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1. Genotyping 

 
We collected DNA in the SOEP Innovation Sample1 during the 2019 annual household survey. 
The DNA data collection project („Wie uns die Gene prägen“) was approved by the SOEP 
management team as a user-proposed innovation module. The project received ethical approval 
by the Research Ethics Review Board of Vrije Universiteit Amsterdam, School of Business 
and Economics (application number 20181018.1.pkr730) and the Ethics Council of the Max 
Planck Society (application number 2019_16). Data collection took place between September 
2019 and March 2020. Participants were visited by a trained Kantar GmbH interviewer who 
asked survey questions and collected saliva samples. Participation in the DNA collection was 
completely voluntary. Each household received information about the goals, methods, risks 
and benefits of the DNA collection via mail prior to the household visit, as well as at the 
beginning of the interview. Household members who chose to participate in the DNA 
collection signed a consent form and a data protection declaration according to article 7 of the 
EU General Data Protection Regulation. Parents had the option to enroll and provide consent 
for their under-aged children.  
 
Saliva samples were collected at the end of the interview using Isohelix IS SK-1S buccal swabs. 
To avoid untimely decay of DNA, the buccal swabs were sealed with Isohelix Dri-Capsules in 
5mm tubes. Samples were sent via mail to the Kantar GmbH office in Munich and forwarded 
to the Human Genomics Facility (HuGe-F) at the Medical Center of Erasmus University 
Rotterdam. HuGe-F is a certified laboratory that operates under a Propel certificate by Illumina 
and works according to standard operating procedures. ICT/data handling was performed 
following ISO certificates ISO/IEC 27001:2013 and NEN 7510:2011. HuGe-F extracted DNA 
and genotyped samples using Illumina Infinium Global Screening Array-24 v3.0 BeadChips2 
between April and July 2020. The laboratory also performed a first round of data quality control 
and a preliminary imputation of the genetic data using the 1000 Genomes P3v5 reference panel.  
 
DNA extraction was successfully completed for 2,598 individuals and the laboratory called 
725,831 genetic variants (including SNPs and indels). The quality control pipeline of the 
laboratory identified 2,545 individuals with European ancestries and 544 pairs with first-degree 
relatedness.  
 

2. Genotyped data description 
 
Fig S1 shows the genotyped variants' minor allele frequency (MAF) distribution.  13.5% of the 
variants are rare variants (MAF < 1%), 35.4% are low-frequency variants (1%<MAF≤5%), and 
51% are common variants (MAF>5%). Most variants were called with at least 90% call rate 
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(Fig S2A). Yet, genotype missingness rates were problematically high for almost 20% of the 
sample (Fig S2B). 502 individuals had a genotype missingness rate higher than 10%, 
considering only autosomal biallelic single nucleotide polymorphisms (SNP) with MAF > 1%.  
 
We first investigated whether the low call rates are more prevalent in a specific MAF range 
(Fig S3). Although the mean call rate was lower around MAF=10%, the differences across the 
MAF spectrum were not large. Instead, the low call rates appeared due to issues during the 
saliva collection. Indeed, the laboratory reported a low DNA yield (<300 ng) for 301 
individuals and a low DNA concentration (<3 ng/μL) for 273 individuals. As demonstrated by 
Fig S4, some interviewers may have failed to follow the saliva collection procedure with 
sufficient care. The variation between different interviewers could explain 19% of the variation 
in the sample call rates. A follow-up investigation revealed that some interviewers did not 
properly seal the buccal swabs or forgot to include the Dri-Capsule, which may have led to 
pretimely decay of the collected DNA and low sample call rates. 
 

3. Quality control and imputation 
 
The laboratory implemented its standard quality control (QC) protocol, developed primarily 
for genetic discovery studies on medical phenotypes. The protocol drops variants with a call 
rate lower than 95% and Hardy-Weinberg equilibrium exact test P value lower than 10−4 and 
removes samples whose genotype missingness rate was higher than 5%. This procedure led to 
a large reduction in sample size, leaving only 2,114 individuals with 590,377 variants 
(including SNPs and indels). The large reduction in sample size led us to develop a different 
protocol tailored to handle the above issues with the saliva collection in SOEP-IS, described 
next. 
 
