITE-Seq.
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Figure S3: Evaluation on paired single-cell RNA-Seq and ATAC-Seq data. (A) Missing modality
imputation performance for gene expression (RNA) from chromatin accessiblity (ATAC) and vice-
versa. Performance is measured as the log-likelihood (y−axis) of the test samples (cells) given
the predictions of each model (x−axis) for those data (higher is better). The distribution of the
per-cell log-likelihoods is shown. The dashed horizontal lines represent the performance of the
baseline GLM. Cells further than 1.5 times the interquartile range from the median are marked
as outliers. (B) Cell type classification performance (MCC, y−axis, higher is better) achieved by
training a support vector machine (SVM) in the joint space of the different models when using:
only gene expression (RNA, orange), only chromatin accessibility (ATAC, green), and both RNA
and ATAC data (red). The error bars denote 95% confidence intervals calculated by bootstrapping
the test cells 100 times. (C) As in (B), but for a multilayer perceptron (MLP) classifier.
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Figure S4: Log likelihood of imputing RNA from ADT for each model. The average log-likelihood
is calculated per cell type for each model. Models and cell types are clustered so that similar
models/cell types are next to each other. Higher log-likelihood (deeper green) corresponds to
better performance.

8



2000

4000

Figure S5: Log likelihood of imputing ADT from RNA for each model. The average log-likelihood
is calculated per cell type for each model. Models and cell types are clustered so that similar
models/cell types are next to each other. Higher log-likelihood (deeper green) corresponds to
better performance.
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Figure S6: (a) Spearman correlation of the median imputation log-likelihood of the different meth-
ods across 30 cell types when imputing RNA from ADT. Darker blue indicates higher correlation.
(b-g) Effect of cell type abundance (x-axis) on the median imputation log-likelihood (y-axis) of
RNA from ADT for the GLM (b), MOFA+ (c), CGVAE (d), ccVAE (e), PoE (f), and MoE (g).
(h) Spearman correlation of the median imputation log-likelihood of the different methods across
30 cell types when imputing ADT from RNA. Darker blue indicates higher correlation. (i-p) Effect
of cell type abundance (x-axis) on the median imputation log-likelihood (y-axis) of ADT from
RNA for the GLM (i), MOFA+ (j), CGVAE (k), ccVAE (l), PoE (m), MoE (n), totalVI (o), and
UniPort (p).
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Figure S7: (a) Imputation of RNA from ADT on the test set of the CITE-Seq dataset by 6 models
trained using 5,000 most variable genes (x-axis) of 819 COSG-derived marker genes (y-axis) as
RNA features. Performance is measured as the mean log-likelihood of a test cell across all genes.
Cells of the same cell type are then aggregated using their median value to reach one average
performance for each cell type (dot). The cell type abundance in the dataset is signified by the
size of the dot. (b) As in (a), but the x-axis shows the performance on the 819 most variable genes
that were not identified as markers by COSG.
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Figure S8: Cell type classification performance on the CITE-Seq dataset, when using a linear
SVM classifier instead of a MLP. (a) Classification performance (MCC, y−axis, higher is better)
achieved by training a linear SVM in the joint space of the different models when using: only gene
expression (RNA, orange), only protein expression (ADT, green), and both RNA and ADT data
(red). The error bars denote 95% confidence intervals calculated by bootstrapping the test cells
100 times. (b) Per-class (cell type) performance of the same classifiers. Brighter colors denote a
higher per-class F1 score and therefore better performance. For each model we show three columns
(RNA+ADT, RNA only and ADT only). Note that class CD4+ Tem_4 is not present in the test
data and therefore not shown in the per-class evaluations (because its precision and recall is always
0 and the F1 score is thus undefined), but it was taken into account when calculating the MCC in
(a).
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Supplementary Tables

Table S1: Basic features (columns) of the joint embedding methods (rows) included in this com-
parison. Note that in UniPort both modalities need to have the same likelihood, while totalVI uses
negative binomial likelihood (N.B.) for RNA and negative binomial mixture likelihood for ADT.

