Regioselective *Ortho* Halogenation of N-Aryl Amides and Ureas via Oxidative Halodeboronation: Harnessing Boron Reactivity for Efficient C-Halogen Bond Installation

Ganesh H. Shinde,^{a†} Ganesh S. Ghotekar,^{a†} Francoise M. Amombo Noa,^b Lars Öhrström,^b Per-Ola Norrby^c and Henrik Sundén^{ab*}

^a Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden.

^b Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.

^c Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden

1, Mölndal SE-43183, Sweden.

[†]Equal contributors

* Corresponding author Email: <u>henrik.sunden@chem.gu.se</u>

Supporting Information

Table of Contents

1. General information	3
2. Experimental section	4
3. Optimization table S1	9
4. Metal-free electrophilic deborylative halogenation of N-heteroarenes	10
5. Applications	34
6. Synthesis of difluoro boracycle (4a)	39
7. Gram scale experiment	42
8. Computational details	43
9. Single crystal X-ray diffraction	66
10. Reference	68
11. NMR spectra	70

1. General information

Experimental procedures, reagents, and glassware: All reactions were carried out in dry glassware under a nitrogen atmosphere using standard Schlenk techniques. 5 mL and 3 mL screw-top V-Vial, (sigma Aldrich, Product code-Z115150-12EA) were used for the final reactions. Acetonitrile was obtained from the SPS machine prior to use and anhydrous dichloromethane was purchased from Sigma Aldrich. All reagents were used as received from commercial suppliers unless otherwise stated. Reported yields of final compounds are calculated based on the amide starting material without consideration of dibromoboraneyl complex formation.

Chromatography: Reaction progress was monitored by thin-layer chromatography (TLC) performed on aluminum plates coated with silica gel 60 F254 (Art 5715, 0.25 mm). Chromatograms were visualized with UV light at 254 nm or by staining using potassium permanganate. Column chromatography was performed on automated column chromatography Biotage IsoleraTM Spektra One with (Biotage® Sfär Silica D and HC-10g) columns. Purifications were usually done by gradient elution using binary mixtures of pentane and ethyl acetate and UV detection at 254 nm and 280 nm.

Melting Points (MP): Melting points performed on solids were recorded on a Büchi M560 and are uncorrected.

Infrared Spectroscopy: Infrared (IR) spectra were recorded on a Bruker Invenio R FTIR spectrophotometer, vmax in cm⁻¹. Samples were recorded as thin films of solids. Bands are characterised as broad (br), strong (s), medium (m), and weak (w).

Mass Spectrometry: High-resolution mass spectrometry measurements were performed by CMSI service at the Chalmers University of Technology. An Agilent 6520 equipped with an electrospray interface was operated in the positive ionization mode.

NMR Spectroscopy: All ¹H-NMR, ¹³C-NMR, and ¹⁹F-NMR spectra were recorded using Varian AV-400, AV-500 spectrometers and Bruker spectrometer at 300K. ¹¹B NMR was recorded on a 600 MHz Bruker spectrometer using a BBO room temperature 5 mm probe. Chemical shifts are given in parts per million (ppm, δ), referenced to the solvent peak of CDCl₃, defined at δ = 7.26 ppm (¹H-NMR) and δ = 77.16 ppm (¹³C-NMR); (CD₃)₂SO defined at δ = 2.50 ppm (¹H-NMR), δ = 39.52 ppm (¹³C-NMR). Coupling constants are quoted in Hz (*J*). ¹H, ¹³C, ¹⁹F, and ¹¹B NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), bs (broad singlet) as they appeared in the spectrum. Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m). Urea starting materials⁽⁶⁾ and compound 6z⁽⁷⁾ were synthesized according to literature protocol.

2. Experimental section

2.1 General procedure A for the preparation of amide⁽¹⁾

ш

Procedure adapted from the literature.⁽¹⁾

To a stirred solution of amine (3.0 mmol, 1 equiv.) and triethylamine (3.3 mmol, 1.1 equiv.) in 10 mL of anhydrous CH_2Cl_2 was added dropwise acid chloride (3,3 mmol, 1.1 equiv., in 5 mL anhydrous CH_2Cl_2) over a 5 min while maintaining the internal temperature below 5°C. Then the mixture was stirred at room temperature for 3-12 h. Completion of reaction was monitored by TLC. The mixture was diluted with additional 10 mL dichloromethane and washed with 20 mL 1M HCl followed by saturated NaHCO₃ (aq.) (2×20.0 mL) of and saturated NaCl (aq.), dried over sodium sulfate, and concentrated *in vacuo*. The crude product was washed with pentane to afford the analytical pure amides.

2.2 General procedure B for the preparation of Benzamide derivatives (6a-6m, 6v, 6y)

Procedure adapted from the literature.^(2,3)

To a stirred solution of amine (3.0 mmol, 1 equiv.) and triethylamine (3.6 mmol, 1.2 equiv.) in 10 mL of anhydrous CH_2Cl_2 was added dropwise acid chloride (3.6 mmol, 1.2 equiv., in 5 mL anhydrous CH_2Cl_2) over a 5 min while maintaining the internal temperature below 5°C. Then the mixture was stirred at room temperature for 3-12 h. Completion of reaction was monitored by TLC. The mixture was diluted with additional 10 mL dichloromethane and washed with 20 mL water followed by saturated NH_4Cl (20 mL), 2×20.0 mL of saturated NaHCO₃ (aq.), and saturated NaCl (aq.), dried over sodium sulfate, and concentrated *in vacuo* to afford the analytical pure amides. A pentane wash was given if the compounds contained any impurity after the evaporation step.

2.3 General procedure C for the preparation of Benzamide derivatives (6s, 6t, 6u, 6w)

Procedure adapted from the literature.⁽⁴⁾

To a stirred solution of aniline (1.61 mmol, 1 equiv.) acid (1.85 mmol, 1.15 equiv.) in 15 mL of anhydrous CH₂Cl₂ at 0 °C were added EDCI (2.25 mmol, 1.4 equiv.), DMAP (0.161 mmol, 0.1 equiv.) and the reaction mixture stirred at 22 °C for 4-12 h. Completion of reaction was monitored by TLC. The mixture

was diluted with additional 10 mL dichloromethane and then washed with 20 mL water followed by 2×20.0 mL of saturated NaHCO₃ (aq.), saturated NH₄Cl (20 mL) and saturated NaCl (aq.), dried over sodium sulfate, and concentrated *in vacuo* to afford a crude gummy liquid which upon a pentane wash gives analytically pure amides.

2.4 Synthesis of N-([1,1':4',1''-terphenyl]-3-yl)pivalamide (1v)

Procedure adapted from the literature.⁽⁵⁾

To a solution of N-(3-bromophenyl)pivalamide (2.0 mmol) in degassed dimethoxyethane (DME) (6 mL), was added Pd(PPh₃)₄ (0.06 mmol) and stirred at room temperature for 20 min. Then [1,1'-biphenyl]-4-ylboronic acid (2.4 mmol) and 2 M Na₂CO₃ solution (2 mL) were added and the reaction mixture was stirred at 80 °C under nitrogen. After completion of the reaction (TLC monitoring) DME was partially evaporated under reduced pressure, the mixture was poured on ice-water and extracted with dichloromethane (3×15 mL), separated and dried over sodium sulfate, and concentrated *in vacuo* to afford the crude product, which was purified by automated column chromatography using pentane/EtOAc.

2.5 Spectral data

N-(3,5-dichlorophenyl)pivalamide (1r):

Following the general procedure A, using 3,5-dichloroaniline (486 mg, 3.0 mmol, 1 equiv.), pivaloyl chloride (3.3 mmol, 1.1 equiv.), triethyl amine (3.3 mmol, 1.1 equiv.) at room temperature for 3 h. The

desired product was obtained as an off white solid (657 mg, 89%) Rf: 0.34 (hexane/EtOAc, 90:10); Mp:159-161 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (d, J = 1.8 Hz, 2H), 7.47 (bs, 1H), 7.06 (t, J = 1.8 Hz, 1H), 1.29 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 177.1, 139.9, 135.2, 124.2, 118.5, 39.9, 27.6; IR (neat, cm⁻¹) = 3305 (br), 2970 (w), 2932 (br), 1661 (m), 1584 (s), 1527 (m), 1444 (m), 1404

(m), 1172 (m), 796 (m), 671 (m); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₁H₁₄Cl₂NO⁺ 246.0452; found 246.0452.

N-([1,1':4',1''-terphenyl]-3-yl)pivalamide (1v):

Following the general procedure 2.1.4, the desired product was obtained as an pale yellow solid (381 mg, 58%); Rf: 0.6 (hexane/EtOAc, 70:30); Mp:196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.91 (bs, 1H),

7.73 – 7.63 (m, 6H), 7.52 – 7.43 (m, 4H), 7.42 – 7.35 (m, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.9, 141.7, 140.8, 140.4, 139.7, 138.6, 129.5, 128.9, 127.7, 127.6, 127.5, 127.2, 123.0, 119.0, 118.8, 39.8, 27.8; IR (neat, cm⁻¹) = 3345 (br), 2969 (w), 2924 (w), 1699 (s), 1538 (m), 1521 (s), 761 (w), 686 (m), 669 (s); HRMS (ESI) (m/z): calculated for

 $[M+H]^+ C_{23}H_{24}NO^+ 330.1868$; found 330.1858.

N-(4-tritylphenyl)pivalamide (1w):

Following the general procedure A, using 4-tritylaniline (337 mg, 1.0 mmol, 1 equiv.), pivaloyl chloride (1.1 mmol, 1.1 equiv.), triethyl amine (1.1 mmol, 1.1 equiv.) at room temperature for 3 h. The desired

product was obtained as an off white solid (392 mg, 93%); **Rf**: 0.53 (hexane/EtOAc, 80:20); **Mp**: 252-254 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.41 (d, *J* = 8.8 Hz, 2H), 7.30 (bs, 1H), 7.29 - 7.13 (m, 17H), 1.30 (s, 9H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ = 176.7, 146.9, 142.9, 135.9, 131.8, 131.2, 127.6,

126.1, 119.1, 64.7, 39.7, 27.8; **IR (neat, cm⁻¹)** = 3271 (br), 2960 (w), 2922 (w), 1645 (s), 1594 (m), 1510 (s), 1404 (m), 1320 (m), 1254 (m), 1189 (m), 826 (m), 753 (m), 700 (s), 631 (w); **HRMS (ESI) (m/z)**: calculated for $[M+H]^+ C_{30}H_{29}NO^+ 420.2327$; found 420.2329.

N-(3,4-dihydro-2*H*-benzo[*b*][1,4]dioxepin-7-yl)pivalamide (1y):

Following the general procedure A, using 3,4-dihydro-2*H*-benzo[*b*][1,4]dioxepin-7-amine (496 mg, 3 mmol, 1 equiv.), pivaloyl chloride (3.3 mmol, 1.1 equiv.), triethyl amine (3.3 mmol, 1.1 equiv.) at room

temperature for 3 h. The desired product was obtained as an off white solid (718 mg, 96%); **Rf:** 0.23 (hexane/EtOAc, 80:20); **Mp:**147-149 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 7.25 (bs, 1H), 7.20 (d, *J* = 2.6 Hz, 1H), 7.04 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.90 (d, *J* = 8.7 Hz, 1H), 4.15 (dt, *J* = 9.7, 5.6 Hz, 4H), 2.19 – 2.12 (m,

2H), 1.28 (s, 9H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 176.5, 151.5, 148.0, 133.5, 121.7, 115.5, 114.0, 70.9, 70.8, 39.6, 32.1, 27.7; **IR (neat, cm⁻¹)** = 2963 (w), 1653 (m), 1559 (m), 1505 (s), 1457 (m), 1305 (m), 1202 (m), 1050 (m), 668 (s); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₄H₂₀NO₃⁺ 250.1443; found 250.1445.

2-(diethylamino)ethyl 4-pivalamidobenzoate (1z):

Following the general procedure A, using 2-(diethylamino)ethyl 4-aminobenzoate hydrochloride salt (410 mg, 1.5 mmol, 1 equiv.), pivaloyl chloride (1.65 mmol, 1.1 equiv.), triethyl amine (4.5 mmol, 3 equiv.)

at room temperature for 12 h. The desired product was obtained as an brown solid (440 mg, 91%); **Rf:** 0.10 (EtOAc, 100); **Mp:** 86-88 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 7.99 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.48 (bs, 1H), 4.38 (t, J = 6.3 Hz, 2H), 2.85 (t, J = 6.3

Hz, 2H), 2.63 (q, J = 7.1 Hz, 4H), 1.32 (d, J = 0.6 Hz, 9H), 1.07 (t, J = 7.1 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 177.0$, 166.2, 142.4, 130.9, 125.7, 119.1, 63.3, 51.0, 47.9, 39.9, 27.6, 12.1; IR (neat, cm⁻¹) = 3360 (br), 2968 (w), 1716 (s), 1693 (s), 1595 (m), 1518 (s), 1403 (m), 1273 (s), 1173 (m), 1111 (m), 769 (w), 696 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₈H₂₉N₂O₃⁺ 321.2178; found 321.2179.

5-(4-chlorophenyl)-*N*-phenylfuran-2-carboxamide (6s):

Following the general procedure C, using, aniline (0.15 g, 1.61 mmol, 1 equiv.) 5-(4-chlorophenyl)furan-2-carboxylic acid (1.85 mmol, 1.15 equiv.), EDCI (2.25 mmol, 1.4 equiv.), DMAP (0.161 mmol, 0.1

equiv.) at room temperature for 4 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (422 mg, 88%); **Rf**:

0.44 (hexane/EtOAc, 80:20); **Mp:**151-153 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 8.07 (bs, 1H), 7.71 – 7.65 (m, 4H), 7.43 (d, *J* = 2.0 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.31 (d, *J* = 3.6 Hz, 1H), 7.20 – 7.14 (m, 1H), 6.78 (d, *J* = 3.6 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 156.1, 154.8, 147.2, 137.4, 134.9, 129.4, 129.3, 128.1, 125.9, 124.8, 120.2, 117.7, 108.3; **IR (neat, cm⁻¹)** = 3292 (br), 2925 (w), 1653 (s), 1601 (s), 1540 (m), 1475 (s), 1441 (s), 1325 (s), 1093 (m), 1018 (m), 799 (m), 754 (m), 692 (m); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₇H₁₃ClNO₂⁺ 298.0635; found 298.0640.

N-phenyl-5-(3-(trifluoromethyl)phenyl)furan-2-carboxamide (6t):

Following the general procedure C, using, aniline (0.15 g, 1.61 mmol, 1 equiv.) 5-(3-(trifluoromethyl)phenyl)furan-2-carboxylic acid (1.85 mmol, 1.15 equiv.), EDCI (2.25 mmol, 1.4 equiv.),

DMAP (0.161 mmol, 0.1 equiv.) at room temperature for 4 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an pale

yellow solid (351 mg, 85%); **Rf:** 0.60 (hexane/EtOAc, 80:20); **Mp:**168-170 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 8.16 (bs, 1H), 7.97 (s, 1H), 7.91 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.70 (dd, *J* = 8.6, 1.2 Hz, 2H), 7.59 (dtd, *J* = 15.5, 7.8, 2.0 Hz, 2H), 7.38 (ddd, *J* = 8.5, 7.4, 1.8 Hz, 2H), 7.33 (dd, *J* = 3.7, 1.9 Hz, 1H), 7.17 (tt, *J* = 7.4, 1.2 Hz, 1H), 6.87 (dd, *J* = 4.2, 1.8 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 156.0,

154.2, 147.6, 137.3, 131.62 (q, J = 32.6 Hz), 130.3, 129.6, 129.3, 127.8, 125.4 (q, J = 3.8 Hz), 124.9, 124.0 (q, J=274.7) 121.4 (q, J = 3.8 Hz), 120.4, 117.6, 109.1; ¹⁹F NMR (470 MHz, CDCl₃) δ = -62.85; **IR (neat, cm⁻¹)** = 3294 (br), 2925 (w), 1653 (m), 1601 (m), 1543 (s), 1441 (m), 1330 (s), 1167 (m), 1125 (s), 797 (m), 753 (m), 696 (m); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₈H₁₃F₃NO₂⁺ 332.0898; found 332.0899.

N-(4-tritylphenyl)benzamide (6v):

Following the general procedure B, using 4-tritylaniline (337 mg, 1.0 mmol, 1 equiv.), triethyl amine (1.2 mmol, 1.2 equiv.) benzoyl chloride (1.2 mmol, 1.2 equiv.), at room temperature for 3 h. The crude product

was purified by automated column chromatography (pentane/EtOAc, 75:25) and the desired product was obtained as an off white solid (410 mg, 93%); **Rf:** 0.53 (hexane/EtOAc, 70:30); **Mp:** 271-273 °C; ¹**H NMR (400 MHz, DMSO-d₆) \delta= 10.32 (bs, 1H), 7.94 (d,** *J* **= 7.0 Hz, 2H), 7.70 (d,** *J* **= 8.6 Hz,**

2H), 7.57 (d, J = 7.1 Hz, 1H), 7.52 (dd, J = 8.2, 6.4 Hz, 2H), 7.31 (t, J = 7.6 Hz, 6H), 7.24 – 7.14 (m, 9H), 7.11 (d, J = 8.6 Hz, 2H); ¹³C{¹H} NMR (101 MHz, DMSO-d₆) δ = 165.6, 146.5, 141.6, 137.0, 135.0, 131.6, 130.7, 130.5, 128.4, 127.8, 127.7, 126.0, 119.6, 64.1; IR (neat, cm⁻¹) = 3351 (br), 2921 (w), 1650 (s), 1521 (s), 1488 (m), 1321 (m), 1256 (w), 823 (w), 697 (s), 665 (s), 630 (m); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₃₂H₂₆NO⁺ 440.2014; found 440.2019.

3. Optimization table S1

	1) BBr ₃ 0 2) Sele (x equ	. (1.2 equiv.), CH ₂ Cl ₂ ctfluor (x equiv.), Hal uiv.), CH ₃ CN:Water,	, 22°C, 2 h logen source temp., time		Bu Br 5a	Br Br	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{5}}}}}_{Br}^{H} \mathbf{\mathbf{\mathbf{\mathbf{5}}}}_{Br}^{t}$	
Entry	Halogen	Oxidant (equiv.)	Solvent	Time (h)	Yield ^(c)	NMR ratio		
	source X (equiv.)				3a	4	5a:5b	
1	LiBr (2.2)	Selectlfluor (2)	CH ₃ CN:Water	2.5		1	0.14	
2	NaBr (2.2)	Selectlfluor (2)	CH ₃ CN:Water	2.5		1	0.15	
3	KBr (2.2)	Selectlfluor (2)	CH ₃ CN:Water	2.5		1	0.21	
4	TBAB (2.2)	Selectlfluor (2)	CH ₃ CN:Water	2.5		78% ^(c)	trace	
5	LiI (2.2)	Selectlfluor (2)	CH ₃ CN:Water	5	91%			
6	NaI (2.2)	Selectlfluor (2)	CH ₃ CN:Water	5	84%			
7	TBAI (2.2)	Selectlfluor (2)	CH ₃ CN:Water	5	91%			
8	KI (2.7)	SelectIfluor (2.5)	CH ₃ CN:Water	5	96%			

Reaction conditions for iodination: Step i) 1a (0.22 mmol), BBr₃ (0.26 mmol), in 0.5 mL anhydrous CH₂Cl₂ at 22 °C, 2 h; Step ii) Selectfluor (SF) (0.44 mmol), potassium idodide (KI) (0.48 mmol) in 1.5 mL CH₃CN and 1 mL water at 22 °C, 2 h then 60 °C for 5 h. °Isolated yields. ^dNMR ratio

Entry 1-4: Different bromine sources were investigated and the organic source of bromine TBAB provided mono bromination however a mixture of mono and dibrominated products were observed in the case of alkali metal-based bromine sources.