We expect the most common use of the genetic data in SOEP-IS to be analyzed using polygenic 
indices (PGIs). Therefore, we concluded that the strict standard QC protocol of the laboratory, 
albeit suitable for analyses of single genetic variants, may not be strictly necessary for analyses 
that utilize PGIs. PGIs aggregate the effects of hundreds of thousands of genetic variants. Thus, 
we expected that the accuracy of PGIs is more robust to low genotyping call rates and the drop 
in imputation accuracy resulting from it than analyses of single genetic variants. To assess 
whether this is the case, we applied two sets of sample-level quality control filters (henceforth 
referred to as mild and strict QC) for all 2,598 individuals and 688,618 autosomal variants 
(including indels). We also performed separate imputations based on the mild and strict QC 
results. With these two sets of imputed data, we constructed PGIs for several phenotypes and 
evaluated their predictive power differences. Below, we outline these quality control and 
imputation procedures. 
 
Pre-imputation variant and sample quality control. We started by filtering out 115,031 
variants with minor allele frequency less than 1%, 106,445 variants with genotyping call rate 
less than 90% and 68,474 variants with  Hardy-Weinberg equilibrium exact test P value less 
than 10−4. Some variants in the data had identifiers of the form “GSA-rs#”. We renamed these 



variants by removing the “GSA-” prefix. This resulted in 64 pairs of duplicate rs-numbers. We 
removed the first occurring variant from each pair, which left us with 398,604 variants. 
 
Next, we conducted the mild and strict sample-level QC. In the strict-QC pipeline, we dropped 
260 individuals whose genotype missingness rate was more than 20% within any chromosome, 
14 individuals with sex mismatch identified by comparing reported and inferred sex, and 59 
individuals with excess heterozygosity/homozygosity identified as those with Plink1.93 --het F 
coefficient less than -1 or greater than 1 (Fig S5). In the mild-QC pipeline, we applied a per-
chromosome genotype missingness rate cutoff of 50%, excluding 36 individuals. The same 14 
individuals with sex mismatch were removed, followed by 22 heterozygosity/homozygosity 
outliers with Plink1.9 --het F coefficient less than -1.5 or greater than 1 (Fig S5). 2,324 and 
2,541 individuals remained after strict- and mild-QC, respectively. 
 
We filtered out individuals of non-European ancestries from both data sets before imputation. 
We identified non-European-ancestry individuals using the mild-QC data because the two data 
sets contained the same variants, and the strict-QC sample was a subset of the mild-QC sample. 
To do so, we filtered out 119,486 variants with a call rate less than 95%. We pruned the 
remaining variants using a 1Mb rolling window (incremented in steps of 5 variants) and a 𝑅𝑅2 
threshold of 0.3, leaving 178,447 approximately independent variants. Next, we merged the 
data with all samples from the third phase of the 1000 Genomes Project4,5, restricting to the 
170,203 variants available in the pruned Gene-SOEP data with MAF > 1% in the merged 
sample. We calculated the genetic data's first four principal components (PCs) using the 1000 
Genomes subsample and projected the individuals in the Gene-SOEP sample onto these. 
Finally, we plotted the first four PCs against each other and identified individuals of European 
ancestries as clusters with the 1000 Genomes EUR sample. Because the average variant call 
rate in the Gene-SOEP data was lower than ideal even after the 95% call rate filter, the 
clustering of Gene-SOEP samples with 1000 Genomes populations was not identifiable. As 
imposing a stricter call rate filter would lead to the exclusion of too many variants, which might 
also introduce a significant amount of noise into the PCs, we decided to use the current PCs 
but be lenient in the PC cutoffs for identifying individuals of European ancestries (Fig S6) and 
repeat the PC analysis after imputation using a larger set of SNPs. After the ancestry filtering, 
2,299 and 2,497 individuals remained in the strict- and mild-QC data, respectively. 
 
