Science Advances

Supplementary Materials for

High-throughput proteomics uncovers exercise training and type 2 diabetesinduced changes in human white adipose tissue

Jeppe Kjærgaard Larsen et al.

Corresponding author: Kurt Højlund, kurt.hoejlund@rsyd.dk; Atul S. Deshmukh, atul.deshmukh@sund.ku.dk

Sci. Adv. **9**, eadi7548 (2023) DOI: 10.1126/sciadv.adi7548

The PDF file includes:

Figs. S1 to S3 Tables S1 and S2 Legend for data S1

Other Supplementary Material for this manuscript includes the following:

Data S1

Figure S1

Fig. S1.

High-throughput proteome analysis of human white adipose tissue. A) Boxplot of Pearson correlation between runs within each experimental group. B) QQ-plot and histogram of protein log2-intensity distribution of two samples, C) PCA plot of component 1 (x-axis) and 2 (y-axis) colored by group. D) PCA plot of component 2 (x-axis) and 3 (y-axis) colored by fat mass (kg).

Fig. S2.

Baseline proteome differences in WAT from lean obese and T2D individuals. A-B) Volcano plot of baseline T2D-Obese and Obese-Lean comparison (p<0.01). C) Boxplot of baseline log2-abundance of Leptin. D) Pearson's correlation of Leptin abundance and fat mass. E-F) Boxplot of baseline HTRA1 and ITGAV abundance in scWAT measured by western blot. G) Representative western blots. H-I) Kendall's rank correlation of HTRA1 and ITGAV intensities measured by proteomics and western blot, respectively. One-way ANOVA was applied to test for group-

differences. Tukey's multiple comparisons test was used to test differences between individual groups. *p<0.05 and **p<0.01 versus T2D.

Fig. S3.

Effects of exercise training on FTL and TfR1 in human scWAT. A) Repeated measures correlation analysis of quantified FTL abundance by proteomics (x-axis) and western blot (y-axis). B) TfR1 abundance pre and post HIIT as quantified by western blot. C) Representative western blots. The upper band at ~ 100 kDa was quantified as TfR1.

Table S1.

Characteristics	Lean individuals		Obese individuals		T2D individuals	
	Pre	Post	Pre	Post	Pre	Post
N	18	16	15	15	15	13
Age (years)	56.2±1.5		53.8±1.8		55.2±1.7	
Weight (kg)	78.9±2.0	77.3±2.2*	100.0±2.9 ^{††}	98.5±2.6* ^{††}	103.1±3.7 ^{††}	102.5±4.1* ^{††}
BMI (kg/m ²)	24.0±0.4	23.7±0.4*	30.8±0.7 ^{††}	30.3±0.6* ^{††}	31.2±0.8 ^{††}	30.8±0.9* ^{††}
Waist (cm)	90±1	87±2**	106±2 ^{††}	102±2** ^{††}	$109 \pm 2^{\dagger \dagger}$	106±2** ^{††}
Total fat mass (kg)	20.1±1.0	18.2±1.2**	$32.0{\pm}1.9^{\dagger\dagger}$	29.7±1.8** ^{††}	34.8±2.3 ^{††}	33.0±2.5** ^{††}
Total lean body mass (kg)	56.9±1.3	57.1±1.4*	65.3±1.3 ^{††}	66.2±1.2* ^{††}	64.8±1.7 ^{††}	66.8±2.0* ^{††}
VO ₂ max (ml O ₂ /kg/min)	38.0±1.5	42.8±1.7**	$33.4{\pm}1.8^{\dagger}$	36.6±1.2* [†]	25.8±0.9 ^{††‡‡}	30.5±1.0** ^{††‡}
HbA1c (mmol/mol)	35±1	34±1*	35±1	34±1*	54±4 ^{††‡‡}	51±4* ^{††‡‡}
Fasting plasma glucose (mmol/l)	5.2±0.1	5.4±0.1	5.6±0.1	5.4±0.1*	9.6±0.7 ^{††‡‡}	8.8±0.7** ^{††‡‡}
Fasting serum insulin (pmol/l)	61±9	62±12	71±8	65±7	117±19 ^{†‡}	98±15* [†]
Plasma triglycerides (mmol/l)	1.52±0.23	1.43±0.31	1.59±0.19	1.35±0.13	2.47±0.40 ^{†‡}	2.08±0.37 ^{†‡}
GIR (mg/min/m ²)	325±6	442±33**	325±22	439±33**	189±28 ^{†‡}	300±36** ^{††‡}