Entry 5-7: Similarly organic and inorganic iodine sources were investigated and the reaction worked exceptionally well provided exclusively mono iodination. Based on yield and cost we chose potassium iodide (KI) as an iodine source.

Entry 8: Excess of Selectfluor and KI were used and it was observed that 2 equivalents of Selectfluor is required for the reaction to completion.

4. Metal-free electrophilic deborylative halogenation of N-heteroarenes

4.1 General Procedure D for reaction optimization: Iodination

Step i) To a dry 5 mL, screw-top V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), equipped with a rubber septum, stir bar, the amide derivative (0.22 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (0.5 mL) under a nitrogen atmosphere was added dropwise BBr₃ (0.26 mmol, 1.2 equiv., 1M solution in CH_2Cl_2). After the complete addition of BBr₃, the reaction mixture was stirred at 22 °C for 2 h after which the solvent was removed under reduced pressure.

Step ii) Simultaneously, Selectfluor (0.44 mmol, 2 equiv.), and KI (0.48 mmol, 2.2 equiv.), were dissolved in CH₃CN (1 mL) and water (1 mL) in a 3 mL, screw-top V-vial and the reaction mixture stirred at 22 °C for 2 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (0.5 mL). To this mixture, the solution from step ii) was added dropwise at 22 °C, and the reaction mixture was heated at 60 °C for 5 h. The reaction was quenched with saturated sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc).

4.2 General Procedure E for reaction optimization: Iodination of benzanilides and urea

Step i) To a dry 5 mL, screw-top V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), equipped with a rubber septum, stir bar, the amide derivative/urea (0.22 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (0.5 mL) under a nitrogen atmosphere was added dropwise BBr₃ (0.26 mmol, 1.2 equiv., 1M solution in CH_2Cl_2). After the complete addition of BBr₃, the reaction mixture was stirred at 40 °C for 16 h after which the solvent was removed under reduced pressure.

Step ii) Simultaneously, Selectfluor (0.44 mmol, 2 equiv.), and KI (0.48 mmol, 2.2 equiv.), were dissolved in the CH₃CN (1 mL) and water (1 mL) in a 3 mL, screw-top V-vial and the reaction mixture stirred at 22 °C for 2 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (0.5 mL). To this mixture, the solution from step ii) was added dropwise at 22 °C, and the reaction mixture was heated at 60 °C for 5 h. The reaction was quenched with saturated sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc).

4.3 Spectral data *N*-(2-iodophenyl)pivalamide (3a):⁽⁸⁾

Following the general procedure D using *N*-phenylpivalamide (39 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

t_{Bu} 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (62 mg, 93%); Rf: 0.66 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ= 8.28 (d, J = 8.2 Hz, 1H), 7.80 (bs, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.33 (t, J =

7.8 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.8, 138.8, 138.4, 129.3, 125.8, 121.8, 90.2, 40.2, 27.8.

N-(2-iodo-4-methylphenyl)pivalamide (3b): ⁽⁹⁾

Following the general procedure D using *N*-(*p*-tolyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

3a

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (63 mg, 90%); **Rf:** 0.63 (hexane/EtOAc, 90:10); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.12 (d, *J* = 8.3 Hz, 1H), 7.71 (bs, 1H), 7.60 (dd, *J* = 1.9, 0.9 Hz,

1H), 7.14 (dd, J = 8.4, 2.0 Hz, 1H), 2.27 (s, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 176.8, 139.0, 135.9, 135.8, 130.0, 121.7, 90.3, 40.2, 27.8, 20.5.$

N-(4-butyl-2-iodophenyl)pivalamide (3c):

Following the general procedure D using *N*-(4-butylphenyl)pivalamide (51 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a colorless gummy liquid (71 mg, 90%); Rf: 0.73 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.4 Hz, 1H),

7.72 (bs, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.15 (dd, J = 8.4, 2.0 Hz, 1H), 2.52 (t, J = 7.7 Hz, 2H), 1.57-1.51 (m, 2H), 1.36 (s, 9H), 1.35 – 1.27 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃)

δ = 176.8, 140.9, 138.4, 136.0, 129.4, 121.7, 90.4, 40.2, 34.7, 33.6, 27.8, 22.3, 14.0;**IR (neat, cm⁻¹)**= 3402 (br), 2956 (w), 2927 (w), 2864 (m), 1686 (s), 1569 (m), 1508 (s), 1395 (m), 1294 (m), 1156 (m), 831 (w), 665 (w), 565 (w);**HRMS (ESI) (m/z):** $calculated for <math>[M+H]^+ C_{15}H_{23}INO^+ 360.0824$; found 360.0837.

N-(4-(tert-butyl)-2-iodophenyl)pivalamide (3d):

Following the general procedure D using *N*-(4-(*tert*-butyl)phenyl)pivalamide (51 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a colorless gummy liquid (66 mg, 84%); **Rf:** 0.73 (hexane/EtOAc, 90:10); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.16 (d, *J* = 8.6 Hz, 1H),

7.74 (d, J = 2.2 Hz, 1H), 7.72 (bs, 1H), 7.36 (dd, J = 8.5, 2.2 Hz, 1H), 1.36 (s, 9H), 1.28 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.8, 149.2, 135.9, 135.6, 126.5, 121.5, 90.6, 40.2, 34.5, 31.4, 27.9; IR (neat, cm⁻¹) = 3402 (br), 2958 (w), 2905 (w), 2868 (w), 1689 (s), 1565 (m), 1506 (s), 1476 (s), 1386 (m), 1298 (s), 1263 (m), 1165 (m), 829 (w), 709 (w), 563 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₅H₂₃INO⁺ 360.0824; found 360.0837.

N-(4-fluoro-2-iodophenyl)pivalamide (3e): ⁽¹⁰⁾

Following the general procedure D using *N*-(4-fluorophenyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (56 mg, 79%); **Rf:** 0.56 (hexane/EtOAc, 90:10);

¹H NMR (400 MHz, CDCl₃) δ = 8.19 (dd, *J* = 9.1, 5.5 Hz, 1H), 7.67 (bs, 1H), 7.49 (dd, *J* = 7.7, 2.8 Hz, 1H), 7.08 (ddd, *J* = 9.1, 7.8, 2.9 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.9, 156.6 (d, *J* = 248.6 Hz), 134.9 (d, *J* = 3.1 Hz), 125.3 (d, *J* = 24.8 Hz), 122.8 (d, *J* = 7.7 Hz), 116.1 (d, *J* = 21.5 Hz), 89.7 (d, *J* = 8.3 Hz), 40.2, 27.8; ¹⁹F NMR (470 MHz, CDCl₃) δ = -116.61. *N*-(4-chloro-2-iodophenyl)pivalamide (3f):

Following the general procedure D using *N*-(4-chlorophenyl)pivalamide (47 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

t_{Bu} (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (61 mg, 82%); Rf: 0.70 (hexane/EtOAc, 90:10); Mp: 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ= 8.25 (d, J = 8.9 Hz, 1H),

7.77 (bs, 1H), 7.75 (d, J = 2.4 Hz, 1H), 7.32 (dd, J = 8.8, 2.4 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} NMR (101

MHz, CDCl₃) δ = 176.9, 137.8, 137.3, 129.6, 129.4, 122.1, 89.8, 40.3, 27.8; **IR (neat, cm⁻¹)** = 3400 (br), 3327 (w), 2961 (w), 1687 (s), 1571 (m), 1501 (s), 1375 (m), 1292 (m), 1156 (w), 1031 (w), 865 (w), 821 (w), 710 (w), 540 (w); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₁H₁₄ClINO⁺ 337.9809; found 337.9809.

N-(4-bromo-2-iodophenyl)pivalamide (3g):

Following the general procedure D using *N*-(4-bromophenyl)pivalamide (56 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

^tBu (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (69 mg, 82%); **Rf:** 0.70 (hexane/EtOAc,

90:10); **Mp:** 72-74 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 8.21 (d, *J* = 8.8 Hz, 1H), 7.89 (d, *J* = 2.2 Hz, 1H), 7.77 (bs, 1H), 7.45 (dd, *J* = 8.9, 2.2 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 176.9, 140.5, 137.7, 132.3, 122.5, 117.0, 90.2, 40.4, 27.8; **IR (neat, cm⁻¹)** = 3399 (br), 2961 (w), 2928 (w), 1690 (m), 1589 (m), 1503 (s), 1370 (m), 1291 (m), 1156 (m), 819 (w), 672 (w), 535 (w); **HRMS (ESI) (m/z)**: calculated for [M+H]⁺ C₁₁H₁₄BrINO⁺ 381.9303; found 381.9305.

N-(2-iodo-4-nitrophenyl)pivalamide (3h): ⁽⁸⁾

Following the general procedure D using *N*-(4-nitrophenyl)pivalamide (49 mg, 0.22 mmol, 1 equiv.), BBr₃ (2.64 mmol, 12 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a yellow solid (32 mg, 42%); **Rf:** 0.43 (hexane/EtOAc, 90:10); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.66 (d, *J* = 2.6 Hz, 1H), 8.60 (d, *J* = 9.2

Hz, 1H), 8.23 (dd, J = 9.2, 2.6 Hz, 1H), 8.14 (bs, 1H), 1.39 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 177.3$, 144.1, 143.4, 134.2, 125.1, 119.6, 87.8, 40.8, 27.7.

N-(2-iodo-5-methylphenyl)pivalamide (3i):

Following the general procedure D using *N*-(*m*-tolyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (65 mg, 93%); Rf: 0.66 (hexane/EtOAc, 90:10); Mp: 76-78 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (d, *J* = 2.1 Hz, 1H), 7.76 (bs, 1H), 7.62 (d, *J*

= 8.1 Hz, 1H), 6.67 (dd, J = 8.2, 2.2 Hz, 1H), 2.32 (s, 3H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 177.0, 139.8, 138.3, 138.1, 126.9, 122.5, 86.1, 40.3, 27.8, 21.4; IR (neat, cm⁻¹) = 3301 (br), 2957 (m), 2924 (m), 2866 (m), 1691 (s), 1574 (m), 1520 (s), 1407 (s), 1289 (m), 1184 (m), 1151 (w),

1102 (w), 801 (w), 668 (w), 577 (w); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₂H₁₇INO⁺ 318.0355; found 318.037.

N-(2-iodo-5-methoxyphenyl)pivalamide (3j):

Following the general procedure D using *N*-(3-methoxyphenyl)pivalamide (46 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.53 mmol, 2.4 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a colorless gummy liquid (52 mg, 71%); **Rf:** 0.43 (hexane/EtOAc, 90:10); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.10 (d, *J* = 3.0 Hz, 1H),

7.84 (bs, 1H), 7.59 (d, J = 8.8 Hz, 1H), 6.47 (dd, J = 8.8, 3.0 Hz, 1H), 3.81 (s, 3H), 1.37 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 177.2$, 160.8, 139.2, 138.6, 113.2, 106.4, 77.9, 55.6, 40.5, 27.8; IR (neat, cm⁻¹) = 3398 (br), 2960 (w), 1690 (s), 1580 (s), 1519 (s), 1452 (m), 1414 (m), 1301 (m), 1206 (s), 1175 (m), 1050 (w), 1008 (w), 859 (w), 590 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₂H₁₇INO₂⁺ 334.0304; found 334.0317.

N-(5-fluoro-2-iodophenyl)pivalamide (3k):

Following the general procedure D using *N*-(3-fluorophenyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (65 mg, 92%); **Rf:** 0.73 (hexane/EtOAc, 90:10); **Mp:**

47-49 °C; ¹H NMR (400 MHz, CDCl₃) δ= 8.23 (dd, J = 11.2, 3.0 Hz, 1H), 7.87 (bs, 1H), 7.69 (ddd, J = 8.8, 6.0, 1.1 Hz, 1H), 6.62 (tdd, J = 8.7, 3.0, 1.1 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ= 177.1, 163.4 (d, J = 246.3 Hz), 139.7 (d, J = 11.9 Hz), 139.1 (d, J = 9.0 Hz), 112.8 (d, J = 22.6 Hz), 109.1 (d, J = 28.9 Hz), 82.21, 40.4, 27.8; ¹⁹F NMR (470 MHz, CDCl₃) δ= -110.59; IR (neat, cm⁻¹) = 3398 (br), 2959 (w), 2928 (w), 1688 (m), 1596 (m), 1561 (s), 1491 (s), 1379 (m), 1294 (s), 1157 (s), 833 (w), 761 (s), 696 (m), 665 (w), 571 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₁H₁₄FINO⁺ 322.0104; found 322.0119.

N-(5-bromo-2-iodophenyl)pivalamide (31):

Following the general procedure D using *N*-(3-bromophenyl)pivalamide (56 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (81 mg, 96%); **Rf:** 0.73 (hexane/EtOAc, 90:10); **Mp:** 91-93 °C; ¹**H NMR (400 MHz, CDCl₃) \delta= 8.57 (d,** *J* **= 2.3 Hz, 1H),**

7.80 (bs, 1H), 7.60 (d, J = 8.4 Hz, 1H), 6.97 (dd, J = 8.4, 2.3 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 177.0, 139.5, 128.7, 124.4, 123.5, 87.6, 40.4, 27.8.$

N-(2-iodo-5-(trifluoromethyl)phenyl)pivalamide (3m):

Following the general procedure D using *N*-(3-(trifluoromethyl)phenyl)pivalamide (54 mg, 0.22 mmol, 1 equiv.), BBr₃ (2.2 mmol, 10 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.),

KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (47 mg, 57%); Rf: 0.43 (hexane/EtOAc, 90:10); Mp: 70-72 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.67 (d, *J* = 2.2 Hz, 1H),

7.93 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.08 (dd, J = 8.3, 1.5 Hz, 1H), 1.38 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 177.2$, 139.3, 139.1, 132.0 (q, J = 32.9 Hz), 123.7 (q, J = 272.7 Hz), 121.9 (q, J = 3.8 Hz), 118.1 (q, J = 4.1 Hz), 93.6, 40.4, 27.7; ¹⁹F NMR (470 MHz, CDCl₃) $\delta = -63.03$; IR (neat, cm⁻¹) = 3398 (br), 2960 (w), 2925 (w), 1692 (m), 1578 (w), 1520 (s), 1417 (s), 1328 (s), 1260 (m), 1126 (s), 1079 (s), 1015 (s), 817 (m), 752 (w), 568 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₂H₁₄F₃INO⁺ 372.0072; found 372.0086.

N-(2-iodo-6-methylphenyl)pivalamide (3n):

Following the general procedure D using *N*-(*o*-tolyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (45 mg, 64%); **Rf:** 0.26 (hexane/EtOAc, 90:10); **Mp:** 189-191 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.67 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.10 (bs,

1H), 6.89 (t, J = 7.8 Hz, 1H), 2.25 (s, 3H), 1.38 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.2, 137.9, 137.1, 136.7, 131.1, 128.8, 99.32, 39.5, 27.9, 19.7; IR (neat, cm⁻¹) = 3267 (br), 2958 (m), 2924 (m), 1650 (s), 1504 (s), 1229 (w), 1177 (m), 936 (w), 762 (m), 709 (w), 642 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₂H₁₇INO⁺ 318.0355; found 318.0369.

N-(2-fluoro-6-iodophenyl)pivalamide (30):

Following the general procedure D using *N*-(2-fluorophenyl)pivalamide (43 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (34 mg, 48%); **Rf:** 0.20 (hexane/EtOAc, 90:10); **Mp:**159-161 °C;

¹H NMR (400 MHz, CDCl₃) δ = 7.61 (dt, J = 8.0, 1.1 Hz, 1H), 7.12 (tt, J = 8.3, 1.2 Hz, 1H), 7.02 – 6.94 (m, 2H), 1.37 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.5, 157.4 (d, J = 254.8

Hz), 134.3 (d, J = 3.7 Hz), 127.6, 129.6 (d, J = 8.4 Hz), 116.74 (d, J = 21.2 Hz)., 98.7, 39.5, 27.7; ¹⁹F **NMR (470 MHz, CDCl₃) \delta= -112.48; IR (neat, cm⁻¹)** = 3271 (br), 2973 (w), 2927 (w), 1659 (s), 1506 (s), 1472 (m), 1265(m), 1239 (w), 872 (w), 842 (w), 779 (m), 707 (w), 668 (w); **HRMS (ESI) (m/z)**: calculated for [M+H]⁺ C₁₁H₁₄FINO⁺ 322.0104; found 322.0111.

N-(2-iodo-3,5-dimethylphenyl)pivalamide (3p):

Following the general procedure D using *N*-(3,5-dimethylphenyl)pivalamide (45 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (67 mg, 92%); **Rf:** 0.66 (hexane/EtOAc, 90:10); **Mp:** 49-51 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 2.1 Hz, 1H),

7.93 (bs, 1H), 6.85 (d, J = 2.2 Hz, 1H), 2.43 (s, 3H), 2.29 (s, 3H), 1.37 (s, 9H); ¹³C{¹H} NMR (101 MHz, **CDCl₃**) $\delta = 177.0$, 141.8, 138.9, 138.2, 126.7, 119.9, 93.8, 40.4, 29.5, 27.9, 21.2; **IR (neat, cm⁻¹)** = 3397 (br), 2959 (w), 1692 (s), 1521 (w), 1456 (s), 1417 (w), 1182 (w), 668 (s), 582 (w); **HRMS (ESI) (m/z)**: calculated for [M+H]⁺ C₁₃H₁₉INO⁺ 332.0511; found 332.0527.

N-(6-fluoro-2-iodo-3-methylphenyl)pivalamide (3q):

Following the general procedure D using *N*-(2-fluoro-5-methylphenyl)pivalamide (46 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (47 mg, 64%); Rf: 0.23 (hexane/EtOAc, 90:10); Mp: 189-191 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.14 (dd, *J* = 8.5, 5.4 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 1H), 7.01 (bs, 1H), 2.45 (s, 3H), 1.38 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃)

 δ = 176.5, 155.3 (d, *J* = 252.1 Hz), 138.2 (d, *J* = 3.6 Hz), 128.5 (d, *J* = 7.8 Hz), 127.12 (d, *J* = 14.5 Hz), 115.7 (d, *J* = 20.7 Hz), 105.5, 39.5, 28.6, 27.8; ¹⁹F NMR (470 MHz, CDCl₃) δ = -116.59; IR (neat, cm⁻¹) = 3317 (br), 2980 (w), 2956 (w), 2920 (w), 1654 (s), 1500 (s), 1478 (s), 1285 (w), 1185 (w), 1157 (m), 838 (w), 816 (m), 573 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₂H₁₆FINO⁺ 336.0261; found 336.0271.

N-(3,5-dichloro-2-iodophenyl)pivalamide (3r):

Following the general procedure D using *N*-(3,5-dichlorophenyl)pivalamide (54 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (47 mg, 57%); **Rf:** 0.53 (hexane/EtOAc, 90:10);

Mp: 99-101 °C; ¹**H NMR (400 MHz, CDCl₃)** δ = 8.36 (d, *J* = 2.3 Hz, 1H), 8.04 (bs, 1H), 7.24 (d, *J* = 2.3 Hz, 1H), 1.36 (s, 9H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 177.2, 141.1, 139.2, 135.9, 124.3, 119.1, 92.3, 40.5, 27.7; **IR (neat, cm⁻¹)** = 3385 (br), 2952 (w), 1698 (s), 1560 (s), 1500 (s), 1399 (s), 1370 (s), 1141 (s), 1012 (m), 919 (m), 804 (m), 577 (m); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₁H₁₃Cl₂INO⁺ 371.9419; found 371.9414.