Before imputation, we conducted some reformatting steps and additional quality control 
checks. First, we used the “HRC-1000G-check-bim.pl”1 script to check our data against the 
Haplotype Reference Consortium (HRC) reference panel (r1.1)7 for strand alignment, position, 
reference allele assignment, and frequency differences. Of the 398,604 variants, 8,415 variants 
with identifiers and chromosome and base pair positions that could not be matched to the HRC 
reference panel, 669 indels, 327 palindromic single nucleotide polymorphisms (SNPs) with 
MAF > 0.4, 403 SNPs whose alleles did not match the HRC panel, and 695 duplicates were 
removed from both the mild- and strict-QC datasets. In addition, 1,050 SNPs with allele 
frequency differences with the HRC panel exceeding 0.2 were removed from the mild-QC data, 

 
1https://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim-v4.3.0.zip, accessed on 12 December 2021. 
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leaving 387,045 SNPs. In the strict-QC data, 1,042 such SNPs were identified, leaving 387,053 
SNPs. In both datasets, 30,366 SNPs that were reported on a different strand compared to the 
HRC reference panel were flipped. Finally, the reference/alternative allele assignment for 
388,498 SNPs was switched to match the HRC reference panel. The data were then converted 
into per-chromosome vcf files using Plink1.93, sorted using vcftools3,8, and checked against 
the 1000 Genomes Phase 2 reference genome sequence based on NCBI GRCh37 using the 
“checkVCF.py”2 script. We observed no important issues by “checkVCF.py”. 
 
Imputation. We separately imputed the 387,045 SNPs from the mild-QC and 387,053 from the 
strict-QC datasets against the HRC reference panel (r1.1) 7 consisting of 64,940 haplotypes of 
predominantly European ancestry for 32,470 individuals. The genotypes were split into 154 
chunks of 20Mb, and for each chunk, QC checks were conducted to ensure data validity before 
phasing and imputation. In the mild-QC data, these checks excluded 8 chunks for which at least 
one sample had a call rate of less than 50%. No chunks were excluded from the strict-QC data. 
The squared correlation of allele frequencies between the reference panel and mild-QC data 
was 0.996, with 1,027 potential mismatches (𝜒𝜒2 > 300). The squared correlation was 0.997 in 
the strict-QC data, and 601 potential mismatches were reported. Phasing was done using 
Eagle29 with 5Mb overlap between chunks. Imputation was conducted using Minimac410, with 
a window of 500kb. 
 
Imputation was completed for 2,497 individuals and 23,185,386 SNPs with imputation 
accuracy (𝑅𝑅2) greater than 0.1 in the mild-QC data, and 2,299 individuals and 22,201,548 SNPs 
with 𝑅𝑅2> 0.1 in the strict-QC data. Approximately 66% of these SNPs are rare SNPs with 
MAF<0.01 (15,456,273 in mild-QC, 14,445,952 in strict-QC), ~10% are low-frequency SNPs 
with 0.01≤MAF<0.05 (2,266,025 in mild-QC, 2,296,334 in strict-QC), and the remaining 
~24% are common SNPs (5,463,110 in mild-QC, 5,463,110 in strict-QC).  
 
The average imputation accuracy in the mild-QC data is 0.664, with 6,501,748 SNPs having 
𝑅𝑅2 < 0.5. In the strict-QC data, the average imputation accuracy is 0.695 with 5,502,428 SNPs 
below an 𝑅𝑅2 of 0.5. Fig S7 and S8 show the MAF and 𝑅𝑅2 distributions of the mild- and strict-
QC datasets. Fig S9 shows the mean 𝑅𝑅2 by MAF bins of width 0.01. As expected, the mean 
𝑅𝑅2is much lower for rare SNPs (0.545 in mild-QC, 0.578 in strict-QC) compared to low-
frequency (0.864 in mild-QC, 0.879 in strict-QC) and common SNPs (0.918 in mild-QC, 0.927 
in strict-QC). 
 