model pre-processing likelihoods
supported loss function

joint
embedding

method

built-in
imputation

batch
gradient
descent GPU

MCIA 0-1 scaling - covariance maximal
covariance No No No

MOFA+ -
Gaussian,
Poisson,
Bernoulli

log-
likelihood

concatena-
tion No Yes Yes

CGVAE - any log-
likelihood

imputation
+Wasser-

stein
Yes Yes Yes

ccVAE - any log-
likelihood

concatena-
tion No Yes Yes

PoE - any log-
likelihood

product of
experts Yes Yes Yes

MoE - any log-
likelihood

mixture of
experts Yes Yes Yes

UniPort 0-1 scaling
Gaussian,
Laplace,
Bernoulli

reconstruc-
tion imputation

for non-
reference
modality

Yes Yes

totalVI - N.B., N.B.
mixture

log-
likelihood

concatena-
tion No Yes Yes

Table S2: Mean imputation log-likelihood of gene expression (GE) from DNA methylation (ME)
and vice-versa on the TCGA dataset. Higher log-likelihood is better irrespective of the sign. The
values for both the validation and the test data are listed.

VALIDATION SET TEST SET
model GE from ME ME from GE GE from ME ME from GE
GLM -4,193.94 1,950.64 -4,201.91 1,805.08
MCIA -5,000.33 4,323.83 -4,980.13 4,335.12

MOFA+ -5,376.41 4,340.35 -5,368.54 4,306.57
CGVAE -4,162.21 5,119.92 -4,149.46 5,062.66
ccVAE -6,573.50 2,183.08 -6,682.89 2,220.33
PoE -3,763.50 5,517.53 -3,787.29 5,493.66
MoE -3,861.87 5,183.17 -3,787.29 5,183.18

UniPort N/A 5,028.98 N/A 4,996.28
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Table S3: Mean imputation log-likelihood of gene expression (GE) from copy number (CNV) and
vice-versa on the TCGA dataset. Higher log-likelihood is better irrespective of the sign. The
values for both the validation and the test data are listed. A star (*) next to the MOFA+ values
designates numerical overflow during the calculation of the mean caused by negative numbers with
very large absolute values.

VALIDATION SET TEST SET
model GE from CNV CNV from GE GE from CNV CNV from GE
GLM -7,163.24 -3,957.34 -7,151.23 -4,045.75
MCIA -11,571.34 -4,955.23 -9,880.65 -4,961.50

MOFA+ * -6,436.83 * -6,641.54
CGVAE -6,954.06 -3,719.06 -6,944.19 -3,813.09
ccVAE -28,447.95 -11,544.68 -30,851.33 -11,441.40
PoE -6,599.93 -3,661.11 -6,555.80 -3,736.60
MoE -7,112.39 -8,050.70 -7,116.67 -8050.665

UniPort N/A -3,464.99 N/A -3,500.61

Table S4: Optimal hyperparamaters for TCGA dataset based on validation loss

dataset model latent dimension encoder layers learning rate dropout batch normalization K

GE + ME

MCIA 20 - - - - -
MOFA+ 47 - - - - -
CGVAE 64 256-256 0.001 0% Yes -
ccVAE 64 256-256 0.001 0% Yes -
PoE 64 256 0.0001 10% No -
MoE 32 256-256 0.0001 0% No 10

UniPort 64 256 0.001 - - -

GE + CNV

MCIA 16 - - - - -

MOFA+ 60 - - - - -
CGVAE 64 256-128 0.0001 0% No -
ccVAE 64 256 0.001 0% Yes -
PoE 64 256 0.001 10% Yes -
MoE 32 256-128 0.0001 10% No 20

UniPort 64 256 0.0001 - - -

Table S5: Validation and test performance (Matthews Correlation Coefficient - MCC) of neural
networks that predict tumor type from an input omic profile on the TCGA, (level-1) cell type from
an input single-cell profile on the RNA+ATAC-Seq data, and (level-2) cell type from an input
single-cell profile on the CITE-Seq data. MCC of 0 corresponds to random guessing and MCC of
1 to perfect classification.