N-(4-iodo-[1,1'-biphenyl]-3-yl)pivalamide (3s):

Following the general procedure D using *N*-([1,1'-biphenyl]-3-yl)pivalamide (56 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (81 mg, 97%); Rf: 0.70 (hexane/EtOAc, 90:10); Mp:113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.63 (d, *J* = 2.2 Hz, 1H),

7.87 (bs, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.42 (dd, J = 8.3, 6.6 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.09 (dd, J = 8.2, 2.2 Hz, 1H), 1.40 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 177.1, 142.7, 139.9, 138.9, 138.7, 128.9, 127.9, 127.2, 124.4, 120.4, 88.6, 40.4, 27.8; IR (neat, cm⁻¹) = 3399 (br), 2960 (w), 2928 (w), 1688 (s), 1560 (s), 1521 (s), 1491 (s), 1400 (s), 1157 (m), 759 (s), 697 (m), 571 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₇H₁₉INO⁺ 380.0511; found 380.0518.

N-(3-iodo-[1,1'-biphenyl]-4-yl)pivalamide (3t):

Following the general procedure D using *N*-([1,1'-biphenyl]-4-yl)pivalamide (56 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (56 mg, 67%); **Rf:** 0.60 (hexane/EtOAc, 90:10); **Mp:** 106-108 °C; ¹**H NMR (400 MHz, CDCl₃) \delta= 8.36 (d,** *J* **= 8.5 Hz, 1H),**

8.01 (d, J = 2.1 Hz, 1H), 7.86 (bs, 1H), 7.58 (dd, J = 8.6, 2.1 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.43 (td, J = 7.2, 1.2 Hz, 2H), 7.37 – 7.31 (m, 1H), 1.39 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.9, 139.2, 138.8, 137.6, 137.1, 129.0, 128.0, 127.7, 127.0, 121.7, 90.6, 40.3, 27.9; IR (neat, cm⁻¹) = 3398 (br), 2959 (w), 2928 (w), 1688 (m), 1596 (m), 1561 (s), 1491 (s), 1379 (m), 1294 (s), 1157 (s), 833 (w), 761 (s), 696 (m), 665 (w), 571 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₇H₁₉INO⁺ 380.0511; found 380.0523.

N-(3-iodoanthracen-2-yl)pivalamide (3u):

Following the general procedure D using *N*-(anthracen-2-yl)pivalamide (61 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (hexane/EtOAc, 90:10) and the desired product was obtained as a yellow solid (38 mg, 43%); Rf: 0.5 (pentane/EtOAc, 90:10); Mp:163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ =

8.60 (d, J = 1.2 Hz, 1H), 8.36 – 8.31 (m, 2H), 8.18 (bs, 1H), 8.05 (dd, J = 8.6, 1.1 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 9.3 Hz, 1H), 7.54 – 7.45 (m, 2H), 1.45 (s, 9H); ¹³C{¹H} NMR (101 MHz, **CDCl₃**) $\delta = 177.2$, 138.0, 133.0, 132.4, 131.4, 130.6, 129.9, 129.8, 128.3, 127.9, 127.2, 126.4, 125.9, 121.4, 92.9, 40.4, 27.9; **IR (neat, cm⁻¹)** = 3391 (br), 2958 (m), 2925 (m), 1683 (s), 1617 (m), 1533 (s), 1483 (s), 1419 (m), 1297 (s), 1153 (m), 872 (m), 739 (m), 669 (w), 577 (w); **HRMS (ESI) (m/z)**: calculated for [M+H]⁺ C₁₉H₁₉INO⁺ 404.0511; found 404.0515.

N-(4-iodo-[1,1':4',1''-terphenyl]-3-yl)pivalamide (3v):

Following the general procedure D using *N*-([1,1':4',1"-terphenyl]-3-yl)pivalamide (72.5 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (88 mg, 88%); Rf: 0.43 (hexane/EtOAc, 90:10); Mp:185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.68 (d, *J* = 2.2 Hz, 1H), 7.89 (bs, 1H), 7.84 (d, *J* = 8.2 Hz, 1H),

7.71 (d, J = 8.1 Hz, 2H), 7.68 – 7.61 (m, 4H), 7.46 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.14 (dd, J = 8.3, 2.3 Hz, 1H), 1.41 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 177.1, 142.1, 140.8, 140.7, 139.0, 138.8, 138.8, 129.0, 127.6, 127.6, 127.6, 127.2, 124.2, 120.2, 88.6, 40.4, 27.9; IR (neat, cm⁻¹) = 3260 (br), 2962 (m), 2927 (m), 1684 (s), 1558 (m), 1506 (s), 814 (w), 763 (s), 668 (m); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₂₃H₂₃INO⁺ 456.0824; found 456.0828.

N-(2-iodo-4-tritylphenyl)pivalamide (3w):

Following the general procedure D using *N*-(4-tritylphenyl)pivalamide (63 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.30 mmol, 2 equiv.), KI

(0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (72 mg, 88%); Rf: 0.43 (hexane/EtOAc, 90:10); Mp: 221-223 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.15

(d, J = 8.7 Hz, 1H), 7.78 (bs, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.26 – 7.22 (m, 6H), 7.21 – 7.16 (m, 10H),

1.34 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.9, 146.4, 144.7, 140.6, 136.3, 132.7, 131.1, 127.8, 126.3, 120.4, 89.5, 64.4, 40.3, 27.8; IR (neat, cm⁻¹) = 2958 (w), 2926 (w), 1697 (m), 1560 (m), 1505 (s), 1298 (m), 702 (m), 668 (m); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₃₀H₂₉INO⁺ 546.1294; found 546.1292.

N,*N*'-(oxybis(2-iodo-4,1-phenylene))bis(2,2-dimethylpropanamide) (3x):

Following the general procedure D using *N*,*N'*-(oxybis(4,1-phenylene))bis(2,2-dimethylpropanamide) (81 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.48 mmol, 2.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor

(0.88 mmol, 4 equiv.), KI (0.92 mmol, 4.2 equiv.) at 60 °C for 5 h. The reaction was performed in 10 mL R.B.F. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid

(85 mg, 62%); **Rf:** 0.16 (hexane/EtOAc, 90:10); **Mp:**191-193 °C; ¹**H NMR (400 MHz, CDCl₃) \delta=** 8.18 (d, *J* = 9.0 Hz, 2H), 7.70 (bs, 2H), 7.40 (d, *J* = 2.8 Hz, 2H), 7.00 (dd, *J* = 9.0, 2.7 Hz, 2H), 1.37 (s, 18H); ¹³C{¹**H**} **NMR (101 MHz, CDCl₃) \delta=** 176.9, 153.5, 134.5, 128.7, 122.8, 119.6, 90.5, 40.2, 27.8; **IR (neat, cm**⁻¹) = 3336 (br), 3270 (br), 2960 (w), 2925 (w), 1655 (s), 1583 (w), 1507 (s), 1469 (s), 1395 (w), 1259 (m), 1204 (s), 1168 (s), 1028 (w), 915 (m), 809 (w), 606 (w); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₂₂H₂₇I₂N₂O₃⁺ 621.0111; found 621,011.

N-(8-iodo-3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)pivalamide (3y):

Following the general procedure D using *N*-(3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)pivalamidede (55 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor

(0.44 mmol, 2 equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (51 mg, 62%); **Rf:** 0.56 (hexane/EtOAc, 70:30); **Mp:**127-129 °C; ¹**H NMR (400 MHz, CDCl₃)**

 δ = 7.93 (s, 1H), 7.60 (bs, 1H), 7.38 (s, 1H), 4.16 (dt, *J* = 13.3, 5.6 Hz, 4H), 2.16 (p, *J* = 5.6 Hz, 2H), 1.34 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 176.6, 152.0, 148.5, 133.9, 130.5, 115.1, 81.1, 71.1, 70.7, 40.1, 31.9, 27.8; **IR (neat, cm⁻¹)** = 3401 (br), 2960 (w), 1681 (m), 1572 (w), 1508 (s), 1401 (m), 1308 (s), 1197 (s), 979 (m), 923 (w), 836 (w), 653 (w); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₄H₁₉INO₃⁺ 376.041; found 376.0406.

2-(diethylamino)ethyl 3-iodo-4-pivalamidobenzoate (3z):

Following the general procedure D using 2-(diethylamino)ethyl 4-pivalamidobenzoate (48.9 mg, 0.15

mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 ^oC for 16 h and Selectfluor (0.30 mmol, 2 equiv.), KI (0.33 mmol, 2.2 equiv.) at 60 ^oC for 5 h. The crude product was purified by automated

column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an semi solid (17 mg, 25%); **Rf:** 0.15 (EtOAc, 100); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.46 – 8.41 (m, 2H), 8.04 (bs, 1H), 7.98 (dd, *J* = 8.6, 2.0 Hz, 1H), 4.55 (t, *J* = 5.7 Hz, 2H), 3.23 (t, *J* = 5.7 Hz, 2H), 3.02 (q, *J* = 7.2 Hz, 4H), 1.37 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 6H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 176.6, 152.0, 148.5, 133.9, 130.5, 115.1, 81.1, 71.1, 70.7, 40.1, 31.9, 27.8; **IR (neat, cm⁻¹)** = 3390 (br), 2963 (w), 2924 (w), 1719 (s), 1700 (s), 1592 (m), 1512 (s), 1385 (m), 1259 (s), 1228 (m), 1112 (s), 1067 (s), 1034 (s), 762 (m), 682 (w); **HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₈H₂₈IN₂O₃⁺ 447.1145; found 447.1147. *N*-(2-iodophenyl)benzamide (7a):⁽¹¹⁾

Following the general procedure E using *N*-phenylbenzamide (44 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (60 mg, 84%); **Rf:** 0.43 (hexane/EtOAc, 90:10); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.47 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.30 (bs, 1H), 7.98 (dt, *J* = 7.1, 1.5 Hz, 2H), 7.82 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.56 – 7.49 (m, 2H),

7.45 – 7.37 (m, 1H), 6.89 (td, J = 7.6, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.4, 138.9, 138.4, 134.7, 132.3, 129.6, 129.1, 127.3, 126.2, 121.9, 90.3.

N-(2-iodophenyl)-4-methylbenzamide (7b):⁽¹²⁾

Following the general procedure E using 4-methyl-*N*-phenylbenzamide (46 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (57 mg, 77%); Rf: 0.50 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.47 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.27 (bs, 1H), 7.87 (d, *J* = 7.9 Hz, 2H), 7.81 (dd, *J* = 8.0, 1.5 Hz, 1H),

7.44 – 7.37 (m, 1H), 7.33 (d, J = 7.9 Hz, 2H), 6.88 (td, J = 7.6, 1.6 Hz, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 165.4$, 142.9, 138.9, 138.5, 131.8, 129.8, 129.5, 127.3, 126.0, 121.8, 90.3, 21.7. *N*-(2-iodophenyl)-3-methylbenzamide (7c): ⁽¹³⁾

Following the general procedure E using 3-methyl-*N*-phenylbenzamide (46 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (71 mg, 96%); Rf: 0.50 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (d, *J* = 8.3 Hz,

1H), 8.27 (bs, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.79 (s, 1H), 7.75 (dt, J = 6.5, 2.2 Hz, 1H), 7.41 (dq, J = 8.0, 4.3 Hz, 3H), 6.88 (t, J = 7.6 Hz, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.7, 139.0, 138.9, 138.5, 134.7, 133.1, 129.5, 128.9, 128.2, 126.1, 124.1, 121.9, 90.4, 21.6.

4-fluoro-N-(2-iodophenyl)benzamide (7d): (11)

Following the general procedure E using 4-fluoro-*N*-phenylbenzamide (47 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (56 mg, 75%); Rf: 0.56 (hexane/EtOAc, 80:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.42 (dd, *J* = 8.3, 1.6

Hz, 1H), 8.22 (s, 1H), 8.02 – 7.96 (m, 2H), 7.82 (dd, J = 8.0, 1.5 Hz, 1H), 7.40 (ddd, J = 8.6, 7.7, 1.5 Hz, 1H), 7.24 – 7.18 (m, 2H), 6.89 (ddd, J = 8.0, 7.3, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 165.3$ (d, J = 249.6 Hz), 164.4, 139.0, 138.2, 130.8 (d, J = 3.3 Hz), 129.8, 129.6 (d, J = 7.7 Hz), 126.3, 121.9, 116.2 (d, J = 22.0 Hz), 90.5; ¹⁹F NMR (470 MHz, CDCl₃) $\delta = -106.82$.

4-iodo-N-(2-iodophenyl)benzamide (7e):⁽¹⁴⁾

Following the general procedure E using 4-iodo-*N*-phenylbenzamide (71 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (64 mg, 65%); **Rf:** 0.46 (hexane/EtOAc, 90:10); ¹**H**

NMR (400 MHz, CDCl₃) δ = 8.42 (dd, J = 8.3, 1.6 Hz, 1H), 8.23 (bs, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.82 (dd, J = 7.9, 1.5 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.44 – 7.36 (m, 1H), 6.90 (td, J = 7.6, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 164.7, 139.0, 138.3, 138.1, 134.1, 129.6, 128.8, 126.4, 121.9, 99.5, 90.4.

2-bromo-N-(2-iodophenyl)benzamide (7f):⁽¹⁵⁾

Following the general procedure E using 2-bromo-*N*-phenylbenzamide (61 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (46 mg, 52%); **Rf:** 0.46 (hexane/EtOAc, 80:20); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.42 (d, *J* = 8.2 Hz, 1H), 7.93 (s, 1H), 7.83 (dd, *J*

= 7.9, 1.5 Hz, 1H), 7.68 (d, J = 7.8 Hz, 2H), 7.47 – 7.39 (m, 2H), 7.36 (td, J = 7.7, 1.8 Hz, 1H), 6.91 (td, J = 7.6, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.8, 139.2, 138.2, 137.7, 133.9, 132.0, 129.6, 129.5, 127.9, 126.7, 122.4, 119.6, 90.3.

2-iodo-N-(2-iodophenyl)benzamide (7g):⁽¹⁴⁾

Following the general procedure E using 2-iodo-*N*-phenylbenzamide (61 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (46 mg, 52%); **Rf:** 0.46 (hexane/EtOAc, 80:20); ¹**H NMR (400 MHz, CDCl₃) \delta= 8.41 (d,** *J* **= 8.2 Hz, 1H), 7.96 (dd,** *J* **= 8.0, 1.1 Hz,**

1H), 7.83 (dd, J = 8.0, 1.5 Hz, 1H), 7.75 (bs, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.19 (td, J = 7.7, 1.7 Hz, 1H), 6.92 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 167.4$, 141.8, 140.5, 139.1, 138.1, 131.9, 129.5, 128.6, 128.3, 126.7, 122.4, 92.7, 90.4.

N-(2-iodophenyl)-4-(trifluoromethyl)benzamide (7h):⁽¹⁶⁾

Following the general procedure E using *N*-phenyl-4-(trifluoromethyl)benzamide (58 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (47 mg, 55%); Rf: 0.56 (hexane/EtOAc, 80:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.42 (dd, *J* = 8.3, 1.6

Hz, 1H), 8.29 (bs, 1H), 8.08 (d, J = 8.2 Hz, 2H), 7.83 (dd, J = 7.9, 1.4 Hz, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.42 (td, J = 7.5, 1.5 Hz, 1H), 6.92 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 164.1, 139.0, 137.9, 137.9 (q, J = 1.4 Hz), 134.0 (q, J = 32.8 Hz), 129.6, 127.8, 126.7, 126.2 (q, J = 3.8 Hz), 123.6 (d, J = 272.5 Hz), 122.1, 90.6; ¹⁹F NMR (470 MHz, CDCl₃) δ = -63.01.

N-(2-iodophenyl)-3-nitrobenzamide (7i):

Following the general procedure E using 3-nitro-*N*-phenylbenzamide (53 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (60 mg, 74%); Rf: 0.30 (hexane/EtOAc, 80:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.83 (t, *J* = 2.0 Hz,

1H), 8.44 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 8.38 (dd, J = 8.2, 1.6 Hz, 1H), 8.31 (bs, 1H), 8.29 (t, J = 1.4 Hz, 1H), 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.75 (t, J = 8.0 Hz, 1H), 7.43 (ddd, J = 8.5, 7.4, 1.5 Hz, 1H), 6.94 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 163.0, 148.6, 139.1, 137.7, 136.3, 133.1, 130.4, 129.7, 126.9, 126.8, 122.5, 122.2, 90.9.

N-(2-iodophenyl)furan-2-carboxamide (7j):⁽¹⁶⁾

Following the general procedure E using *N*-phenylfuran-2-carboxamide (41 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (56 mg, 86%); **Rf:** 0.50 (hexane/EtOAc, 80:20); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.54 (bs, 1H), 8.40 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.81 (dd,

J = 8.0, 1.5 Hz, 1H), 7.58 (dd, J = 1.8, 0.8 Hz, 1H), 7.38 (td, J = 7.8, 1.5 Hz, 1H), 7.27 (dd, J = 3.5, 0.9 Hz, 1H), 6.87 (ddd, J = 7.9, 7.3, 1.6 Hz, 1H), 6.58 (dd, J = 3.5, 1.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 156.1, 147.8, 144.8, 139.1, 138.0, 129.5, 126.1, 121.7, 115.8, 112.8, 89.9.$

N-(2-iodophenyl)thiophene-2-carboxamide (7k):⁽¹⁶⁾

Following the general procedure E using *N*-phenylthiophene-2-carboxamide (45 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (62 mg, 86%); **Rf:** 0.50 (hexane/EtOAc, 80:20); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.39 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.17 (bs, 1H), 7.81 (dd,

J = 7.9, 1.5 Hz, 1H), 7.72 (dd, J = 3.8, 1.2 Hz, 1H), 7.59 (dd, J = 5.0, 1.2 Hz, 1H), 7.39 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.17 (dd, J = 5.0, 3.7 Hz, 1H), 6.88 (ddd, J = 8.0, 7.3, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 159.8, 139.3, 138.9, 138.1, 131.5, 129.6, 128.8, 128.1, 126.2, 121.8, 90.1.$

N-(5-chloro-2-iodophenyl)-4-methylbenzamide (71):

Following the general procedure E using *N*-(3-chlorophenyl)-4-methylbenzamide (54.08 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2

equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (58 mg, 71%); **Rf**: 0.40 (hexane/EtOAc, 90:10); **Mp**:133-135 °C; ¹**H NMR** (400 MHz, CDCl₃) δ=

8.58 (d, J = 2.5 Hz, 1H), 8.27 (bs, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.5 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 6.87 (dd, J = 8.5, 2.5 Hz, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.3, 143.3, 139.4, 139.3, 135.6, 131.4, 129.8, 127.3, 125.9, 121.5, 86.9, 21.7; HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₄H₁₂ClINO⁺ 371.9652; found 371.9658.

(3r,5r,7r)-N-(2-iodophenyl)adamantane-1-carboxamide (7m): (17)

Following the general procedure E using (3r,5r,7r)-N-phenyladamantane-1-carboxamide (56 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44

mmol, 2 equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (61 mg, 73%); Rf: 0.63 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.31 (dd, *J* = 8.3,

1.6 Hz, 1H), 7.76 (dd, J = 9.4, 2.3 Hz, 2H), 7.33 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 6.82 (td, J = 7.6, 1.6 Hz, 1H), 2.12 (dd, J = 6.1, 3.1 Hz, 3H), 2.02 (d, J = 3.0 Hz, 6H), 1.81 – 1.74 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 176.4$, 138.8, 138.4, 129.4, 125.7, 121.9, 90.2, 42.2, 39.5, 36.6, 28.3.

N-(2-iodophenyl)acetamide (7n): ⁽¹⁶⁾

Following the general procedure E using *N*-phenylacetamide (29.75 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.66 mmol, 3 equiv., 1M in CH₂Cl₂), at 60 °C for 24 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a off white solid (18 mg, 31%); ¹H NMR (400 MHz, CDCl₃) δ = 8.19 (d, *J* = 8.2 Hz, 1H), 7.77 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.43 (bs, 1H), 7.34 (td, *J* = 7.8, 1.5 Hz, 1H), 6.84 (t, *J* =

7.7 Hz, 1H), 2.24 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ= 168.4, 138.9, 138.3, 129.4, 126.1, 122.2, 90.1, 25.0.