4. Ancestry 
 

To make sure that there are no remaining individuals of non-European ancestries in the samples 
that we were unable to identify with only genotyped SNPs due to the low data quality, we 
repeated the ancestry filtering step using imputed data. We merged the mild- and strict-QC 
datasets separately with all samples from the third phase of the 1000 Genomes Project7, 
restricting to HapMap3 SNPs11  with genotyping call rate greater than 99% and MAF>1% in 

 
2https://github.com/zhanxw/checkVCF, accessed on 12 December 2021 
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the merged sample (1,210,703 SNPs in mild-QC, 1,210,959 in strict-QC). The remaining steps 
were identical to the ancestry filtering with genotyped SNPs described in Section 3. In line 
with the previous QC steps, we chose more lenient PC cutoffs for the mild-QC dataset and 
filtered out two individuals of non-European ancestries. From the strict-QC data, we filtered 
out 37 individuals. Figs S10 and S11 show the PC plots for the mild- and strict-QC data, 
respectively. 
 

5. Genetic principal components 
 
Principal components of the genetic data have been shown to model genetic ancestry 
differences across individuals accurately. They are used as controls against spurious 
associations between genetic variables and environmental outcomes that may result from 
population stratification (i.e. systematic differences in allele frequencies of SNPs due to genetic 
ancestry correlating with differences in environments across ancestries).12 In genetic analyses, 
it is standard to control for at least the first 10 PCs, and in analyses where gene-by-environment 
interactions are being tested, additionally for the interactions between the PCs and the 
“environment” variable.13,14 To facilitate analyses that sufficiently account for population 
stratification, we make the first 20 PCs of the genetic data available to users.  
 
We followed the pipeline outlined in Becker et al.14 to construct genetic PCs. Briefly, we 
restricted the mild- and strict-QC samples to individuals of European genetic ancestries as 
described above. We removed SNPs with imputation accuracy < 70% or MAF < 1%, as well 
as SNPs in long-range LD blocks (chr5:44mb-51.5mb, chr6:25mb-33.5mb, chr8:8mb-12mb, 
chr11:45mb-57mb). We pruned the remaining SNPs using an 𝑟𝑟2 cutoff of 0.01 and a 1Mb 
rolling window incremented in steps of 5 variants in Plink1.93, resulting in 162,306 and 
159,312 approximately independent SNPs in mild- and strict-QC data, respectively. Using 
these sets of SNPs, we estimated a genetic relatedness matrix for each dataset, calculated the 
first 20 PCs in the sample of unrelated individuals (Plink1.9 genetic relatedness coefficient < 
0.05; 1,983 in mild-QC data, 1,905 individuals in strict-QC), and projected the remaining 
individuals onto these PCs. 
 

6. Genetic family relationships 
 
We used KING15 to infer biological family relationships among the participants. As it was done 
for the genetic ancestry analysis, we relied on the imputed SNP data and used mild-QC data to 
include as many individuals as possible. Following the recommendation by the authors of the 
software, we applied a minimal level of SNP filters and used 1,159,581 HapMap311 SNPs with 
imputation accuracy > 70%, genotyping call rate > 99%, and MAF > 0.1%.  
 
As a result, we identified 5,585 pairs of individuals who are related up to fourth degree (2 
identical twins, 510 parent-offspring, 132 full-siblings, 140 second-degree, 75 third-degree, 
4,726 fourth-degree). However, only 603 pairs remained when the sample was restricted to 
individuals whose genotype call rate, computed only from directly genotyped SNPs, was 
greater than 90% (N = 2,070; 415 parent-offspring, 103 full-sibling, 56 second-degree, 20 third-
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degree, 9 fourth-degree). This difference suggests that most genetically inferred distant 
relatives are likely incorrect due to low data quality.  
 
When considering only the individuals whose genotyping call rate was greater than 90% using 
directly genotyped SNPs, 97% of the pairs in the SOEP-IS have consistent self-reported and 
genetic family relationships. We found that most of the remaining inconsistencies are due to 
self-reported full siblings, likely to be only half-siblings (13 out of 97 pairs). We also found 
eight self-reported parent-child pairs that are non-biological.  
 
Furthermore, restricting to the individuals with a genotype call rate greater than 90%, we 
identified 88 pairs whose family relationship information was not available in the survey data. 
These pairs consist of 7 parent-offspring, 19 full-siblings, 33 second-degree relative, and 29 
third- or fourth-degree relative pairs.  
 