Dataset Data type validation MCC test MCC

TCGA GE 0.968 0.958
TCGA ME 0.962 0.955
TCGA CNV 0.406 0.440

CITE-Seq RNA 0.929 0.915
CITE-Seq ADT 0.936 0.904

RNA+ATAC RNA 0.955 0.964
RNA+ATAC ATAC 0.875 0.868
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Table S6: Survival analysis performance of different joint embedding methods (rows) on the
GE+ME dataset. Lower Akaike Information Criterion (AIC) values designate better performance.

Model Modality AIC
covariates only - 24,316.76

PCA
GE 23,936.77
ME 24,034.69

GE+ME 23,858.65

MCIA
GE 24,015.08
ME 24,024.65

GE+ME 24,020.04

MOFA+
GE 23,904.53
ME 23,937.95

GE+ME 23,918.48

CGVAE
GE 23,890.94
ME 23,883.19

GE+ME 23,870.96
ccVAE GE+ME 23,860.87
PoE GE+ME 23,906.31

MoE
GE 23,966.63
ME 23,938.41

GE+ME 23,911.54
UniPort GE 23,848.98

Table S7: Survival analysis performance of different joint embedding methods (rows) on the
GE+CNV dataset. Lower Akaike Information Criterion (AIC) values designate better perfor-
mance.

Model Modality AIC
covariates only - 24,316.76

PCA
GE 23,936.77

CNV 24,283.20
GE+CNV 23,947.96

MCIA
GE 24,211.88

CNV 24,355.63
GE+CNV 24,306.60

MOFA+
GE 23,992.16

CNV 24,443.58
GE+CNV 24,297.19

CGVAE
GE 24,414.22

CNV 24,253.06
GE+CNV 24,525.55

ccVAE GE+CNV 23,991.02
PoE GE+CNV 23,920.78

MoE
GE 24,237.80

CNV 24,262.78
GE+CNV 24,204.19

UniPort GE 23,892.21
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Table S8: Mean imputation log-likelihood of gene expression (RNA) from chromatin accessibility
(ATAC) and vice-versa. Higher log-likelihood is better irrespective of the sign. The values for both
the validation and the test data are listed.

VALIDATION SET TEST SET
model RNA from ATAC ATAC from RNA RNA from ATAC ATAC from RNA
GLM -1,002.85 -3,467.8 -1,004.71 -3,444.44
MCIA -1,016.02 -3,292.57 -1,012.27 -3,313.73

MOFA+ -966.82 -3,327.05 -968.01 -3,383.72
CGVAE -958.18 -3,270.56 -955.71 -3,263.89
ccVAE -1,189.32 -4,911.53 -1,195.06 -4,886.56
PoE -880.08 -3,207.82 -878.89 -3,207.64
MoE -948.32 -3,206.31 -945.86 -3,211.83

UniPort N/A -3,262.18 N/A -3,259.65

Table S9: Optimal hyperparamaters for the RNA+ATAC-Seq dataset based on validation loss

model latent dimension encoder layers learning rate dropout batch normalization K
MCIA 20 - - - - -

MOFA+ 31 - - - - -
CGVAE 64 256-128 0.0001 0% No -
ccVAE 64 256-256 0.001 0% No -
PoE 32 256-128 0.001 10% Yes -
MoE 32 256-256 0.0001 0% No 20

UniPort 32 256-128 0.0001 - - -

Table S10: Cell type classification performance (Matthews Correlation Coefficient) on the
RNA+ATAC-Seq dataset

Model Modality SVM MCC MLP MCC

PCA
RNA 0.869 0.895
ATAC 0.713 0.796

RNA+ATAC 0.890 0.925

MOFA+
RNA 0.843 0.868
ATAC 0.601 0.635

RNA+ATAC 0.719 0.788

MCIA
RNA 0.667 0.773
ATAC 0.423 0.487

RNA+ATAC 0.667 0.776

CGVAE
RNA 0.371 0.668
ATAC 0.353 0.457

RNA+ATAC 0.444 0.660

ccVAE
RNA 0.383 0.511
ATAC 0.316 0.412

RNA+ATAC 0.423 0.479

PoE
RNA 0.816 0.857
ATAC 0.709 0.754

RNA+ATAC 0.786 0.846

MoE
RNA 0.758 0.812
ATAC 0.595 0.652

RNA+ATAC 0.753 0.805
UniPort RNA 0.773 0.807
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Table S11: Optimal hyperparamaters for CITE-Seq dataset based on validation loss

model latent dimension encoder layers learning rate dropout batch normalization K
MCIA - - - - - -