1-(2-iodophenyl)-3-phenylurea (70):⁽¹⁸⁾

Following the general procedure E using 1,3-diphenylurea (47 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol,

2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (47 mg, 63%); **Rf:** 0.53 (hexane/EtOAc, 70:30); ¹**H NMR (400**

MHz, dmso-d⁶) δ = 9.42 (bs, 1H), 7.88 (bs, 1H), 7.83 (dt, *J* = 8.2, 1.3 Hz, 2H), 7.47 (dd, *J* = 8.6, 1.2 Hz, 2H), 7.34 (ddd, *J* = 8.5, 7.3, 1.5 Hz, 1H), 7.29 (dd, *J* = 8.5, 7.3 Hz, 2H), 6.98 (tt, *J* = 7.4, 1.2 Hz, 1H), 6.84 (td, *J* = 7.7, 1.6 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, dmso-d⁶)** δ = 152.4, 139.9, 139.6, 139.0, 128.9, 128.6, 125.1, 123.1, 122.0, 118.2, 91.4.

1-(4-fluorophenyl)-3-(2-iodophenyl)urea (7p):

Following the general procedure E using 1-(4-fluorophenyl)-3-phenylurea (51 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (32 mg, 41%); Rf: 0.50

(hexane/EtOAc, 70:30); **Mp:**224-226 °C; ¹**H NMR (400 MHz, dmso-d⁶) δ=** 9.45 (bs, 1H), 7.86 (bs, 1H), 7.83 (ddd, *J* = 8.2, 5.1, 1.5 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.34 (ddd, *J* = 8.4, 7.3, 1.5 Hz, 1H), 7.17 – 7.09

(m, 2H), 6.84 (ddd, J = 7.8, 7.3, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, dmso-d⁶) $\delta = 157.4$ (d, J = 238.1 Hz), 152.5, 139.8, 139.0, 136.0 (d, J = 2.3 Hz), 128.6, 125.1, 123.1, 119.9 (d, J = 7.7 Hz), 115.4 (d, J = 22.2 Hz), 91.5; ¹⁹F NMR (470 MHz, dmso-d⁶) $\delta = -121.19$; IR (neat, cm⁻¹) = 3278 (br), 2917 (w), 1643 (s), 1575 (m), 1568 (s), 1508 (s), 1288 (w), 1213 (w), 1015 (w), 747 (w), 668 (m); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₃H₁₁FIN₂O⁺ 356.99; found 356.9912.

1-benzyl-3-(2-iodophenyl)urea (7q):⁽¹⁹⁾

Following the general procedure E using 1-benzyl-3-phenylurea (49.8 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (27 mg, 35%); Rf: 0.5 (hexane/EtOAc, 70:30); ¹H NMR (400 MHz, acetone d₆) δ = 8.12 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.79 (dd, *J* = 7.9,

1.5 Hz, 1H), 7.40 – 7.27 (m, 6H), 7.28 – 7.20 (m, 1H), 7.01 (s, 1H), 6.77 (td, J = 7.6, 1.6 Hz, 1H), 4.43 (d, J = 5.8 Hz, 2H); ¹³C{¹H} NMR (101 MHz, dmso-d⁶) $\delta = 155.7$, 141.6, 141.0, 139.8, 129.5, 129.2, 128.3, 127.7, 125.0, 122.7, 89.6, 44.3.

1-(2-iodophenyl)-3-propylurea (7r):⁽²⁰⁾

Following the general procedure E using 1-phenyl-3-propylurea (39.2 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (24 mg, 36%); **Rf:** 0.4 (hexane/EtOAc, 70:30); ¹**H NMR (400 MHz, CDCl₃)** δ = 7.89 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.75 (dd, *J* = 7.9, 1.5

Hz, 1H), 7.29 (ddd, J = 8.4, 7.3, 1.5 Hz, 1H), 6.77 (td, J = 7.6, 1.6 Hz, 1H), 6.64 (bs, 1H), 5.15 (bs, 1H), 3.21 (t, J = 7.2 Hz, 2H), 1.56 (h, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, dmso-d⁶) δ = 155.4, 139.5, 139.1, 129.3, 125.3, 122.8, 91.6, 42.5, 23.4, 11.5.

5-(4-chlorophenyl)-*N*-(2-iodophenyl)furan-2-carboxamide (7s):

Following the general procedure E using 5-(4-chlorophenyl)-*N*-phenylfuran-2-carboxamide (45 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.30

mmol, 2 equiv.), KI (0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (35 mg, 54%); **Rf:** 0.57 (hexane/EtOAc, 70:30); **Mp:**190-

192 °C; ¹**H** NMR (400 MHz, CDCl₃) δ = 8.68 (bs, 1H), 8.47 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.83 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (d, *J* = 3.6 Hz), 7.41 – 7.36 (m, 1H), 7.34 (m, 1H),

1H), 6.88 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H), 6.81 (d, J = 3.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 155.9, 155.0, 146.8, 139.0, 138.0, 134.9, 129.6, 129.4, 128.0, 126.1, 125.9, 121.3, 117.9, 108.3, 89.8; IR (neat, cm⁻¹) = 3366 (br), 1684 (m), 1587 (m), 1539 (s), 1456 (w), 1431 (w), 1312 (m), 746 (w), 668 (s), 580 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₇H₁₂ClINO₂⁺ 423.9601; found 423.9608.$

N-(2-iodophenyl)-5-(3-(trifluoromethyl)phenyl)furan-2-carboxamide (7t):

Following the general procedure E using *N*-phenyl-5-(3-(trifluoromethyl)phenyl)furan-2-carboxamide (50 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and

Selectfluor (0.30 mmol, 2 equiv.), KI (0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (38 mg, 54%); **Rf:** 0.40 (hexane/EtOAc,

80:20); **Mp**:145-147 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 8.77 (bs, 1H), 8.49 (dd, *J* = 8.2, 1.5 Hz, 1H), 8.08 (tt, *J* = 1.7, 0.8 Hz, 1H), 7.95 (dt, *J* = 7.1, 1.8 Hz, 1H), 7.84 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.40 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.36 (d, *J* = 3.6 Hz, 1H), 6.93 – 6.86 (m, 2H); ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ = 155.7, 154.2, 147.2, 139.1, 137.9, 131.70 (q, *J* = 32.6 Hz), 130.3, 129.8, 129.7, 127.6, 126.7 (q, *J* = 272.7 Hz), 126.1, 125.5 (q, *J* = 3.7 Hz), 121.5 (q, *J* = 3.8 Hz), 121.2, 117.7, 109.0, 89.6; ¹⁹F **NMR** (564 MHz, CDCl₃) δ = -62.97; **IR** (neat, cm⁻¹) = 3357 (br), 2922 (w), 1684 (s), 1596 (s), 1508 (s), 1585 (s), 1539 (s), 1522 (s), 1433 (s), 1366 (s), 1311 (m), 1258 (m), 1120 (s), 806 (w), 750 (m), 668 (w); **HRMS** (ESI) (m/z): calculated for [M+H]⁺ C₁₈H₁₂F₃INO₂⁺ 457.9865; found 457.9865.

N-(2-iodophenyl)-4-(methylsulfonyl)benzamide (7u):

Following the general procedure E using 4-(methylsulfonyl)-*N*-phenylbenzamidede (42 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.30 mmol, 2

equiv.), KI (0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 85:15) and the desired product was obtained as an off white solid (44 mg, 72%); **Rf**: 0.23 (hexane/EtOAc, 60:40); **Mp**:161-163 °C; ¹**H NMR (400 MHz, CDCl₃) \delta= 8.40 (dd, J = 8.2, 1.5 Hz, 1H), 8.29 (bs, 1H), 8.18 – 8.09 (m, 4H), 7.84 (dd, J = 8.0,**

1.4 Hz, 1H), 7.43 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 6.94 (ddd, J = 8.0, 7.4, 1.6 Hz, 1H), 3.11 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 163.7, 143.7, 139.5, 139.1, 137.7, 129.7, 128.4, 128.3, 126.9, 122.1, 90.7, 44.5; IR (neat, cm⁻¹) = 2923 (br), 1684 (m), 1653 (m), 1559 (m), 1521 (s), 1313 (s), 1297 (s), 1152 (s), 749 (w), 668 (s); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₄H₁₃INO₃S⁺ 401.9661; found 401.9666.$

N-(2-iodo-4-tritylphenyl)benzamide (7v):

Following the general procedure E using *N*-(4-tritylphenyl)benzamide (63 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.30 mmol, 2 equiv.), KI (0.33

mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as an off white solid (72 mg, 88%); **Rf**: 0.65 (hexane/EtOAc, 70:30); **Mp**: 199-201 °C; ¹**H NMR (400 MHz, CDCl₃) \delta=** 8.31 (d, *J* = 8.7 Hz, 1H), 8.26 (bs, 1H), 7.94 (dt, *J* = 7.1, 1.4 Hz, 2H), 7.68 (d,

J = 2.3 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.51 (dd, J = 8.2, 6.5 Hz, 2H), 7.28 – 7.23 (m, 7H), 7.23 – 7.18 (m, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.5, 146.3, 145.1, 140.6, 136.2, 134.6, 132.8, 132.4, 131.1, 129.1, 127.8, 127.3, 126.3, 120.5, 89.7, 64.4; IR (neat, cm⁻¹) = 3388 (br), 2924 (m), 1684 (m), 1560 (m), 1508 (s), 1491 (s), 1300 (s), 748 (w), 701 (s), 667 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₃₂H₂₅INO⁺ 566.0981; found 566.0983.

4-(*N*,*N*-dipropylsulfamoyl)-*N*-(2-iodophenyl)benzamide (7w):

Following the general procedure E using 4-(*N*,*N*-dipropylsulfamoyl)-*N*-phenylbenzamide (55 mg, 0.15 mmol, 1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.30

mmol, 2 equiv.), KI (0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as an off white solid (46 mg, 62%); **Rf:** 0.45 (hexane/EtOAc, 70:30); **Mp:** 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ = 8.41 (dd, *J* = 8.2, 1.5 Hz, 1H), 8.28 (s, 1H), 8.08 (d, *J* = 8.1 Hz, 2H), 7.96 (d, *J* = 8.2 Hz,

2H), 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.47 – 7.37 (m, 1H), 6.92 (td, J = 7.6, 1.6 Hz, 1H), 3.12 (t, J = 7.4 Hz, 4H), 1.57 (h, J = 7.5 Hz, 4H), 0.89 (t, J = 7.4 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 164.0, 143.9, 139.1, 138.0, 137.9, 129.7, 128.0, 127.8, 126.7, 122.1, 90.6, 50.2, 22.2, 11.3; IR (neat, cm⁻¹) = 3269 (br), 2922 (w), 2852 (w), 1651 (m), 1525 (m), 1500 (s), 1432 (m), 1312 (m), 1293 (m), 1232 (m), 850 (w), 756 (w), 651 (w); HRMS (ESI) (m/z): calculated for [M+H]⁺ C₁₉H₂₄IN₂O₃S⁺ 487.0552; found 487,0555.

1-(4-chlorophenyl)-*N*-(2-iodophenyl)cyclopentane-1-carboxamide (7x):

Following the general procedure E using 1-(4-chlorophenyl)-*N*-phenylcyclopentane-1-carboxamide (65 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI (0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 91:9) and the desired product was obtained as an

off white solid (74 mg, 80%); **Rf:** 0.48 (hexane/EtOAc, 90:10); **Mp:** 94-96 °C; ¹**H NMR (400 MHz, CDCl₃) \delta= 8.42 (dd, J = 8.3, 1.6 Hz, 1H), 7.95 (bs, 1H), 7.70 (dd, J = 7.9, 1.5 Hz, 1H), 7.37 – 7.33 (m, 13H), 7.30 (ddt, J = 6.8, 5.4, 2.3 Hz, 3H), 6.82 (td, J = 7.6, 1.6 Hz, 1H); ¹³C{¹H} NMR (101**

MHz, CDCl₃) δ = 172.1, 143.0, 139.1, 138.6, 130.9, 129.3, 128.4, 127.4, 126.1, 121.6, 89.3, 68.9; **IR** (neat, cm⁻¹) = 3359 (br), 2955 (w), 1691 (s), 1579 (m), 1512 (s), 1429 (s), 1292 (m), 1012 (w), 752 (w), 668 (w);**HRMS (ESI) (m/z):** calculated for [M+H]⁺ C₁₈H₁₈ClINO⁺ 426.0122; found 426.0121.

N-(2-iodophenyl)-2,2,2-triphenylacetamide (7y):⁽¹⁴⁾

Following the general procedure E using *N*,2,2,2-tetraphenylacetamide (56 mg, 0.15 mmol,1 equiv.), BBr₃ (0.18 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.30 mmol, 2 equiv.), KI

(0.33 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 93:7) and the desired product was obtained as an off white solid (46 mg, 62%); **Rf:** 0.36 (hexane/EtOAc, 95:5);

¹H NMR (400 MHz, CDCl₃) δ = 8.42 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.95 (bs, 1H), 7.70 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.37 – 7.33 (m, 13H), 7.30 (ddt, *J* = 6.8, 5.4, 2.3 Hz, 3H), 6.82 (td, *J* = 7.6, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 172.1, 143.0, 139.1, 138.6, 130.9, 129.3, 128.4, 127.4, 126.1, 121.6, 89.3, 68.9.

N-(2-iodophenyl)-2-oxo-2-phenylacetamide (7z): ⁽²¹⁾

Following the general procedure E using 2-oxo-*N*,2-diphenylacetamide (51 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), KI

(0.48 mmol, 2.2 equiv.) at 60 °C for 5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 95:5) and the desired product was obtained as an off white solid (18 mg, 23%); Rf: 0.52 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 9.45 (bs, 1H), 8.47 –

8.38 (m, 3H), 7.85 (dd, J = 8.0, 1.5 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.46 – 7.38 (m, 1H), 6.93 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 186.9, 159.0, 139.4, 137.4, 134.9, 133.1, 131.6, 129.5, 128.8, 127.0, 121.5, 90.3.

4.4 General Procedure F for Chlorination of N-phenylpivalamide:

Step i) To a dry 3 mL, screw-top V-Vial, equipped with a stir bar, the difluoro boron complex (4a) (22.5 mg, 0.1 mmol, 1 equiv.) and Chloramine T Trihydrate (28.2 mg, 0.1 mmol, 1 equiv.). To this 0.7 mL

acetonitrile and 0.3 mL water was added and the reaction mixture was stirred at 70 °C for 4 h. The reaction was diluted with EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc 92:08) to afford the *N*-(2-chlorophenyl)pivalamide in 85% yield.

N-(2-chlorophenyl)pivalamide (5c):⁽¹⁴⁾

Following the general procedure F. The crude product was purified by automated column chromatography (pentane/EtOAc, 92:08) and the desired product was obtained as beige color solid (18 mg, 85%); **Rf:** 0.37

 $\int_{5c}^{H} \int_{5c}^{t_{Bu}} \int_{5c}^{t_{Bu}} (hexane/EtOAc, 95:5); {}^{1}H NMR (600 MHz, CDCl_3) \delta = 8.42 (dd, J = 8.3, 1.5 Hz, 1H), 8.02 (bs, 1H), 7.36 (dd, J = 8.1, 1.5 Hz, 1H), 7.30 - 7.24 (m, 1H), 7.02 (td, J = 7.7, 1.5 Hz, 1H), 1.35 (s, 9H); {}^{13}C{}^{1}H} NMR (151 MHz, CDCl_3) \delta = 176.8, 134.9, 129.0, 127.90, 124.5, 123.0, 121.5, 40.3, 27.7.$

4.5 General Procedure G for Bromination of N-phenylpivalamide

Step i) To a dry 5 mL, screw-top V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), equipped with a rubber septum, stir bar, the *N*-phenylpivalamide (0.22 mmol, 1 equiv.) in anhydrous CH₂Cl₂ (0.5 mL) under a nitrogen atmosphere was added dropwise BBr₃ (0.26 mmol, 1.2 equiv., 1M solution in CH₂Cl₂). After the complete addition of BBr₃, the reaction mixture was stirred at 22 °C for 2 h after which the solvent was removed under reduced pressure.

Step ii) Simultaneously, selectfluor (0.44 mmol, 2 equiv.), and TBAB (0.48 mmol, 2.2 equiv.), were dissolved in CH₃CN (1 mL) and water (0.5 mL) in a 3 mL, screw-top V-vial and the reaction mixture stirred at 22 °C for 1.5 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (0.5 mL) and water (0.5 mL) at 0 °C. To this mixture, the solution from step ii) was added dropwise at 0 °C, and the reaction mixture was stirred at 22 °C for 2.5 h. The reaction was quenched with saturated sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc) to afford the *N*-(2-bromophenyl)pivalamide in 78% yield.

N-(2-bromophenyl)pivalamide (5a):⁽⁸⁾

Following the general procedure G using *N*-phenylpivalamide (39 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 22 °C for 2 h and Selectfluor (0.44 mmol, 2 equiv.), TBAB (0.48

NMR (101 MHz, CDCl₃) δ= 176.8, 136.0, 132.2, 128.5, 125.0, 121.7, 113.7, 40.3, 27.7.

4.6 General Procedure H for reaction optimization: Bromination of benzanilide derivatives

Step i) To a dry 5 mL, screw-top V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), equipped with a rubber septum, stir bar, the amide derivative (0.22 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (0.5 mL) under a nitrogen atmosphere was added dropwise BBr₃ (0.26 mmol, 1.2 equiv., 1M solution in CH_2Cl_2). After the complete addition of BBr₃, the reaction mixture was stirred at 40 °C for 16 h after which the solvent was removed under reduced pressure.

Step ii) Simultaneously, selectfluor (0.44 mmol, 2 equiv.), and TBAB (0.48 mmol, 2.2 equiv.), were dissolved in CH₃CN (1 mL) and water (0.5 mL) in a 3 mL, screw-top V-vial and the reaction mixture stirred at 22 °C for 1.5 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (0.5 mL) and water (0.5 mL) at 0 °C. To this mixture, the solution from step ii) was added dropwise at 0 °C, and the reaction mixture was stirred at 22 °C for 1-1.5 h. The reaction was quenched with saturated sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc).

N-(2-bromophenyl)benzamide (8a):⁽¹¹⁾

Following the general procedure H using N-phenylbenzamide (44 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26

mmol, 1.2 equiv., 1M in CH_2Cl_2), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.), TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as an off white solid (45 mg, 73%); **Rf:** 0.25

(hexane/EtOAc, 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 8.56 (dd, J = 8.3, 1.6 Hz, 1H), 8.48 (s, 1H), 7.97 – 7.91 (m, 2H), 7.61 – 7.56 (m, 2H), 7.55 – 7.50 (m, 2H), 7.38 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.02 (ddd, J = 8.0, 7.4, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.4, 135.9, 134.7, 132.4, 132.3, 129.1, 128.7, 127.2, 125.4, 121.8, 113.9.