Overall, out of 2,497 individuals, we genetically identified 703 individuals with at least one 
first-degree relative (parent-child or full sibling) and 728 individuals with at least one relative 
with at least third-degree relatedness (first cousins or great-grandparent-child). 1,769 
individuals do not have close relatives based on the genetic data. Note that the related pairs 
reported here are not mutually exclusive; some individuals can be related to multiple people. 

Fig S12 summarizes the quality control process we applied to the genetic data.  
 

7. Polygenic indices 
 
A “polygenic index” (PGI, also known as polygenic score) is a DNA-based predictor capturing 
the relationship between many SNPs from an individual’s genome and a phenotype such as 
disease risk or a social or behavioral outcome. Often, PGIs are constructed to predict complex 
traits influenced by many genetic markers with small effects, such as height or educational 
attainment. For example, Lee et al. 16 use ~1.2 million HapMap311 SNPs to construct a PGI for 
educational attainment (EA), which explains ~11% of the variance in EA in independent 
samples. A height PGI based on Yengo et al.17 constructed using the same SNPs explains up 
to 32% of the variance in height.14 
 
A PGI is a weighted sum of a person’s genotypes at several genetic markers. PGI construction 
methods differ mainly across two dimensions: (i) the weights, and (ii) the genetic markers 
included in the PGI. A common strategy is to set the weights equal to the coefficient estimates 
from a genome-wide association study (GWAS) conducted independently of the prediction 
sample. GWAS are hypothesis-free studies that test the association between a phenotype and 
each of millions of genetic markers in separate univariate regressions. Since genetic markers 
in proximity are correlated with each other (i.e. “linkage disequilibrium” or LD), including all 
available genetic markers in a PGI would result in double-counting genetic variants that are in 
high LD with each other, which decreases the predictive accuracy of the resulting PGI. 
Therefore, pruning the GWAS summary statistics to obtain a set of approximately independent 
markers to include in the PGI is common practice. Markers are usually also filtered for the 
association P value with the phenotype so that only the markers most likely to be truly 
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associated with the phenotype are included in the PGI. Although this methodology, called 
“Clumping and Thresholding (C+T)”18,19 is often used due to its simplicity, it has certain 
disadvantages. If the pruning (or clumping) is done too strictly, relevant genetic markers may 
be removed. If it is done too liberally, the double-counting problem persists. As a solution, new 
methodologies have been developed that use Bayesian approaches to adjust the GWAS 
coefficient estimates for LD, nullifying the necessity to include independent markers in the 
PGI. PGIs made using these methodologies are more predictive than their C+T counterparts.20–

23  
 
The PGI Repository14 by the Social Science Genetic Association Consortium (SSGAC) uses 
one such Bayesian methodology, LDpred20, to construct PGIs for 47 phenotypes in several 
datasets. Their PGIs are made using the largest GWAS available at the time of publication for 
almost all of the 47 phenotypes, obtained by meta-analyzing summary statistics from multiple 
sources, including several novel large-scale GWASs conducted in UK Biobank24 and the 
personal genomics company 23andMe. We used the same pipeline and GWAS summary 
statistics to construct the 47 PGIs from the Repository in the SOEP-IS data and for 19 additional 
medical outcomes for which well-powered GWAS summary statistics were available (see 
Table 3 in the main text). In contrast to the pipeline employed by Becker et al., we did not use 
the E(R2)>1% threshold for including these medical outcomes. 
 
Before making the PGIs for all 66 phenotypes, we conducted analyses to compare the 
predictive power of PGIs made using mild- and strict-QC data for height and BMI. For both 
phenotypes, we estimated three quantities: (i) the increase in the coefficient of determination 
(𝑅𝑅2) when the strict-QC PGI for the phenotype is added to a regression of the phenotype on 
controls (year of birth, year of birth2, sex, interactions between the sex and age terms, genotype 
batch indicators, and the top 20 genetic PCs), i.e., the “incremental-𝑅𝑅2” of the strict-QC PGI 
(ii) the incremental-𝑅𝑅2of the mild-QC PGI, and (iii) the incremental-𝑅𝑅2 of the mild-QC PGI 
when the estimation sample is restricted to the individuals available in the strict-QC sample. 
Since height and BMI were surveyed multiple times across the waves, we first residualized 
height and BMI for age, age2, sex, and their interactions within each wave and took the mean 
for each individual; then, as covariates, we used only genotype batch indicators and the top 20 
genetic PCs. We obtained 95% confidence intervals by bootstrapping the sample 2,000 times 
(Fig 3 in the main text). For this analysis, we only included unrelated individuals by removing 
one person from each related pair up to the third degree of relatedness. The related pairs here 
were restricted to those with matching self-reported and genetically inferred relationships and 
those genetically identified where both individuals had genotyping call rate greater than 0.9.  
 