Clinical and metabolic characteristics, before and after 8 weeks high-intensity interval training (HIIT)

Data are means±SEM. **P*<0.05 and ***P*<0.001 vs. before (Pre) HIIT, [†]*P*<0.05 and ^{††}*P*<0.001 vs. lean, [‡]*P*<0.05 and ^{‡‡}*P*<0.001 vs. obese. T2D, type 2 diabetes; WHR, waist-to-hip ratio; Pre, pre-training; Post, post-training; GIR, insulin-stimulated glucose infusion rate; HIIT, high-intensity interval training. The clinical and metabolic data were reported previously (6).

Table S2.

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER				
Antibodies						
FTL	LifeTechnologies	Cat #PA5-83567				
FTH1	FischerScientific	Cat #PA5-27500				
Transferin receptor	Abcam	Cat #Ab214039				
Oxphos cocktail	Abcam	Cat #Ab110411				
HTRA1	Abcam	Cat #Ab274322				
ITGAV	Invitrogen	Cat #MA5-32195				
Anti-rabbit	Jackson Immuno	Cat #111-036-045				
Anti-mouse	Jackson Immuno	Cat #315-036-045				
Biological Samples						
Human subcutaneous fat biopsies	This study	N/A				
Chemicals, Peptides, and Recombinant Proteins						
2-Chloroacetamide	Sigma	Cat# 22790				
SDS	Sigma	Cat# 71736/74255				
Tris-HCl	Roche	Cat# 10812846001				
Acetonitrile	Thermo	Cat# A9554				
Trifluoroacetic acid	Sigma	Cat# 808260				
NH4OH	Merck	Cat# 105428				
Benzonase	Merck	Cat# 71205				
4-20% Mini-Protean TGX stain-free protein gels	BioRad	Cat #4568096				
8-16% Mini-Protean TGX stain-free protein gels	BioRad	Cat #4568106				
Bovine serum albumin	Merck	Cat #A7906				
Skim milk powder	Merck	Cat #70166				
Trisma	Sigma	Cat #T6066				
NaCl	Sigma	Cat #31434				
Tween20	Sigma	Cat #P7949				
Glycine	Sigma	Cat #G7126				
Precision plus protein all blue standard	BioRad	Cat #1610393				
ECL luminata forte western HRP substrat	Merck	Cat #WBLUF0500				
Super ECL	Fischer Scientific	Cat #34094				
Deposited Data						
Mass spectrometry proteomics data	This paper	PRIDE: PXD040434.				
Software and Algorithms						
R version v4.2.1	R Development Core Team, 2016	https://www.R-projects.org/				
FragPipe v19.0	(37)	https://github.com/Nesvilab/FragPipe				

DIA-NN v1.8.2	(41)	https://github.com/vdemichev/DiaNN
SigmaPlot 12.5	Systat Software	
ImageLab 6.1	BioRad	
ChemiDoc VRS+ Imaging system	BioRad	

Captions for the supplementary Data File S1:

A. Overview

B. Complete matrix of all 3773 quantified proteins

C. Filtered matrix (2016 proteins) for differential expression (DE) analysis

D. Overview of 48 significant proteins in T2D-Lean baseline comparison

E. Baseline correlation of 48 significant proteins with clinical parameters

F. Diabetes-driven GeneSet enrichment analysis of GOBP and GOCC terms

G. Obesity-drivel GeneSet enrichment analysis of GOBP and GOCC terms

H. Overlap of HIIT-induced changes in GOCC terms in lean and obese group

I. HIIT-induced changes in GOCC and GOBP terms in T2D group