N-(2-bromophenyl)-4-methylbenzamide (8b):⁽¹²⁾

Following the general procedure H using 4-methyl-*N*-phenylbenzamide (47 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as an off white solid (48 mg, 74%); **Rf:** 0.28 (hexane/EtOAc, 95:5); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.47 (dd, *J* = 8.2, 1.6 Hz, 1H), 8.27 (bs, 1H), 7.87 (d, *J* = 7.9 Hz, 2H), 7.81 (dd, *J* = 8.0, 1.5 Hz, 1H),

7.44 – 7.37 (m, 1H), 7.33 (d, J = 7.9 Hz, 2H), 6.88 (td, J = 7.6, 1.6 Hz, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 165.4$, 142.9, 138.9, 138.5, 131.8, 129.8, 129.5, 127.3, 126.0, 121.8, 90.3, 21.7. *N*-(2-bromophenyl)-3-methylbenzamide (8c):⁽²²⁾

Following the general procedure H using 3-methyl-*N*-phenylbenzamide (47 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as a off white solid (46 mg, 71%); **Rf:** 0.33 (hexane/EtOAc, 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 8.55 (dd, *J* = 8.3, 1.6

Hz, 1H), 8.45 (bs, 1H), 7.76 (s, 1H), 7.74 – 7.66 (m, 1H), 7.58 (dd, J = 8.0, 1.5 Hz, 1H), 7.38 (q, J = 6.5 Hz, 3H), 7.01 (td, J = 7.7, 1.6 Hz, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 165.6, 139.0, 136.0, 134.7, 133.1, 132.4, 128.9, 128.7, 128.1, 125.3, 124.1, 121.9, 113.8, 21.6.

N-(2-bromophenyl)-4-fluorobenzamide (8d):⁽²³⁾

Following the general procedure H using 4-fluoro-*N*-phenylbenzamide (47 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as an off white solid (45.5 mg, 71%); Rf: 0.25 (hexane/EtOAc, 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 8.51 (dd, *J* = 8.3, 1.6

Hz, 1H), 8.39 (bs, 1H), 8.01 – 7.91 (m, 2H), 7.58 (dd, J = 8.0, 1.5 Hz, 1H), 7.42 – 7.33 (m, 1H), 7.20 (t, J = 8.6 Hz, 2H), 7.02 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 165.2$ (d, J = 253.5

Hz), 164.3, 135.8, 132.4, 130.9 (d, J = 3.1 Hz), 129.6 (d, J = 9.0 Hz), 128.7, 125.5, 121.9, 116.2 (d, J = 22.1 Hz), 113.9; ¹⁹F NMR (470 MHz, CDCl₃) δ = -106.79.

2-bromo-N-(2-bromophenyl)benzamide (8f): (14)

Following the general procedure H using 2-bromo-N-phenylbenzamide (60.3 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 92:8) and the desired product was obtained as an off white solid (33 mg, 42%); Rf: 0.2 (hexane/EtOAc, 95:5); ¹H **NMR (700 MHz, CDCl₃)** δ = 8.54 (d, J = 8.3 Hz, 1H), 8.16 (bs, 1H), 7.67 (dt, J = 8.1, 1.7 Hz, 2H), 7.58 (dd, J = 8.0, 1.5 Hz, 1H), 7.44 (t, J = 7.0 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.35 (td, J = 7.7, 1.7 Hz, 1H), 7.04 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ = 165.6, 137.7,

135.6, 133.9, 132.6, 132.0, 129.8, 128.6, 127.9, 125.8, 122.2, 119.5, 113.8.

N-(2-bromophenyl)-4-(trifluoromethyl)benzamide (8h): ⁽²⁴⁾

Following the general procedure H using N-phenyl-4-(trifluoromethyl)benzamide (58 mg, 0.22 mmol,1 equiv.), BBr3 (0.26 mmol, 1.2 equiv., 1M in CH2Cl2), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2

.CF₃ equiv.), TBAB (0.48 mmol, 2.2 equiv.) and step iii) at 40 °C for 1.5 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as a off white solid (31 mg, 41%); Rf: 0.27 (hexane/EtOAc, 95:5); ¹H NMR (400 MHz,

CDCl₃) δ = 8.53 (dd, J = 8.3, 1.6 Hz, 1H), 8.46 (bs, 1H), 8.05 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.60 (dd, J = 8.1, 1.5 Hz, 1H), 7.40 (td, J = 7.8, 1.5 Hz, 1H), 7.06 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 164.1, 138.0, 135.5, 134.0 (q, J = 32.8 Hz), 132.5, 128.8, 127.7, 126.2 (q, J = 32.8 Hz), 128.8, 128.8, 127.7, 126.2 (q, J = 32.8 Hz), 128.8, 1 J = 3.7 Hz), 125.9, 123.7 (q, J = 272.6 Hz) 122.0, 114.0; ¹⁹F NMR (470 MHz, CDCl₃) δ = -63.03.

N-(2-bromophenyl)-3-nitrobenzamide (8i): ⁽²²⁾

Following the general procedure H using 3-nitro-N-phenylbenzamide (53.4 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 85:15) and the desired product was obtained as an off white solid (57 mg, 81%); Rf: 0.17 (hexane/EtOAc, 90:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.78 (t, J = 2.0 Hz,

1H), 8.47 (dd, *J* = 8.1, 1.6 Hz, 2H), 8.44 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H), 8.26 (ddd, *J* = 7.8, 1.8, 1.0 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.60 (dd, J = 8.0, 1.4 Hz, 1H), 7.39 (ddd, J = 8.6, 7.5, 1.5 Hz, 1H), 7.07 $(ddd, J = 8.0, 7.4, 1.6 Hz, 1H); {}^{13}C{}^{1}H} NMR (101 MHz, CDCl_3) \delta = 163.0, 148.6, 136.3, 135.2, 133.0,$ 132.5, 130.4, 128.8, 126.8, 126.2, 122.4, 122.2, 114.3.

N-(2-bromophenyl)furan-2-carboxamide (8j):⁽²⁵⁾

Following the general procedure H using *N*-phenylfuran-2-carboxamide (41 mg, 0.22 mmol,1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as an off white solid (43 mg, 74%); **Rf:** 0.25 (hexane/EtOAc, 95:5); ¹**H NMR (400 MHz, CDCl₃)** δ = 8.71 (bs, 1H), 8.50 (dt, *J* = 8.3, 1.8 Hz, 1H), 7.57 (dq,

 $J = 8.0, 1.4 \text{ Hz}, 2\text{H}, 7.39 - 7.31 \text{ (m, 1H)}, 7.29 - 7.24 \text{ (m, 1H)}, 7.00 \text{ (dd}, J = 7.9, 1.4 \text{ Hz}, 1\text{H}), 6.58 \text{ (dq}, J = 3.0, 1.6 \text{ Hz}, 1\text{H}); {}^{13}\text{C}\{^{1}\text{H}\} \text{ NMR (101 MHz, CDCl_3)} \delta = 156.0, 147.8, 144.8, 135.5, 132.5, 128.6, 125.4, 121.7, 115.8, 113.6, 112.8.$

N-(2-bromophenyl)thiophene-2-carboxamide (8k):⁽²⁶⁾

Following the general procedure H using *N*-phenylthiophene-2-carboxamide (44 mg, 0.22 mmol, 1 equiv.), BBr₃ (0.26 mmol, 1.2 equiv., 1M in CH₂Cl₂), at 40 °C for 16 h and Selectfluor (0.44 mmol, 2 equiv.),

TBAB (0.48 mmol, 2.2 equiv.) at 22 °C for 1 h. The crude product was purified by automated column chromatography (pentane/EtOAc, 94:6) and the desired product was obtained as an off white solid (46 mg, 75%); **Rf:** 0.27 (hexane/EtOAc, 95:5); ¹**H**

br 8k NMR (400 MHz, CDCl₃) δ = 8.48 (dd, J = 8.3, 1.6 Hz, 1H), 8.34 (bs, 1H), 7.68 (dd, J = 3.8, 1.2 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.36 (td, J = 7.9, 1.5 Hz, 1H), 7.16 (dd, J = 5.0, 3.7 Hz, 1H), 7.01 (td, J = 7.7, 1.6 Hz, 1H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ = 159.7, 139.2, 135.6, 132.4, 131.5, 128.7, 128.7, 128.1, 125.4, 121.7, 113.6.

5. Applications

Synthesis of 3,3-dimethyl-3,4-dihydroquinolin-2(1H)-one (9a)⁽²⁷⁾

To a 10 mL seal tube, Pd(OAc)₂ (4.5 mg, 0.02 mmol), P(*o*-tol)₃ (12.2 mg, 0.04 mmol), Cs₂CO₃ (130.3 mg, 0.40 mmol) were added respectively. Then PivOH (6.1 mg, 0.06 mmol, ~ 6.7 μ L) was added to the tube with a micro injector. A solution of N-(2-bromophenyl)pivalamide (51 mg, 0.20 mmol) in NMP (2.0 mL) was added by a syringe and the reaction was stirred at 140 °C for 48 hours. After the reaction was finished, the reaction mixture was cooled to room temperature and filtered through a celite pad using EtOAc as the eluent. The reaction mixture was concentrated under reduced pressure, and the resulting mixture was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as a beige color solid (43%).

Spectral data: ¹H NMR (700 MHz, CDCl₃) δ = 7.94 (bs, 1H), 7.17 (td, *J* = 7.6, 1.5 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 6.98 (td, *J* = 7.4, 1.2 Hz, 1H), 6.74 (dd, *J* = 7.9, 1.2 Hz, 1H), 2.80 (s, 2H), 1.21 (s, 6H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ = 176.7, 137.0, 128.6, 127.5, 123.5, 123.1, 114.7, 40.4, 37.5, 24.5.

Synthesis of methyl 11-oxo-5,11-dihydrobenzo[4,5]imidazo[1,2-*b*]isoquinoline-6-carboxylate (9b)⁽²⁸⁾

To a 10 mL seal tube, 2-bromo-N-(2-bromophenyl)benzamide (35.5 mg, 0.1 mmol,) methyl cyanocacetate (0.12 mmol), Na₂CO₃ (0.2 mmol) were dissolved in 1 mL DMSO and the mixture was stirred at room temperature for 10 min. Then CuCl (0.01 mmol) was added, and the mixture was stirred at 100 °C for 12 h. After comforming with the TLC, the mixture was filtered, washed with ethyl acetate and concentrated under reduced pressure, and the resulting mixture was purified by automated column chromatography (pentane/EtOAc, 80:20) and the desired product was obtained as a beige color solid (51%).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ = 11.25 (bs, 1H), 8.76 (dd, *J* = 15.1, 8.3 Hz, 2H), 8.57 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.72 (ddd, *J* = 8.6, 6.9, 1.6 Hz, 1H), 7.47 (t, *J* = 7.0 Hz, 1H), 7.42 - 7.33 (m, 3H),

4.06 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ= 168.9, 160.2, 147.0, 135.5, 133.6, 131.0, 128.3, 128.0, 126.6, 124.6, 123.5, 122.9, 119.5, 117.3, 110.2, 82.6, 51.8.

Synthesis of 14*H*-dibenzo[4,5:6,7]azepino[2,1-*a*]isoindol-14-one (9c)⁽²⁹⁾

i) Phenylacetylene (2 equiv.), K₂CO₃ (2 equiv.), Cu(OAc)₂⋅H₂O (30 mol-%) DMF (1.5 mL), 130 °C, 1 h
ii) Pd(OAc)₂(5 mol-%), PPh₃ (10 mol-%)

 K_2CO_3 (2 equiv.), 130 °C, 2 h

To a oven-dried 10 mL round-bottomed flask, 2-bromo-N-(2-bromophenyl)benzamide (35.5 mg, 0.1 mmol,) phenylacetylene (22 μ l, 0.2 mmol), Cu(OAc)₂·H₂O (6.0 mg, 30 mol-%), K₂CO₃ (27.6 mg, 0.2 mmol) were dissolved in 1 mL DMF and the mixture was stirred at 130 °C for 1 h. Then Pd(OAc)₂ (1.1 mg, 5 mol-%) and PPh₃ (2.6 mg, 10 mol-%) were added to the reaction mixture at ambient temperature and stirring was continued while heating at 130 °C for another 2 h. After 2 h, the reaction mixture was cooled to room temperature, diluted with water (10 mL) and extracted with EtOAc (2 × 10 mL). The combined organic layers were dried with anhydrous sodium sulfate and concentrated under reduced pressure. The resulting mixture was purified by automated column chromatography (pentane/EtOAc, 85:15) and the desired product was obtained as a off white solid (22.5 mg, 76%).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.6 Hz, 1H), 7.77 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 8.1 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.39 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.35 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.29 (tt, *J* = 7.1, 2.1 Hz, 3H), 7.17 (dd, *J* = 7.2, 1.9 Hz, 1H), 6.58 (s, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 168.9, 144.6, 140.6, 138.4, 137.0, 135.7, 133.5, 132.9, 132.9, 130.5, 129.9, 129.3, 128.9, 128.6, 128.5, 128.2, 127.1, 124.0, 123.9, 118.6, 112.3.

Synthesis of (9*H*-carbazol-9-yl)(phenyl)methanone (9d)⁽³⁰⁾

Pd(dba)₂ (5 mol%), DPPF (10 mol%), 2-(Trimethylsilyl)phenyl trifluoromethane sulfonate (2 equiv.), CsF (5 equiv.)

CH₃CN, 110 °C, 24 h

9c 76%

To the seal tube, N-(2-iodophenyl)benzamide (7a) (80.78 mg, 0.25 mmol, 1 equiv.), 2-(Trimethylsilyl) phenyltrifluoromethane sulfonate (121.4 μ l, 0.5 mmol, 2.0 equiv.), CsF (190 mg, 1.25 mmol, 5.0 equiv.), Pd(dba)₂ (7.19 mg, 5 mol %), dppf (14 mg, 10 mol %), 8 mL of toluene, and 2 mL of MeCN were taken under nitrogen. The reaction mixture was stirred, first, at room temperature for 1 min and then heated to 110 °C for 24 h. The mixture was allowed to cool to room temperature, diluted with ethyl acetate, washed

with brine, dried over anhydrous MgSO4, and concentrated under reduced pressure. The resulting mixture was purified by automated column chromatography (pentane/EtOAc, 90:10) and the desired product was obtained as a beige color solid (50%).

Spectral data: ¹**H NMR (700 MHz, CDCl₃) δ**= 8.02 (dd, *J* = 7.4, 1.9 Hz, 2H), 7.73 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.67 – 7.64 (m, 1H), 7.55 – 7.51 (m, 4H), 7.36 (td, *J* = 7.4, 1.2 Hz, 2H), 7.33 (td, *J* = 7.7, 1.5 Hz, 2H); ¹³C{¹H} **NMR (176 MHz, CDCl₃) δ**= 169.8, 139.3, 135.9, 132.5, 129.2, 129.0, 126.9, 126.2, 123.5, 120.0, 115.9.

Synthesis of 1-phenyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (9e)⁽³¹⁾

To a 5 mL seal tube, N-(2-iodophenyl)benzamide (51 mg, 0.15 mmol), CuI (33.6 mg, 0.17 mmol), and DMF (1 mL) were added respectively. Then the reaction was stirred at 140 °C for 16 h. After the reaction was finished, the reaction mixture was cooled to room temperature and filtered through a celite pad using EtOAc as the eluent. The reaction mixture was concentrated under reduced pressure, and the resulting mixture was purified by automated column chromatography (pentane/EtOAc, 95:5) and the desired product was obtained as a an off white solid (65%).

Spectral data: ¹H NMR (700 MHz, CDCl₃) δ = 8.27 (dd, J = 7.2, 2.5 Hz, 2H), 7.79 (dd, J = 6.1, 3.2 Hz, 1H), 7.59 (d, J = 9.2 Hz, 1H), 7.53 (d, J = 6.8 Hz, 3H), 7.36 (dd, J = 6.0, 3.1 Hz, 2H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ = 163.2, 150.9, 142.2, 131.7, 129.1, 127.8, 127.3, 125.3, 124.7, 120.2, 110.7.

Synthesis of 5-chloro-2-(p-tolyl)benzo[d]oxazole (9f)⁽³¹⁾

To a 5 mL seal tube, N-(5-chloro-2-iodophenyl)-4-methylbenzamide (56 mg, 0.15 mmol), CuI (33.6 mg, 0.17 mmol), and DMF (1 mL) were added respectively. Then the reaction was stirred at 140 °C for 16 h. After the reaction was finished, the reaction mixture was cooled to room temperature and filtered through a celite pad using EtOAc as the eluent. The reaction mixture was concentrated under reduced pressure, and the resulting mixture was purified by automated column chromatography (pentane/EtOAc, 95:5) and the desired product was obtained as a an off white solid (70%).
Spectral data:⁽³²⁾ ¹H NMR (400 MHz, CDCl₃) δ = 8.10 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 2.1 Hz, 1H), 7.46 (dd, J = 8.6, 1.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.29 (ddd, J = 8.6, 2.1, 0.8 Hz, 1H), 2.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 164.7, 149.4, 143.4, 142.7, 130.0, 129.8, 127.8, 125.2, 124.0, 119.9, 111.3, 21.8.

Synthesis of 1-phenyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (9g)⁽³³⁾

To a microwave vial, 1-(2-iodophenyl)-3-phenylurea (34 mg, 1.0 mmol), CuI (3.83 mg, 0.020 mmol), and DBU (29.85 μ l, 0.2 mmol) were added respectively. DMSO (0.2 mL) was added by a syringe and the reaction was stirred at 120 °C for 20 min under microwave irradiation. After the reaction was finished, the reaction mixture was cooled to room temperature and filtered through a celite pad using EtOAc as the eluent. mixture was purified by column chromatography using (pentane/EtOAc, 70:30) as the eluent. The reaction mixture was concentrated under reduced pressure, and the resulting mixture was purified by automated column chromatography (pentane/EtOAc, 70:30) and the desired product was obtained as a an off white solid (80%).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ = 10.54 (bs, 1H), 7.61 – 7.54 (m, 4H), 7.45 (dt, *J* = 5.1, 3.4 Hz, 1H), 7.17 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.13 – 7.08 (m, 1H), 7.06 (dd, *J* = 4.1, 0.9 Hz, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 155.3, 134.5, 130.6, 129.8, 128.2, 128.1, 126.4, 122.4, 121.6, 110.2, 109.0.

Synthesis of 5-methyl-1-morpholino-7,7-diphenyl-5,7-dihydro-6*H*-dibenzo[*b*,*d*]azepin-6-one (9h)⁽³⁴⁾

First step: In a 5 mL round bottom flask, *N*-(2-iodophenyl)-2,2,2-triphenylacetamide (36.36 mg, 0.01 mmol) was stirred in 2 mL dry DMF at 0 °C. Sodium hydride, 60% dispersion in mineral oil (6mg, 1.5 equiv.) was added followed by iodomethane (9.3 μ l, 1.5 equiv.) five min. later and the reaction was stirred at room temperature for 16 h. The reaction was quenched with cold brine and extracted three times with

EtOAc. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting mixture was purified by filteration through silica.

Second step: Vials and stir bars were dried in 110 °C oven overnight prior to use. Two dry 5 mL, screwtop V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), one equipped with a stir bar and one without were cooled to room temperature while under argon flow. Norbornene (41.43 mg, 0.44 mmol) was weighed in the vial without stir bar. Cesium carbonate (97.76 mg, 0.3 mmol), *N*-(2-iodophenyl)-*N*methyl-2,2,2-triphenylacetamide from first step, morpholinobenzoate (24.87 mg, 0.12 mmol) and tetrakis(triphenylphosphine)palladium(0) (11.56 mg, 0.01 mmol) were added in that order to the vial with stir bar. 2.2 mL of freshly distilled toluene were added via syringe to the norbornene-containing vial and the latter was sonicated for 15 s to make sure all the norbornene was fully dissolved. 2 mL of the resulting solution were transferred via syringe to the other vial. The vial was equipped with a Teflon-sealed cap and immediately stirred at 100 °C for 16 h. The reaction was passed through a silica pad washing with ethyl acetate. The filtrate was concentrated under reduced pressure and the resulting residue and the resulting mixture was purified by automated column chromatography (pentane/EtOAcc, 85:15) and the desired product was obtained as a an off white solid (19 mg, 41%).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ = 8.23 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.37 – 7.24 (m, 7H), 7.06 – 6.95 (m, 4H), 6.92 – 6.85 (m, 2H), 6.70 (dd, *J* = 7.5, 2.5 Hz, 1H), 6.67 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.50 (dd, *J* = 8.1, 1.1 Hz, 1H), 3.62 – 3.53 (m, 4H), 3.40 (s, 3H), 2.65 (m, 2H), 2.53 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ = 173.6, 149.0, 142.9, 142.8, 141.6, 139.4, 134.2, 131.5, 130.0, 128.78 128.7, 128.5, 128.1, 127.6, 127.4, 127.4, 126.9, 126.9, 126.5, 126.1, 116.5, 115.0, 67.3, 66.8, 51.0, 39.2.