The strict-QC PGIs performed slightly better than the mild-QC PGIs, but the differences were 
not statistically distinguishable (S2 Table). Also, the predictive power of the mild-QC PGIs is 
very close to that of the strict-QC PGIs when the samples are restricted to the individuals in 
the strict-QC data. These results suggest that including low-quality samples in the mild-QC 
imputation did not greatly impact the quality of imputation, at least for HapMap3 SNPs11, 
which the PGIs are based on. Therefore, we used the mild-QC data to construct the PGIs for 
all 66 phenotypes.  
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The data we share publicly includes 20 genetic PCs, all constructed PGIs, and indicators for 
individuals who did not pass the strict QC pipeline. This allows users to decide whether to 
conduct their analyses using the full sample for which PGIs were constructed or the slightly 
smaller set that passed strict QC. These two options may depend on statistical power 
considerations and the specific research question being asked. 
 
Below, we summarize the main steps in the PGI Repository pipeline and explain how they 
were applied to the SOEP-IS data. 
 
The PGI Repository has two types of PGIs: Single-trait and multi-trait. Single-trait PGIs are 
regular PGIs based on univariate GWAS analyses. Multi-trait-PGIs are based on multivariate 
analyses of a phenotype and its supplementary phenotypes, defined as those phenotypes (if 
any) whose genetic correlation with the target phenotype exceeds 0.6 in absolute value, 
conducted using the MTAG software.25 All single- and multi-trait PGIs for the 47 phenotypes 
from the Repository have expected out-of-sample predictive power greater than 1% as this was 
the criterion for inclusion that Becker et al.14 implemented. For the remaining 19 phenotypes, 
we only constructed single-trait PGIs and did not implement an inclusion criterion based on 
expected predictive power.  
 
All PGIs were constructed in Plink23,26 using imputed genotype probabilities for HapMap3 
SNPs11. We adjusted the SNP weights for LD using LDpred20, assuming a fraction of causal 
SNPs equal to 1. LDpred requires a reference genotype dataset to estimate the correlation 
structure between SNPs. As in Becker et al., we used the public release of the HRC Reference 
Panel (r1.1)7 after applying several quality control filters to estimate LD patterns, with a LD 
window equal to the number of SNPs common between LD reference data, Gene-SOEP mild-
QC genotype data, and summary statistics left after LDpred quality control filters, divided by 
3,000. Table 3 in the main text lists the 55 phenotypes for which we made single trait PGIs, the 
number of SNPs included in each PGI, and the GWAS sample sizes of the summary statistics 
that the PGIs are based on, the source of the summary statistics. S3 Table lists all multi-trait 
PGIs, the supplementary phenotypes that were used to construct them, as well as the GWAS 
equivalent sample size reported by MTAG25 , defined as the GWAS sample size required to 
obtain a mean 𝜒𝜒2-statistic equal to that attained by the MTAG analysis, which, under the LD 
score regression assumptions (Bulik-Sullivan et al. 2015), is equal to 

𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 = 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑗𝑗  
�̄�𝜒2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −1
�̄�𝜒2𝑀𝑀𝐺𝐺𝑀𝑀𝐺𝐺 −1

, 

where 𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑗𝑗 is the sample size of SNP 𝑗𝑗in the univariate GWAS results for the phenotype, 
�̄�𝜒 2 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the mean 𝜒𝜒2 −statistic in the univariate GWAS results, and  �̄�𝜒 2 
𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺 is the mean 

𝜒𝜒2 −statistic in the MTAG results. 
More information on how the PGIs were constructed can be found in Becker et al14. 
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