MOFA+ 49 - - - - -
CGVAE 64 256-128 0.0001 0% Yes -
ccVAE 64 256-256 0.0001 0% Yes -
PoE 64 256 0.001 0% No -
MoE 32 256-256 0.0001 0% No 10

UniPort 32 256-128 0.0001 - - -
totalVI 32 256-256 0.001 10% Yes -

Table S12: Mean imputation log-likelihood of gene expression (RNA) from protein expression
(ADT) and vice-versa on the CITE-Seq dataset. Higher log-likelihood is better irrespective of the
sign. The values for both the validation and the test data are listed.

VALIDATION SET TEST SET
model RNA from ADT ADT from RNA RNA from ADT ADT from RNA
GLM -1216.36 -633.75 -1317.09 -633.84

MOFA+ -1243.23 -647.3 -1352.07 -645.58
CGVAE -1194.25 -629.42 -1299.61 -631.68
ccVAE -1311.84 -1639.8 -1437.10 -1740.90
PoE -1181.92 -645.98 -1355.29 -682.58
MoE -1182.54 -638.41 -1282.69 -641.06

totalVI N/A -3398.36 N/A -3580.67
UniPort N/A -659.50 N/A -661.06

Table S13: Contingency table showing the enrichment of marker genes in the set of 5,000 most
variable genes on the RNA data of the CITE-Seq dataset.

marker not marker total
most variable 694 4306 5000

not most variable 125 16423 16548
total 819 20729 21548
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Table S14: Cell type classification performance (Matthews Correlation Coefficient, higher is better)
on the CITE-Seq dataset

Model Modality SVM MCC MLP MCC

PCA
RNA 0.756 0.807
ADT 0.719 0.809

RNA+ADT 0.829 0.891

MOFA+
RNA 0.775 0.858
ADT 0.742 0.833

RNA+ADT 0.788 0.875

CGVAE
RNA 0.610 0.732
ADT 0.600 0.734

RNA+ADT 0.632 0.747

ccVAE
RNA 0.527 0.785
ADT 0.591 0.739

RNA+ADT 0.645 0.771

PoE
RNA 0.827 0.867
ADT 0.821 0.831

RNA+ADT 0.840 0.883

MoE
RNA 0.742 0.828
ADT 0.731 0.811

RNA+ADT 0.788 0.865

totalVI
RNA 0.669 0.823
ADT 0.684 0.755

RNA+ADT 0.797 0.854
UniPort RNA 0.638 0.726

Table S15: Cell type classification performance (MCC, higher is better) when using the 5,000 most
variable genes and the 819 cell type marker genes as RNA features.

Level-3 labels Modality MCC 819 Markers MCC 5,000 Most Variable

CGVAE
RNA 0.744 0.732
ADT 0.750 0.734

RNA+ADT 0.810 0.747

ccVAE
RNA 0.782 0.785
ADT 0.751 0.739

RNA+ADT 0.796 0.771

MoE
RNA 0.840 0.828
ADT 0.829 0.811

RNA+ADT 0.879 0.865

PoE
RNA 0.845 0.867
ADT 0.841 0.831

RNA+ADT 0.889 0.883

PCA
RNA 0.805 0.807
ADT 0.814 0.809

RNA+ADT 0.880 0.891

Table S16: Percent agreement of the MLP predictions using a measured profile and an imputed
profile using a single-modal or multi-modal classifier trained solely on real data.

MOFA+ CGVAE PoE MoE UniPort
RNA from ADT (unimodal) 57.3% 58.0% 75.0% 35.1% N/A
ADT from RNA (unimodal) 39.3% 61.9% 79.4% 73.9% 32.9%

RNA from ADT (multimodal) 73.6% 72.1% 86.7% 64.1% N/A
ADT from RNA (multimodal) 39.0% 81.4% 90.0% 88.2% 79.0%
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