6. Synthesis of difluoro boracycle (4a)

Step i) To a dry 5 mL, screw-top V-Vial, (Sigma Aldrich, Product code-Z115150-12EA), equipped with a rubber septum, stir bar, the amide derivative (0.22 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (0.5 mL) under a nitrogen atmosphere was added dropwise BBr₃ (0.26 mmol, 1.2 equiv., 1M solution in CH_2Cl_2). After the complete addition of BBr₃, the reaction mixture was stirred at 22 °C for 2 h after which the solvent was removed under reduced pressure.

Step ii) Simultaneously, Selectfluor (0.44 mmol, 2 equiv.), and KI (0.48 mmol, 2.2 equiv.), were dissolved in CH₃CN (1 mL) and water (1 mL) in a 3 mL, screw-top V-vial and the reaction mixture stirred at 22 °C for 2 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (0.5 mL). To this mixture, the solution from step ii) was added dropwise at 22 °C, and the reaction mixture was heated at 22 °C for 2.5 h. The reaction was quenched with saturated sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (10 mL) and H₂O (10 mL). The aqueous layer was washed with EtOAc (10 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc, 80:20) to afford an off white solid (20 mg, 40%).

Spectral data: Rf: 0.41 (hexane/EtOAc, 50:50); M.P: 235-237 °C; ¹H NMR (600 MHz, dmso-d⁶) δ = 11.75 (s, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.37 (td, J = 7.6, 1.6 Hz, 1H), 7.28 (td, J = 7.3, 1.1 Hz, 1H), 1.37 (s, 9H); ¹³C{¹H} NMR (151 MHz, dmso-d⁶) δ = 178.0, 136.5, 130.6, 128.2, 127.0, 117.0, 38.5, 26.6; ¹⁹F NMR (564 MHz, dmso-d⁶) δ = -129.60 (d, J = 40.8 Hz); ¹¹B NMR (193 MHz, dmso-d⁶) δ = 2.38; HRMS (ESI) (m/z): calculated for [M-H]⁻ C₁₁H₁₄BF₂NO⁺ 224.1058; found 224.1069.

15 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -1 f1 (ppm)

7. Gram scale experiment

Synthesis of N-(2-iodophenyl)pivalamide (3a)

Step i) To a dry 50 mL, seal tube equipped with a rubber septum, stir bar, under a nitrogen atmosphere, the N-phenylpivalamide (1g, 5.64 mmol, 1 equiv.), was taken in anhydrous CH₂Cl₂ (10 mL). To this mixture, BBr₃ (6.77 mL, 6.77 mmol, 1.2 equiv., 1M solution in CH₂Cl₂), was added dropwise. After the complete addition of BBr₃, the reaction mixture was stirred at 22 °C for 2 h. The solvent was evaporated under reduced pressure.

In the meantime, step ii) was set up in a 25 mL round bottom flask, in which Selectfluor (11.28 mmol, 2 equiv.), and KI (12.41 mmol, 2.2 equiv.), were dissolved in CH₃CN (15 mL) and water (15 mL) and the reaction mixture stirred at 22 °C for 2 h.

Step iii) The crude residue from step i) was dissolved in CH₃CN (5 mL). To this residual mixture, step ii) solution was added dropwise at 22 °C, and the reaction mixture was heated at 60 °C for 5 h. The reaction was quenched with sat. sodium thiosulfite solution at room temperature and the crude mixture was dissolved in EtOAc (50 mL) and H₂O (50 mL). The aqueous layer was washed with EtOAc (2 x 30 mL), and the combined organic layer was washed with brine, dried over sodium sulfate, filtered, and evaporated *in vacuo* to afford the crude product, which was purified using automated column chromatography (pentane/EtOAc, 90:10).

8. Computational details

Neutral water

File: jag_H2O_opt_wB97X-D_LACVPs/jag_H2O_opt_wB97X-D_LACVPs.out; structure: final Method: DFT(wb97x-d)/lacvp*; Solvent: water Total Quantum Mechanical Energy: -76.4227396101 au Solution phase energy: -76.39989734098 au Gibbs free energy: -76.396899 au Low frequencies 1788.02 3740.03 3832.78 01 -0.0671053953 -0.0078280998 0.000000000 H2 0.6204661612 -0.6917206505 0.0000000000 0.4445451591 H3 0.8159582756 0.0000000000 Iodine carrier model, cationic I-NMe₃ File: jag_I-NMe3_cat_opt_wB97X-D_LACVPs/jag_I-NMe3_cat_opt_wB97X-D_LACVPs.out; structure: final Method: DFT(wb97x-d)/lacvp*; Solvent: water Total Quantum Mechanical Energy: -185.727034921 au Solution phase energy: -185.63252451833 au

Gibbs fi	ree energy: -185.53	36758 au	
Low fre	quencies 264.04 2	77.11 279.00 279.	34 343.95 344.13
I1	0.0000000000	-0.0000000000	-0.8088211765
N2	0.0000000000	-0.0000000000	1.3504658552
C3	1.2328461702	-0.7117840682	1.8334430317
H4	1.2114464826	-0.6994289528	2.9286218295
Н5	1.2210115718	-1.7410717142	1.4674808863
H6	2.1183181202	-0.1868911824	1.4674808863
C7	-0.0000000000	1.4235681365	1.8334430317
H8	0.0000000000	1.3988579056	2.9286218295
H9	0.8973065484	1.9279628966	1.4674808863
H10	-0.8973065484	1.9279628966	1.4674808863
C11	-1.2328461702	-0.7117840682	1.8334430317
H12	-1.2114464826	-0.6994289528	2.9286218295
H13	-2.1183181202	-0.1868911824	1.4674808863
H14	-1.2210115718	-1.7410717142	1.4674808863

Start: BF2 intermediate

3.3116278109

H11

File: jag 4a opt wB97X-D LACVPs/jag 4a opt wB97X-D LACVPs.out; structure: final Method: DFT(wb97x-d)/lacvp*; Solvent: water Total Quantum Mechanical Energy: -782.11089357 au Solution phase energy: -782.07289788573 au Gibbs free energy: -781.865946 au Low frequencies 69.15 90.82 116.59 143.44 172.03 225.67 C1 1.1510942645 0.8603169971 0.000000000 C2 -0.0543119976 1.5652931794 0.0000000000 C3 0.0334781344 2.9627583604 0.0000000000 C4 1.2604108676 3.6194696071 0.0000000000 C5 2.4446883042 2.8791711697 0.000000000 C6 2.3967027360 1.4905753926 0.000000000 **B**7 -1.4509192202 0.00000000000.7847490810 H8 -0.8835310586 3.5484542037 0.000000000 H9 1.2984764132 4.7053985341 0.0000000000 H10 3.4063404288 3.3841854346 0.0000000000

0.9018917037

0.0000000000

F12	-2.2251590689	0.9947894716	-1.1431864940
F13	-2.2251590689	0.9947894716	1.1431864940
H14	2.0124705299	-1.0440504475	0.0000000000
N15	1.1177359269	-0.5589304159	0.0000000000
C16	0.0055569309	-1.2810882744	0.0000000000
O17	-1.1437922544	-0.7415078708	0.0000000000
C18	0.0976657978	-2.7997656947	0.0000000000
C19	-1.3151583435	-3.3991818468	0.0000000000
H20	-1.2360559114	-4.4915416921	0.0000000000
H21	-1.8791568931	-3.0935804786	0.8867922026
H22	-1.8791568931	-3.0935804786	-0.8867922026
C23	0.8527552738	-3.2478332305	-1.2682858923
H24	0.8832274585	-4.3423982269	-1.2963401420
H25	0.3436701627	-2.8940971808	-2.1720170790
H26	1.8860081306	-2.8830322758	-1.2872023366
C27	0.8527552738	-3.2478332305	1.2682858923
H28	0.8832274585	-4.3423982269	1.2963401420
H29	1.8860081306	-2.8830322758	1.2872023366
H30	0.3436701627	-2.8940971808	2.1720170790

pi complex

File: jag_4a_I_NMe3_ipso_pi_opt_wB97X-D_LACVPs_2/jag_4a_I_NMe3_ipso_pi_opt_wB97X-

D_LACVPs_2.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -967.834458377 au

Solution phase energy: -967.71934920983 au

Gibbs free energy: -967.394383 au

Low frequencies 55.02 59.44 63.85 67.47 73.41 86.98

I1	2.6295550000	-2.0969280000	-0.4513360000
C2	-1.3827340000	-3.5599760000	-2.3426780000
C3	-1.5755960000	-2.7475900000	-1.2244350000
C4	-0.7733080000	-3.0121310000	-0.1088030000
C5	0.1707820000	-4.0427290000	-0.1119290000
C6	0.3378490000	-4.8309340000	-1.2605840000
C7	-0.4379430000	-4.5898970000	-2.3845050000

B8	-2.7028770000	-1.6087640000	-1.2360800000
H9	-0.9033940000	-2.4155300000	0.7918780000
H10	0.7188260000	-4.2842080000	0.7967080000
H11	1.0637110000	-5.6391040000	-1.2664070000
H12	-0.3230900000	-5.1963700000	-3.2805860000
F13	-2.2182750000	-0.3242300000	-0.9949050000
F14	-3.7818690000	-1.8795930000	-0.3909970000
H15	-2.0293170000	-3.9582380000	-4.2875700000
N16	-2.1763230000	-3.3376060000	-3.4959380000
C17	-3.0701760000	-2.3676250000	-3.6141330000
O18	-3.3094000000	-1.5554530000	-2.6637330000
C19	-3.8452950000	-2.1626170000	-4.9038920000
C20	-5.3467780000	-2.1691070000	-4.5511610000
H21	-5.9272970000	-1.9860420000	-5.4621680000
H22	-5.6515340000	-3.1366570000	-4.1357200000
H23	-5.5854430000	-1.3864520000	-3.8248740000
C24	-3.4407100000	-0.7789190000	-5.4565590000
H25	-4.0074230000	-0.5810230000	-6.3732100000
H26	-3.6605670000	0.0133200000	-4.7344200000
H27	-2.3717250000	-0.7475800000	-5.6974260000
C28	-3.5484210000	-3.2494200000	-5.9449730000
H29	-4.1491150000	-3.0533810000	-6.8395120000
H30	-2.4952540000	-3.2481290000	-6.2536490000
H31	-3.8172250000	-4.2483020000	-5.5787720000
N32	4.4817010000	-0.9434520000	-0.4832660000
C33	5.4843510000	-1.6211600000	0.4030570000
H34	6.4069460000	-1.0312640000	0.3698650000
H35	5.0971680000	-1.6546710000	1.4243650000
H36	5.6708710000	-2.6310240000	0.0296720000
C37	4.9949470000	-0.8868290000	-1.8911010000
H38	5.9246430000	-0.3075200000	-1.8806550000
H39	5.1898450000	-1.9022570000	-2.2443920000
H40	4.2533030000	-0.3950470000	-2.5250380000
C41	4.2040590000	0.4416950000	0.0208190000

H42	5.1486010000	0.9963070000	-0.0016450000	
H43	3.4709890000	0.9228790000	-0.6310150000	
H44	3.8279020000	0.3833900000	1.0449460000	
Backwa	rd QRC from Ips	o TS		
File:jag_	4a_I_NMe3_ipso_	_ts_wB97X-D_LA	CVPs_2/jag_4a_I_N	Me3_ipso_ts_wB97X-
D_LAC	VPs_2_bQRC.out;	structure: final		
Method:	DFT(wb97x-d)/la	cvp*; Solvent: wa	ter	
Total Qu	antum Mechanica	l Energy: -967.830)463668 au	
Solution	phase energy: -96	7.71434010982 au	l	
I1	1.1337528386	-0.8672721831	-0.0321604824	
C2	-1.5107885973	-3.9569003161	-2.4413450884	
C3	-2.1022532784	-2.9662505363	-1.6602791712	
C4	-1.6236289443	-2.8228832463	-0.3504269617	
C5	-0.5847076330	-3.6194343494	0.1380686376	
C6	0.0117957006	-4.5748811823	-0.6959199548	
C7	-0.4542284445	-4.7537181868	-1.9893092024	
B8	-3.2726195449	-2.0706086510	-2.2841636476	
H9	-2.0995732514	-2.0994064897	0.3090146730	
H10	-0.2669559922	-3.5305249891	1.1748594196	
H11	0.8209522949	-5.1961106813	-0.3227556785	
H12	-0.0246084075	-5.5179023182	-2.6338456877	
F13	-2.8329996194	-0.8458383380	-2.7933664037	
F14	-4.3610437305	-1.8807629906	-1.4377171021	
H15	-1.5709010434	-4.9131662486	-4.3003800261	
N16	-2.0510447340	-4.2245450606	-3.7267977308	
C17	-3.2047742655	-3.7370019351	-4.1608897973	
O18	-3.8369398850	-2.8414200889	-3.5117519190	
C19	-3.8486044049	-4.2448175113	-5.4404141594	
C20	-5.2415671483	-4.7916647681	-5.0582249848	
H21	-5.7490178434	-5.1380263034	-5.9656175514	
H22	-5.1567547145	-5.6380764683	-4.3664781320	
H23	-5.8564403406	-4.0174936070	-4.5895360458	
C24	-3.9987375438	-3.0428980969	-6.3947964911	
H25	-4.5059563283	-3.3718491545	-7.3085659773	

H26	-4.5918839181	-2.2464962848	-5.9349790820
H27	-3.0190914710	-2.6360023442	-6.6709506793
C28	-3.0251917984	-5.3525667339	-6.1110703124
H29	-3.5453378814	-5.6776335764	-7.0184172513
H30	-2.0302038083	-5.0008705106	-6.4123084723
H31	-2.9170388872	-6.2308434566	-5.4622230902
N32	2.5273154820	0.7831691375	0.2599304963
C33	2.1961173128	1.8847979746	-0.7055022948
H34	2.9112266542	2.6976351914	-0.5361986167
H35	2.2903335930	1.5100876306	-1.7277861633
H36	1.1783367059	2.2365336424	-0.5183562096
C37	2.3986748920	1.2812366127	1.6713049247
H38	3.1171314916	2.0985805312	1.7994917919
H39	1.3822580071	1.6492216849	1.8336093516
H40	2.6285683329	0.4685452824	2.3645161472
C41	3.9218042542	0.2811279969	0.0148440097
H42	4.6094384884	1.1204350061	0.1679134178
H43	4.1466260954	-0.5205181715	0.7230213901
H44	3.9980687928	-0.0828986504	-1.0126087879

Ipso TS

File:jag_4a_I_NMe3_ipso_ts_wB97X-D_LACVPs_2/jag_4a_I_NMe3_ipso_ts_wB97X-

D_LACVPs_2.out; structure: final

```
Method: DFT(wb97x-d)/lacvp*; Solvent: water
```

Total Quantum Mechanical Energy: -967.777194174 au

Solution phase energy: -967.69170367785 au

Gibbs free energy: -967.369279 au

Low frequencies -58.13 86.70 92.74 95.58 99.32 106.19

I1	0.3234206804	-1.4251059816	-1.1419906205
C2	-1.0116165369	-4.2309949889	-1.7275416952
C3	-0.7672394967	-3.2999129934	-0.6818253330
C4	-0.5587704960	-3.8330698077	0.6167264431
C5	-0.6485562157	-5.1947146973	0.8556758370
C6	-0.8932403970	-6.0706251357	-0.2055007625
C7	-1.0912193464	-5.5930346656	-1.5038165373

B8	-2.6148875424	-2.7061760770	-0.6270697775
H9	-0.3528676082	-3.1508680756	1.4381335145
H10	-0.5193936702	-5.5797018679	1.8626941005
H11	-0.9619033550	-7.1386262333	-0.0179720699
H12	-1.3415696934	-6.2688395719	-2.3171739179
F13	-2.6634672011	-1.6568522838	0.2129219411
F14	-3.3850120681	-3.7655547880	-0.2974398419
H15	-0.9888552650	-4.1311252002	-3.8425107480
N16	-1.3833460038	-3.7089978777	-3.0008935673
C17	-2.3048362924	-2.7654732205	-3.0898722072
O18	-2.8280326137	-2.2716201447	-2.0256683471
C19	-2.7612212462	-2.1767844768	-4.4021744954
C20	-4.2992920580	-2.0701036124	-4.3688921381
H21	-4.6378845306	-1.6328113140	-5.3139877077
H22	-4.7635624683	-3.0563819257	-4.2576416212
H23	-4.6375579818	-1.4283657094	-3.5502928776
C24	-2.1387485601	-0.7618465740	-4.4853847247
H25	-2.4899658012	-0.2841722768	-5.4064966307
H26	-2.4420339163	-0.1428154799	-3.6349567015
H27	-1.0446616652	-0.8110260946	-4.5174935849
C28	-2.3084310300	-3.0277383896	-5.5938635759
H29	-2.6966823327	-2.5751580062	-6.5118465765
H30	-1.2156188008	-3.0627047223	-5.6862433364
H31	-2.7009854527	-4.0495688380	-5.5295894541
N32	1.6969723212	0.7930918066	-1.7083875137
C33	2.7944378689	0.4365601202	-2.6097872028
H34	3.3904168148	1.3218847553	-2.8867028737
H35	3.4493456877	-0.2905345011	-2.1202818643
H36	2.3892786559	-0.0132336446	-3.5217434492
C37	0.7828848519	1.7386485277	-2.3529138238
H38	1.2945187094	2.6836261867	-2.5998843573
H39	0.3923564728	1.3023907836	-3.2781342463
H40	-0.0560699359	1.9568001410	-1.6835772729
C41	2.2124529662	1.3460865077	-0.4533771933

H42	2.7924250636	2.2670012207	-0.6305026030
H43	1.3772472954	1.5794032940	0.2155298714
H44	2.8603184233	0.6106904163	0.0347616669
Forwar	d QRC from ipso	TS	
File:jag	_4a_I_NMe3_ipso_	ts_wB97X-D_LA	CVPs_2/jag_4a_I_NMe3_ipso_ts_wB97X-
D_LAC	VPs_2_fQRC.out;	structure: final	
Method	: DFT(wb97x-d)/la	cvp*; Solvent: wat	ter
Total Qu	uantum Mechanical	l Energy: -967.789	9836689 au
Solution	h phase energy: -96	7.70339201333 au	I
I1	0.1262890199	-1.3223825077	-0.6954446975
C2	-1.2909010480	-4.0837020743	-1.0583320001
C3	-0.9558647591	-3.0736524093	-0.1484100627
C4	-1.3963648383	-3.2047590462	1.1699828288
C5	-2.1391318258	-4.3153488098	1.5633802365
C6	-2.4553198048	-5.3171003957	0.6476142664
C7	-2.0279993469	-5.2022573138	-0.6698779298
B8	-3.5437408371	-2.5640454957	-2.2643841348
H9	-1.1625760015	-2.4313427250	1.8965082893
H10	-2.4754990867	-4.3912703984	2.5938487442
H11	-3.0406355044	-6.1789534648	0.9526675711
H12	-2.2729997010	-5.9621584171	-1.4074381914
F13	-4.0704845629	-1.5648549237	-1.6055651793
F14	-4.1577788108	-3.7176596992	-2.3990201114
H15	-0.1646869670	-4.6741406319	-2.7570326385
N16	-0.8865081860	-4.0164863701	-2.4452323139
C17	-1.4260065139	-3.2055312350	-3.3077031243
O18	-2.3288777350	-2.3466110586	-2.8811948947
C19	-1.0518089276	-3.0976098869	-4.7572462390
C20	-2.3640067986	-3.2133821130	-5.5694498050
H21	-2.1126658512	-3.1669969566	-6.6341644061
H22	-2.8732153896	-4.1648170658	-5.3763217641
H23	-3.0494792391	-2.3880406855	-5.3489827033
C24	-0.4287888600	-1.6945647544	-4.9619829257
H25	-0.2028531209	-1.5750943204	-6.0268979724

H26	-1.1204473581	-0.9004493229	-4.6634753477	
H27	0.5031869238	-1.5890067662	-4.3960695695	
C28	-0.0621851717	-4.1935619347	-5.1634293779	
H29	0.1645183201	-4.0817834729	-6.2285621533	
H30	0.8843188809	-4.1128549833	-4.6146018085	
H31	-0.4866944665	-5.1936829921	-5.0128724317	
N32	1.3744037986	1.2556850955	-1.4035919549	
C33	2.6349033230	1.3852590305	-0.6815776540	
H34	3.1198984824	2.3625839354	-0.8624541282	
H35	2.4566042307	1.2815188061	0.3941469386	
H36	3.3234280126	0.5939568478	-0.9971499393	
C37	1.5844912572	1.3327357768	-2.8444202995	
H38	2.0254812659	2.2997969302	-3.1499435079	
H39	2.2572995371	0.5299856809	-3.1654160622	
H40	0.6271620072	1.2133509903	-3.3639457695	
C41	0.4262497906	2.2741996875	-0.9639572184	
H42	0.7927146905	3.2978207309	-1.1658691816	
H43	-0.5291032241	2.1392387166	-1.4827418147	
H44	0.2516748420	2.1775366078	0.1132530824	
Additio	n product with ca	rrier model (NMe	e3) still attached	

File:jag_4a_I_NMe3_ipsoprod_opt_wB97X-D_LACVPs_2/jag_4a_I_NMe3_ipsoprod_opt_wB97X-

D_LACVPs_2.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -967.787831068 au

Solution phase energy: -967.70516735607 au

Gibbs free energy: -967.383991 au

Low frequencies 38.42 66.63 87.37 88.32 94.88 98.08

I1	-2.1326026271	-1.3469734164	-0.4783084919
C2	-1.0362011672	-4.0071797712	-1.6976043873
C3	-1.1917296645	-3.2574278316	-0.5268191165
C4	-0.7177906888	-3.8011119708	0.6687653562
C5	-0.1024299668	-5.0508277459	0.6868852385
C6	0.0534231977	-5.7794429954	-0.4900052199
C7	-0.4169915101	-5.2573622864	-1.6889251232

B8	-3.8335729330	-5.0862481858	-1.6765719617
H9	-0.8316891310	-3.2470317042	1.5965565091
H10	0.2546410251	-5.4544281135	1.6304231718
H11	0.5294026980	-6.7551987008	-0.4767060423
H12	-0.3240937974	-5.8164889038	-2.6164274497
F13	-4.5237667208	-5.0947913795	-0.5652339245
F14	-3.3467701836	-6.1846593297	-2.2113756798
H15	-0.8641403862	-3.2380350374	-3.6727404547
N16	-1.5454038849	-3.5417724208	-2.9699084750
C17	-2.8134335599	-3.5357002395	-3.2602240942
O18	-3.6686919956	-3.8744715183	-2.3154503785
C19	-3.4110640778	-3.1105364564	-4.5697248940
C20	-4.3309140169	-4.2647542692	-5.0370198442
H21	-4.7534971748	-3.9923902895	-6.0099134004
H22	-3.7750247600	-5.2025854426	-5.1547266740
H23	-5.1637791761	-4.4247870391	-4.3434705478
C24	-4.2624695438	-1.8473608313	-4.2946917130
H25	-4.7593524934	-1.5628831089	-5.2283621502
H26	-5.0306144504	-2.0374794025	-3.5385952812
H27	-3.6359214962	-1.0115100893	-3.9666436618
C28	-2.3285185036	-2.8197777224	-5.6136676487
H29	-2.8157768720	-2.5327715415	-6.5510416384
H30	-1.6819578167	-1.9872319623	-5.3099646109
H31	-1.7119791409	-3.7049044370	-5.8133057797
N32	-3.5135068788	1.1949901103	-0.2962275679
C33	-4.8296935573	0.9322729541	0.2771916704
H34	-5.4272737103	1.8555999623	0.3879571244
H35	-5.3807545226	0.2373358973	-0.3662887395
H36	-4.7171821208	0.4722770742	1.2647605844
C37	-2.7315386839	2.0707732168	0.5710401303
H38	-3.2041987808	3.0625005811	0.6979773093
H39	-2.6230655147	1.6098547002	1.5595264825
H40	-1.7329177324	2.2156320262	0.1441004925
C41	-3.6316566928	1.7585629347	-1.6362094574

H42	-4.1732273798	2.7221690272	-1.6391089665
H43	-2.6340157943	1.9210022146	-2.0589012805
H44	-4.1703066479	1.0581842140	-2.2840375783
Carrie	r model, NMe3		
File: jag	g_Me3N_opt_wB97	/X-D_LACVPs/jag	g_Me3N_opt_wB97X-D_LACVPs.out; structure: final
Method	l: DFT(wb97x-d)/la	cvp*; Solvent: wat	ter
Total Q	uantum Mechanica	l Energy: -174.427	/376604 au
Solution	n phase energy: -17	4.42152553246 au	
Gibbs f	ree energy: -174.32	5895 au	
Low fre	equencies 285.38 31	1.84 311.95 405.3	1 459.36 459.53
N32	3.9888759706	-1.3795094237	0.0357222146
C33	4.3577015380	-1.2522507690	-1.3679373686
H34	5.3418008468	-0.7619685192	-1.5070838302
H35	4.4045237851	-2.2428961783	-1.8346071504
H36	3.6059351739	-0.6587693742	-1.9007975269
C37	3.8828929321	-0.0664505707	0.6580120112
H38	4.8401418073	0.4917420098	0.6410378724
H39	3.1309836062	0.5363444632	0.1358764047
H40	3.5707049282	-0.1708533198	1.7034812828
C41	4.9555621142	-2.2062036265	0.7458898489
H42	5.9766568838	-1.7755171301	0.7319438815
H43	4.6521885201	-2.3224373346	1.7927099296
H44	5.0024109103	-3.2023756492	0.2911975427

Addition product with carrier model (NMe₃) dissociated

 File:
 jag_4a_I_ipsoprod_opt_wB97X-D_LACVPs/jag_4a_I_ipsoprod_opt_wB97X-D_LACVPs.out;

 structure:
 final

 Method:
 DFT(wb97x-d)/lacvp*; Solvent: water

 Total Quantum Mechanical Energy:
 -793.360381789 au

 Solution phase energy:
 -793.27462612311 au

 Gibbs free energy:
 -793.071175 au

 Low frequencies
 44.33
 74.64
 91.10
 92.25
 105.80
 120.35

 I1
 -1.6844790432
 -1.1789344053
 -0.7724360300
 C2
 -1.1415614346
 -4.0827096026
 -1.6682916934

C3 -1.0881571022 -3.1978044197 -0.5864466263

C4	-0.6276826119	-3.6543904512	0.6453445102
C5	-0.2159490406	-4.9783718127	0.7851800656
C6	-0.2504248615	-5.8487855893	-0.3005628302
C7	-0.7168175614	-5.4021411630	-1.5339799566
B8	-4.0401408016	-5.0520806464	-1.5303949458
Н9	-0.5918244537	-2.9838657625	1.4980222878
H10	0.1334016018	-5.3237789751	1.7543337210
H11	0.0725711193	-6.8789931101	-0.1883357347
H12	-0.7692503103	-6.0696371092	-2.3904028201
F13	-4.6894223873	-5.0415635463	-0.3962225096
F14	-3.6793115151	-6.1666434752	-2.1263961919
H15	-1.0294392343	-3.4490273368	-3.6990348711
N16	-1.6847228857	-3.6701048586	-2.9415959252
C17	-2.9681066650	-3.5787526594	-3.1408204310
O18	-3.7645624369	-3.8340761986	-2.1168914733
C19	-3.6354737891	-3.1401328631	-4.4096957530
C20	-4.5347932551	-4.3174140476	-4.8641690390
H21	-5.0087085288	-4.0356278174	-5.8100415793
H22	-3.9502990170	-5.2296492830	-5.0283701077
H23	-5.3320459857	-4.5238298714	-4.1411734332
C24	-4.5191640508	-1.9126211021	-4.0716538377
H25	-5.0583393727	-1.6260504340	-4.9814135347
H26	-5.2541274200	-2.1471063143	-3.2948468889
H27	-3.9149193081	-1.0586363925	-3.7453233508
C28	-2.6088474150	-2.7890128445	-5.4898016655
H29	-3.1451120141	-2.4732373125	-6.3902306655
H30	-1.9652538462	-1.9572617230	-5.1780105978
H31	-1.9877359242	-3.6527289508	-5.7564064373

Addition product with water added to B

File:jag_4a_I_ipsoprod_H2O_opt_wB97X-D_LACVPs/jag_4a_I_ipsoprod_H2O_opt_wB97X-

D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -869.818555404 au

Solution phase energy: -869.72765128785 au

Gibbs f	ree energy: -869.49	6955 au	
Low fre	equencies 67.24 81.	97 88.47 110.23 1	22.72 130.74
I1	-2.0948944161	-1.0281433612	-0.5943410190
C2	-1.1065512001	-3.0078466345	-2.7336419276
C3	-0.7324164995	-2.3100842400	-1.5842841924
C4	0.5642204105	-2.4306633956	-1.0935458361
C5	1.4830704462	-3.2366243848	-1.7623847597
C6	1.1126279449	-3.9241098785	-2.9153409638
C7	-0.1857332537	-3.8106054279	-3.4013108230
B8	-4.3064246561	-5.0254703056	-1.0326801989
H9	0.8643442860	-1.8905909457	-0.2016185498
H10	2.4959247086	-3.3160843689	-1.3778119404
H11	1.8330581939	-4.5435766735	-3.4407225417
H12	-0.4957390787	-4.3295253021	-4.3049944520
F13	-4.8668648974	-4.1655450421	-0.1433286652
F14	-5.1563222468	-5.8547679251	-1.7006618603
H15	-2.4516107022	-2.1921505547	-4.0952632625
N16	-2.4048763690	-2.8412385572	-3.3119473956
C17	-3.5080284613	-3.4527145731	-2.9226319845
O18	-3.3754520379	-4.2966315370	-1.9568474914
C19	-4.7982457175	-3.1432281675	-3.6872434080
C20	-5.1064093612	-4.3694673825	-4.5766314101
H21	-6.0218417463	-4.1613601995	-5.1418378131
H22	-4.2960100069	-4.5459423746	-5.2935264939
H23	-5.2611653193	-5.2720182096	-3.9824944545
C24	-5.9637043036	-2.8587912067	-2.7191131457
H25	-6.8182439740	-2.5195583721	-3.3148469561
H26	-6.2772332698	-3.7475528044	-2.1713901909
H27	-5.7126916113	-2.0660431100	-2.0058097760
C28	-4.6253940791	-1.9095980935	-4.5983156805
H29	-5.5842227243	-1.7100185269	-5.0871234794
H30	-4.3511987353	-1.0130286949	-4.0296938593
H31	-3.8957506940	-2.0691270467	-5.4027327118
H32	-3.6414549385	-6.9428430616	-0.1841772539

033	-3.3657121583	-5.9974165788	-0.1811430227
H34	-3.2436130111	-5.7532970265	0.7644470569
Product	w. boron moiety	dissociated (neut	ral)
File: jag_	_3a_opt_wB97X-D	D_LACVPs/jag_3a	a_opt_wB97X-D_LACVPs.out; structure: final
Method:	DFT(wb97x-d)/lac	evp*; Solvent: wa	ter
Total Qua	antum Mechanical	Energy: -568.845	5166744 au
Solution	phase energy: -568	8.81903440318 au	1
Gibbs fre	e energy: -568.624	4770 au	
Low freq	uencies 80.70 103	.05 107.05 123.90	0 168.56 197.37
C1	-0.6738494270	0.9377346404	-0.0331366688
C2	-0.0104934712	1.2022067666	1.1690452442
C3	1.3794167733	1.2495134527	1.2236127536
C4	2.1185637864	1.0316867860	0.0630549217
C5	1.4712225224	0.7678777521	-1.1415082087
C6	0.0812052145	0.7202645022	-1.1853954499
H8	1.8869646957	1.4557161966	2.1601884205
H9	3.2030328002	1.0712308882	0.1086778886
H10	2.0472460660	0.6005553976	-2.0464017707
H11	-0.4423218775	0.5171722286	-2.1156722356
H14	-2.5673784405	1.7810037803	-0.2970585938
N15	-2.0934794626	0.9066023230	-0.1047682903
C16	-2.7999313139	-0.2369677547	0.1122887164
O17	-2.2351486952	-1.3093140346	0.3306628013
C18	-4.3342376473	-0.1352118431	0.0798552144
C19	-4.8240430254	-1.0434068097	-1.0627179767
H20	-5.9199255348	-1.0548495535	-1.0836897534
H21	-4.4676635818	-0.6812131149	-2.0342969222
H22	-4.4678966088	-2.0687315339	-0.9237222937
C23	-4.8517129726	-0.6709744443	1.4278540874
H24	-5.9481271414	-0.6860264839	1.4241585546
H25	-4.4892384048	-1.6878200950	1.6051698335
H26	-4.5220439304	-0.0367246660	2.2596279010
C27	-4.8575190788	1.2914108784	-0.1360160144
H28	-5.9531779029	1.2782648357	-0.1306317760

H29	-4.5345115610	1.9692658358	0.6635784691
H30	-4.5436037230	1.7055289162	-1.1022875918
I32	-1.1188377231	1.5460732340	2.9453630594

Dissociated boron w. water, cationic

File: jag_F2B_OH2_opt_wB97X-D_LACVPs/jag_F2B_OH2_opt_wB97X-D_LACVPs.out; structure:

final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -300.991158351 au

Solution phase energy: -300.85320340927 au

Gibbs free energy: -300.842564 au

Low frequencies 405.80 477.19 592.79 616.64 633.54 846.27

B8	-3.4599393577	-5.0278486817	-1.0128985599
F13	-4.4555423324	-4.5274448994	-0.3445259206
F14	-3.5524927421	-6.0214850022	-1.8449576604
H32	-1.3625538326	-4.7422343892	-1.3072857005
O33	-2.1708391545	-4.4510106289	-0.8109982222
H34	-2.0133779977	-3.6700346224	-0.2195319893

Dissociated boron with hydroxide, neutral

File: jag_F2B_OH_opt_wB97X-D_LACVPs/jag_F2B_OH_opt_wB97X-D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -300.465627492 au

Solution phase energy: -300.44831736065 au

Gibbs free energy: -300.449151 au

Low frequencies 474.64 478.47 676.94 747.68 883.56 1147.92

B8	-3.3897200218	-5.0058478822	-1.0088016737
-			

F13 -4.4610987784 -4.5585644967 -0.3585197381

F14 -3.5609059346 -6.0259509904 -1.8481742109

H32 -1.4696994409 -4.8025970035 -1.3133467676

O33 -2.1958266973 -4.4200833105 -0.7929947138

Protonated carrier model (NMe₃), cationic

File: jag_Me3NH_cat_opt_wB97X-D_LACVPs/jag_Me3NH_cat_opt_wB97X-D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -175.004035492 au Solution phase energy: -174.89609487154 au Gibbs free energy: -174.785547 au Low frequencies 202.57 283.61 286.68 428.47 429.27 483.18 N32 -1.3794822470 3.9889827585 0.0355733107 C33 4.3579829168 -1.2537327422 -1.4082007753 H34 5.3346819361 -0.7640239619 -1.4703383756 H35 4.4063941102 -2.2528129698 -1.8456481419 H36 3.5994922105 -0.6516268878 -1.9122807580 C37 3.8696699454 -0.0336551367 0.6765032719 H38 4.8458727012 0.4580020504 0.6225940779 H39 3.1219327245 0.5479621752 0.1337683265 H40 3.5692428997 -0.1667215326 1.7176318028 C41 4.9728760995 -2.2353033643 0.7675477095 5.9528529750 H42 -1.7511203329 0.7148448139 H43 4.6516024498 -2.3278244310 1.8068789480 H44 5.0080857913 -3.2160632024 0.2892283067 H14 3.0679792531 -1.8390852496 0.0882852431

Dissociated boron w. carrier model (NMe₃), cationic

File:jag_Me3N_F2B_OH2_opt_wB97X-D_LACVPs/jag_Me3N_F2B_OH2_opt_wB97X-

D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

```
Total Quantum Mechanical Energy: -475.457214494 au
```

Solution phase energy: -475.35384964252 au

Gibbs free energy: -475.221816 au

Low frequencies 104.86 222.09 228.93 233.59 295.07 305.67

B8	2.6341640000	-2.2560580000	0.2739540000
F13	1.5473120000	-1.5047660000	-0.0568910000
F14	2.8043990000	-3.4150760000	-0.4209770000
H32	2.4789430000	-3.6433960000	1.9813100000
033	2.4331960000	-2.6765740000	1.7974590000
H34	1.6025610000	-2.3545320000	2.2184360000
N32	3.9617120000	-1.3566030000	0.1343980000
C33	4.1232730000	-0.9887810000	-1.3174090000

H9	5.0206160000	-0.3704290000	-1.4228530000
H35	4.2316140000	-1.8984670000	-1.9112060000
H36	3.2479900000	-0.4253910000	-1.6468810000
C37	3.8556620000	-0.0898150000	0.9244830000
H38	4.7652270000	0.4983530000	0.7677090000
H39	2.9896970000	0.4767780000	0.5770560000
H40	3.7526860000	-0.3314600000	1.9843770000
C41	5.1838460000	-2.1071570000	0.5619430000
H42	6.0595960000	-1.4696700000	0.4055460000
H43	5.0998860000	-2.3618280000	1.6204560000
H44	5.2777030000	-3.0116930000	-0.0420240000

Addition product with carrier model (NMe₃) added to B

File: jag_4a_I_ipsoprod_NMe3_opt_wB97X-D_LACVPs/jag_4a_I_ipsoprod_NMe3_opt_wB97X-

D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -967.854252245 au

Solution phase energy: -967.77268601493 au

Gibbs free energy: -967.444869 au

Low frequencies 73.65 79.67 90.52 110.65 114.52 118.25

I1	-2.1231501766	-0.9514693178	-0.6665119408
C2	-1.1411490180	-3.0575244948	-2.6844633283
C3	-0.7977309577	-2.3586243310	-1.5251669782
C4	0.4272891707	-2.5980612477	-0.9084368271
C5	1.3036086349	-3.5340081651	-1.4541859502
C6	0.9630921650	-4.2288468415	-2.6118805928
C7	-0.2618893318	-3.9902367349	-3.2279218661
Н9	0.6999296391	-2.0628035020	-0.0046459726
H10	2.2567443174	-3.7150871422	-0.9650635925
H11	1.6476231004	-4.9571004696	-3.0360525443
H12	-0.5498452352	-4.5229158927	-4.1309591337
H15	-2.4074018236	-2.1965754885	-4.1265540441
N16	-2.3979963320	-2.8379261662	-3.3353813177
C17	-3.5113838100	-3.4398375174	-2.9520055764
O18	-3.3759703305	-4.2620937105	-1.9787002858

C19	-4.8153259096	-3.1654024119	-3.6878456422
C20	-5.1658262763	-4.4384136024	-4.4912303962
H21	-6.1059867791	-4.2609033379	-5.0249675693
H22	-4.3885270799	-4.6621719593	-5.2308498304
H23	-5.2957816551	-5.3016217214	-3.8365517023
C24	-5.9343898945	-2.8331741490	-2.6781105048
H25	-6.8166950443	-2.5164743614	-3.2449025658
H26	-6.2194205999	-3.6967183267	-2.0768280426
H27	-5.6467891380	-2.0137042411	-2.0099831429
C28	-4.6644829424	-1.9829333965	-4.6602212067
H29	-5.6305180463	-1.8128129411	-5.1459180120
H30	-4.3875526492	-1.0593512222	-4.1381112411
H31	-3.9388819316	-2.1836098529	-5.4584751541
B8	-4.2346991938	-5.0203249701	-1.0005152220
F13	-5.1531644834	-5.8233016601	-1.6371784817
F14	-4.7934904860	-4.1544771244	-0.0959969551
N32	-3.1918282600	-5.9773741048	-0.2190133938
C33	-3.9635802430	-6.8047502714	0.7636063433
H34	-3.2668068206	-7.4469988604	1.3103209787
H35	-4.4807682904	-6.1408268805	1.4594226417
H36	-4.6879068946	-7.4169451794	0.2237888222
C37	-2.4895189737	-6.8883843668	-1.1716486566
H38	-1.8209139222	-7.5475968736	-0.6102265614
H39	-3.2301668043	-7.4817167728	-1.7110660532
H40	-1.9099295608	-6.2881944385	-1.8747695619
C41	-2.1812962987	-5.1720731782	0.5287658789
H42	-1.5190266781	-5.8475550115	1.0784417142
H43	-1.6003976881	-4.5836623340	-0.1818171137
H44	-2.6981535248	-4.5098218507	1.2251025920

Dissociated boron with carrier model (NMe₃), neutral

File: jag_Me3NBF2_opt_wB97X-D_LACVPs/jag_Me3NBF2_opt_wB97X-D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -398.98856669 au

Solution phase energy: -398.88751277646 au				
Gibbs fre	e energy: -398.782	2395 au		
Low freq	uencies 58.13 205	.51 229.58 257.03	295.88 319.14	
B8	-4.4192717518	-5.2278456043	-0.7961474177	
F13	-5.1749337233	-5.7910267955	-1.6996655789	
F14	-4.4839251432	-3.9531401044	-0.5271976986	
N32	-3.4548778781	-6.1099353342	-0.0162555918	
C33	-4.2983215020	-6.9077411802	0.9601161594	
H9	-3.6242781367	-7.5479793923	1.5356407306	
H35	-4.8191449628	-6.2132263784	1.6265397120	
H36	-5.0124338341	-7.5162654872	0.3993701754	
C37	-2.7442344457	-7.0471732116	-0.9649385187	
H38	-2.0689623897	-7.6709387111	-0.3742929925	
H39	-3.4826070730	-7.6681263992	-1.4757567629	
H40	-2.1765419615	-6.4522364394	-1.6862437471	
C41	-2.4445044163	-5.2874596875	0.7398349715	
H42	-1.7894731220	-5.9750877543	1.2799718121	
H43	-1.8664364435	-4.6949690797	0.0264207876	
H44	-2.9684177400	-4.6357172784	1.4419765759	

Alternative starting material before Br_2 has been replaced by F_2

File: jag_4Br2_opt_wB97X-D_LACVPs/jag_4Br2_opt_wB97X-D_LACVPs.out; structure: final

```
Method: DFT(wb97x-d)/lacvp*; Solvent: water
```

Total Quantum Mechanical Energy: -608.804480964 au

Solution phase energy: -608.75817058117 au

Gibbs free energy: -608.558364 au

Low frequencies 65.92 92.74 97.92 120.65 124.02 138.82

C1	2.0879535347	0.4752650629	0.0000000000
C2	0.8769252181	1.1704816315	0.0000000000
C3	0.9364712231	2.5687558684	0.0000000000
C4	2.1539705743	3.2366552817	0.0000000000
C5	3.3486628032	2.5108005617	0.0000000000
C6	3.3238641154	1.1223397756	0.0000000000
B7	-0.4542339388	0.3318110197	0.0000000000
H8	0.0086367345	3.1365892045	0.0000000000

H9	2.1778224778	4.3229434310	0.000000000
H10	4.3021199670	3.0309592433	0.000000000
H11	4.2465025617	0.5463139775	0.000000000
Br12	-1.6341638095	0.6978978426	-1.6970691102
Br13	-1.6341638095	0.6978978426	1.6970691102
H14	2.9644019383	-1.4266717078	0.000000000
N15	2.0648167983	-0.9460491305	0.000000000
C16	0.9645087760	-1.6692539300	0.000000000
O17	-0.1962722400	-1.1184714221	0.000000000
C18	1.0178973903	-3.1847509210	0.000000000
C19	-0.4093889531	-3.7532539915	0.000000000
H20	-0.3515033288	-4.8466405042	0.000000000
H21	-0.9677478571	-3.4372489388	0.8867318677
H22	-0.9677478571	-3.4372489388	-0.8867318677
C23	1.7623613548	-3.6440850705	-1.2708713181
H24	1.7731307939	-4.7389087600	-1.2968211955
H25	1.2548700066	-3.2825149279	-2.1725554738
H26	2.8006506412	-3.2942014944	-1.2920311824
C27	1.7623613548	-3.6440850705	1.2708713181
H28	1.7731307939	-4.7389087600	1.2968211955
H29	2.8006506412	-3.2942014944	1.2920311824
H30	1.2548700066	-3.2825149279	2.1725554738
TS for a	lternative Br2 sta	rting material	
File:	jag_4Br2_	I_NMe3_ipso_ts_	wB97X-D_LACVPs/jag_4Br2_I_NMe3_ipso_ts_wB97X-

D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -794.432869124 au

Solution phase energy: -794.34573821335 au

Gibbs free energy: -794.030792 au

Low frequencies -248.25 62.33 81.37 92.09 98.50 101.14

II 0.4383802561 ·	-1.4836252488	-1.1471461382
-------------------	---------------	---------------

- C2 -0.9630259501 -4.2543947179 -1.6579460478
- C3 -0.6425235444 -3.3196780228 -0.6428116283
- C4 -0.4743354783 -3.8233881671 0.6685367410

C5	-0.6338751214	-5.1730087541	0.9406745903
C6	-0.9248885131	-6.0641836527	-0.0957443271
C7	-1.1048832729	-5.6072812242	-1.4022330416
B8	-2.7373277121	-2.6632308028	-0.6716360423
Н9	-0.2136947206	-3.1368123102	1.4701819767
H10	-0.5236318999	-5.5368106748	1.9578617548
H11	-1.0463575676	-7.1222596849	0.1184647841
H12	-1.4023099192	-6.2855646250	-2.1973375638
Br13	-2.8216585444	-1.1148418934	0.5489873769
Br14	-3.9629681427	-4.1467732270	-0.2047780353
H15	-0.8990421018	-4.1965354526	-3.7787532660
N16	-1.3154987380	-3.7573646375	-2.9538544353
C17	-2.2269830575	-2.8229538785	-3.0939265375
018	-2.7644212490	-2.2799237221	-2.0437769909
C19	-2.6817702675	-2.2632938055	-4.4154437458
C20	-4.2246770303	-2.2033562032	-4.3965815729
H21	-4.5657275073	-1.7843982755	-5.3489914718
H22	-4.6617951977	-3.2010941490	-4.2796212214
H23	-4.5900015759	-1.5613855228	-3.5895819118
C24	-2.1028376718	-0.8298711737	-4.5075504206
H25	-2.4615107945	-0.3749867089	-5.4369997221
H26	-2.4351201989	-0.2118473360	-3.6674823580
H27	-1.0077982867	-0.8440762699	-4.5292969546
C28	-2.1891041754	-3.1191306352	-5.5863785670
H29	-2.5690588398	-2.6848198812	-6.5165343611
H30	-1.0942580270	-3.1319406441	-5.6549237429
H31	-2.5626113332	-4.1477890808	-5.5167765284
N32	1.8030495544	0.8129042081	-1.6589108089
C33	2.7422262338	0.5906567383	-2.7587766111
H34	3.3021962347	1.5083557060	-3.0067164275
H35	3.4557674956	-0.1923368502	-2.4795707922
H36	2.1948687906	0.2643501357	-3.6502592035
C37	0.8134147282	1.8315414435	-2.0152737970
H38	1.2896117937	2.8095773732	-2.2004892442

H39	0.2780068135	1.5272957867	-2.9213345756
H40	0.0895292253	1.9448514400	-1.2004771305
C41	2.5085601957	1.1860170638	-0.4314484480
H42	3.0630217129	2.1316587256	-0.5557977977
H43	1.7871060741	1.3094828597	0.3843965392
H44	3.2163325529	0.3957749746	-0.1570150432

Alternative addtion product from Br₂ starting material

File:jag_4Br2_ipso_I_NMe3_prod_opt_wB97XD_LACVPs/jag_4Br2_ipso_I_NMe3_prod_opt_wB97

X-D_LACVPs.out; structure: final

Method: DFT(wb97x-d)/lacvp*; Solvent: water

Total Quantum Mechanical Energy: -794.444219815 au

Solution phase energy: -794.35870894336 au

Gibbs free energy: -794.043837 au

Low frequencies 49.56 59.40 77.51 84.37 90.98 98.45

I1	-0.2594983420	-1.0896045726	-0.5993953483
C2	-1.3390527612	-4.0128060675	-0.8469190345
C3	-1.3797944634	-2.8303462462	-0.1015670550
C4	-2.2070871800	-2.7921524304	1.0222397051
C5	-2.9547880424	-3.9069430563	1.3934189313
C6	-2.8813303871	-5.0862726991	0.6548022205
C7	-2.0685124518	-5.1402954664	-0.4713898838
B8	-3.2422042797	-2.7134559633	-2.9926738643
Н9	-2.2708342235	-1.8829046999	1.6136638516
H10	-3.5982331653	-3.8484456599	2.2671980835
H11	-3.4645101055	-5.9556854973	0.9422423214
H12	-2.0115443622	-6.0407913316	-1.0777370313
Br13	-4.1005589120	-1.0531827575	-2.5736763388
Br14	-4.2320122736	-4.3371192225	-3.2713238710
N16	-0.5632685094	-4.1185406748	-2.0645876686
C17	-0.8736057943	-3.5105631166	-3.1703123999
O18	-1.8903175910	-2.6676678738	-3.1494761368
C19	-0.1182045387	-3.5882296422	-4.4659422918
C20	-1.1323038442	-3.9686885678	-5.5709225061
H21	-0 5891030657	-4 0391274823	-6 5189834934

H22	-1.6027469247	-4.9377027488	-5.3703914135
H23	-1.9112667135	-3.2073215030	-5.6896230010
C24	0.4435535034	-2.1726455523	-4.7489724856
H25	0.9603295334	-2.2017082181	-5.7140779982
H26	-0.3570530723	-1.4286340661	-4.8094740303
H27	1.1602645972	-1.8635789964	-3.9809728332
C28	1.0111125033	-4.6193733570	-4.3865424119
H29	1.5196969717	-4.6519183859	-5.3551162524
H30	1.7579657157	-4.3484390080	-3.6300214456
H31	0.6245315828	-5.6239503112	-4.1754453715
N32	1.0571727735	1.4286989933	-1.3334573566
C33	0.6086894183	1.7418895387	-2.6853502187
H34	0.9936537308	2.7173735382	-3.0359861650
H35	0.9609139603	0.9669941063	-3.3747351906
H36	-0.4859330145	1.7694125156	-2.7165434255
C37	0.5980517732	2.4390912089	-0.3869254542
H38	1.0075692929	3.4400840255	-0.6169821739
H39	-0.4955236300	2.4993082588	-0.4110716971
H40	0.9076032947	2.1632751527	0.6269041497
C41	2.5077754152	1.2898242517	-1.2868755326
H42	3.0255682845	2.2238402782	-1.5734034561
H43	2.8206037146	1.0178093916	-0.2732062057
H44	2.8243299656	0.4958654811	-1.9721508007
H45	0.2547585869	-4.7374783246	-2.0510925440

9. Single crystal X-ray diffraction

A suitable single crystal of **4a** data was collected on a Rigaku XtaL AB Synergy-DW diffractor equipped with a HyPix-Arc 150° detector using CuK α radition at $\lambda = 1.54184$ Å. The data diffraction was obtained and processed with CrysAlisPro software.^{35,36} Direct methods was used for all crystal structures and the refinements were established by full-matrix least square with SHELXL,³⁷ SHELXT³⁷ and Olex2³⁸ softwares. Gaussian absorption correction was applied for absorption effects. Anisotropic refinement was applied to all non-hydrogen atoms. All hydrogen except the hydrogen attached to the amine nitrogen were placed with geometric constraints and refined isotropically. The hydrogen attached to the N amine was found in the difference electron density map and was refined isotropically.

Table S2. Crystallographic data and refinement of 4a.

Code	4a
Structural formula	$C_{11}H_{14}B_1F_2N_1O_1$
Molecular mass (g mol ⁻¹)	225.04
Data collection temp. (K)	101 (3)
Crystal system	Orthorhombic
Space group	P212121
a (Å)	6.4333(2)
b (Å)	11.2099(3)
c (Å)	15.6487(5)
α (°)	90
β(°)	90
γ (°)	90
Volume (Å ³)	1128.53(6)
Ζ	4
Dc, calc density (g cm ⁻³)	1.325
Absorption coefficient (mm ⁻¹)	0.891
θ range	4.847-75.286
Reflections collected	10669
No data I >2 sigma (I)	1972
Final <i>R</i> indices $[I > 2 \text{ sigma } (I)]$	$R_1 = 0.0921$
	$wR_2 = 0.2194$
<i>R</i> indices (all data)	$R_1 = 0.1000$

	$wR_2 = 0.2245$
Goodness-of-fit on F^2	1.073
Largest diff. peak and hole (eÅ ⁻³)	0.291; -0.254
CCDC no.	2279239

10. Reference

- [1] J. Lv, X. Chen, X. S. Xue, B. Zhao, Y. Liang, M. Wang, L. Jin, Y. Yuan, Y. Han, Y. Zhao, Y. Lu, J. Zhao, W. Y. Sun, K. N. Houk, Z. Shi, *Nature* 2019, **575**, 336–340.
- [2] Y. Gao, Y. Mao, B. Zhang, Y. Zhan, Y. Huo, Org. Biomol. Chem. 2018, 16, 3881-3884.
- [3] R. S. Dothager, K. S. Putt, B. J. Allen, B. J. Leslie, V. Nesterenko, P. J. Hergenrother, J. Am. Chem. Soc. 2005, 127, 8686–8696.
- [4] M. Kumar, S. Verma, A. K. Verma, Org. Lett. 2020, 22, 4620-4626.
- [5] T. Xiong, Y. Li, X. Bi, Y. Lv, Q. Zhang, Angew. Chemie Int. Ed. 2011, 50, 7140-7143.
- [6] X. Zhu, M. Xu, J. Sun, D. Guo, Y. Zhang, S. Zhou, S. Wang, Eur. J. Org. Chem. 2021, 2021, 5213-5218.
- [7] J. Khan, N. Yadav, A. Tyagi, C. K. Hazra, J. Org. Chem. 2022, 87, 11097–11111.
- [8] E. Kianmehr, H. Afaridoun, Synthesis 2021, 53, 1513–1523.
- [9] R. Das, M. Kapur, J. Org. Chem. 2017, 82, 1114-1126.
- [10] Á. Sinai, Á. Mészáros, T. Gáti, V. Kudar, A. Palló, Z. Novák, Org. Lett. 2013, 15, 5654-5657.
- [11] D. J. C. Prasad, G. Sekar, Org. Biomol. Chem. 2013, 11, 1659-1665.
- [12] J. I. Urzúa, R. Contreras, C. O. Salas, R. A. Tapia, RSC Adv. 2016, 6, 82401-82408.
- [13] X. Abel-Snape, A. Whyte, M. Lautens, Org. Lett. 2020, 22, 7920-7925.
- [14] Y. Y. Zhu, H. P. Yi, C. Li, X. K. Jiang, Z. T. Li, Cryst. Growth Des. 2008, 8, 1294–1300.
- [15] N. Chaisan, S. Ruengsangtongkul, J. Tummatorn, S. Ruchirawat, K. Chainok, C. Thongsornkleeb, *J. Org. Chem.* 2021, **86**, 4671–4698.
- [16] S. Redon, Y. Kabri, M. D. Crozet, P. Vanelle, Tetrahedron Lett. 2014, 55, 5052-5054.
- [17] C. Gimbert, A. Vallribera, Org. Lett. 2009, 11, 269-271.
- [18] J. Clayden, H. Turner, M. Pickworth, T. Adler, Org. Lett. 2005, 7, 3147-3150.
- [19] S. Sharma, K. C. Basavaraju, A. K. Singh, D. P. Kim, Org. Lett. 2014, 16, 3974–3977.
- [20] F. Hasegawa, K. Kawamura, H. Tsuchikawa, M. Murata, Bioorganic Med. Chem. 2017, 25, 4506–4511.
- [21)] K. Ni, L. G. Meng, K. Wang, L. Wang, Org. Lett. 2018, 20, 2245-2248.
- [22] N. Mishra, A. S. Singh, A. K. Agrahari, S. K. Singh, M. Singh, V. K. Tiwari, ACS Comb. Sci. 2019, 21, 389–399.
- [23] W. Li, X. F. Wu, J. Org. Chem. 2014, 79, 10410-10416.
- [24] Y. Zheng, M. Dong, E. Qu, J. Bai, X. F. Wu, W. Li, Chem. Eur. J. 2021, 27, 16219–16224.
- [25] B. R. Aluri, B. Niaz, M. K. Kindermann, P. G. Jones, J. Heinicke, Dalt. Trans. 2011, 40, 211-224.
- [26] G. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802-1808.

- [27] T. Saget, N. Cramer, Angew. Chemie Int. Ed. 2013, 52, 7865-7868.
- [28] J. Lu, X. Gong, H. Yang, H. Fu, Chem. Commun. 2010, 46, 4172-4174.
- [29] H. K. Saini, N. K. Nandwana, S. Dhiman, K. Rangan, A. Kumar, Eur. J. Org. Chem. 2017, 2017, 7277-7282.
- [30] C. Lu, N. A. Markina, R. C. Larock, J. Org. Chem. 2012, 77, 11153-11160.
- [31] W. R. Bowman, H. Heaney, P. H. G. Smith, Tetrahedron Lett. 1982, 23, 5093-5096.
- [32] R. Kumar, R. R. Nair, S. S. Dhiman, J. Sharma, O. Prakash, Med. Chem. Res. 2010, 19, 541–550.
- [33] Z. Li, H. Sun, H. Jiang, H. Liu, Org. Lett. 2008, 10, 3263-3266.
- [34] X. Abel-Snape, A. Whyte, M. Lautens, Org. Lett. 2020, 22, 7920-7925.
- [35] Crysalis CCD; Oxford Diffraction Ltd: Abingdon, Oxfordshire, UK, 2005.
- [36] Crysalis RED; Oxford Diffraction Ltd: Abingdon, Oxfordshire, UK, 2005.
- [37] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct Chem. 2015, 71, 3-8
- [38] O. V. Dolomav, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschman, J. Appl. Crystallogr. 2009, 42, 339-341.

11. NMR spectra

11.1. NMR spectra of starting materials:

110 100 f1 (ppm)

110 100 f1 (ppm)

11.2. NMR spectra of target compounds

110 100 f1 (ppm)

110 100 f1 (ppm)

110 100 f1 (ppm)

110 100 f1 (ppm)

110 100 f1 (ppm)

110 100 f1 (ppm)

S118

