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Supplementary Text

Alpha diversity of fungal ecological groups

Latitudinal distributions of the expected richness of EcM and AM fungi (S'ecm and S’am,
respectively) were nearly opposite and primarily explained by land cover and temperature (figs.
S5 and S11), with an optimal mean annual temperature (MAT) >20 °C for S'am and -15 °C to +5
°C for S’ecm (fig. S13). Consequently, in concordance with the general patterns of global diversity
distributions of AM fungi, the largest hotspots of AM fungal diversity are predicted across the
Indian subcontinent and in certain ecoregions of Sub-Saharan savanna, whereas tundra and the
Siberian and Alaskan taiga support the lowest S’am. Conversely, S'ecm peaks in the temperate and
boreal forests, with large diversity hotspots in the Far East, Western Mediterranean region, and
North American temperate coniferous forests, supporting the previously revealed inverse LDG for
EcM fungi (5, 35, 11). The distributions of S’am and S’ecm outline two distinct global areas with
high alpha diversity for each (Fig. 2B, fig. S12). However, in smaller regions with transitional
vegetation like wet prairies, forest-steppes, and savannas, there are rich local communities of both
EcM and AM fungi.

Diurnal temperature amplitude (DTA, bio02) and land cover type were the best predictors
of the alpha diversity of pathogenic fungi, with S’paTH declining at DTA < 7 °C, i.e., in tropical
lowland swamps, and at DTA > 13 °C — in hyper-arid regions, arctic and alpine tundra (fig. S12C).
Despite the significant effect of land cover, a lower difference between woody and herbaceous
vegetation in S'paTH IS expected compared to the other groups (table S3). The coldspots of
pathogenic fungal diversity were predicted in the Indomalayan islands, while large hotspots were
identified in Indomalayan continental rainforests and in the Ethiopian Highlands.

The strongest predictors of non-mycorrhizal Agaricomycetes alpha diversity (S'nva) were
MAT, mean annual precipitation (MAP, bio12), and soil pH. S’nma peaked at -6°C and 25°C (fig.
S13) and was positively related to MAP and soil acidity. Critical values of soil organic carbon
stock and nitrogen content for the group diversity were estimated at 4 kg m2 and 2.5 g kg,
respectively. Non-mycorrhizal Agaricomycetes diversity hotspots were predicted for Oceanian
islands, Central America, and the Gulf of Guinea forests, but coldspots covered much of the hyper-
arid regions (fig. 12D).

Edaphic properties were among the main predictors of mold alpha diversity. Consistent
with their copiotrophic lifestyle, S'moLp almost linearly increased in the gradient of carbon supply
(fig. S7) and had the greatest (compared with the other groups) demand for soil nitrogen content
(with critical lower value of ca. 3 g kg?). Diversity hotspots of molds are located in humid coastal
and island temperate and tropical forests at low soil pH (<5.5 units) such as the Japan Archipelago,
Great Britain, Eastern Australia, Tasmania, New Guinea, and the Appalachians (fig. 12E).

The largest hotspots of yeast diversity were recovered in warm temperate forests of Europe,
eastern North America, Tasmania and eastern Australia, and Valdivian forests. The main coldspots
were found in the arctic tundra, sand deserts, and certain forest ecoregions along the Northern
Tropic.

The most favorable conditions supporting a high diversity of unicellular fungi included
>600 mm MAP, positive MAT, and nitrogen-rich soils with 4.5 < pH < 8 (fig. S13).
Correspondingly, the highest S'uceLL values were predicted for temperate mesic forests (fig. 12G),
while coldspots were identified in hyper-arid soils and tropical hydric soils.

The regions with high expected alpha diversity of opportunistic human pathogens (S’oHp)
are well delineated by actual evapotranspiration in January and soil nitrogen content of ca. 1-3
g kg (fig. S28). Consequently, S'onp peaks in tropical areas receiving more than 1,000 mm MAP,
with the global diversity hotspots in Central America, South Africa and Madagascar, New Guinea,
Southwest Australia, and Northern Triangle with surrounding forested ecoregions (fig. 12H), while
the coldspots are expected in Palearctic deserts and polar Nearctic.
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Gamma diversity of ecological groups of fungi

AM fungal G (Gawm) peaks in tropical regions such as the Brazilian and African savannas and
wooded drylands of Oman. Gawm increases with wettest-quarter temperature, soil bulk density, and
spatial variability of actual evapotranspiration in May, but decreases with distance from the
equator (R%model = 0.40).

EcM fungi (Gecem) are regionally diverse in the Far East, Svalbard, northeast Australia,
South-Central Africa, northwest Canada, and southernmost Patagonia. The lowest Geecm occurred
in desert areas (excepting the Sahara) and much of South America. Geem distribution was primarily
described by positive relationships with distance from the equator, ECM plant occurrence, and
within-ecoregion heterogeneity in January soil moisture content (R%mode = 0.19).

Non-mycorrhizal Agaricomycetes had the highest G (Gnma) in tropical and subtropical
forests including much of Central Africa, Central America, Southeast Asia, New Guinea, Japan,
and the Atlantic rainforest of Brazil. Gnma increased towards higher temperature of the wettest
quarter, and moderate levels of soil carbon stock and spatial variability of soil moisture in May
(Rzmodel = 0.42). GmoLp (Rzmodel = 0.33) and Gonp (Rzmodel =0.31) peaked in the East Beringia,
Amazonia, New Guinea, and the Appalachians, showing positive links with aboveground biomass
and soil acidity. Gamma-diversity of yeasts (Gveast) was positively linked with MAT, MAP, and
maximum monthly temperature, peaking in Central Africa and western South America (R%model =
0.17). Distribution of non-yeast unicellular fungi (GuceLL) was primarily reflected by soil carbon
stock, MAT, and actual evapotranspiration in May (R?modet = 0.26), with top scores in East African
highlands, Northwest Russia, Northeast USA, and Taiwan.

The highest regional richness of pathogenic fungi (Geath) was registered in the subtropics
and tropics, with diversity hotspots in the Anatolian forests, and East and South Africa. Grath
distribution was primarily explained by regional topography, December-to-March NDVI, plant
richness, and variability of energy and water-energy climatic parameters (Rmoder = 0.29).



Supplementary Figures

Land cover

® Coniferous forest @® Tundra, ® Grassland,

® Mixed forest cold desert,  wet grassland ® Cropland
® Deciduous forest shrubland Desert Urban

Fig. S1. Geographic distribution of study sites.

The map, presented in Goode's homolosine projection, shows the exact locations where the
research was conducted, each marked by a dot. The different colors of the dots signify various
types of land cover. Inset photos, captured by Sten Anslan and Sergei Pdlme, provide visual
representation of some of these sampling sites.
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Fig. S2. Global taxonomic diversity of soil fungal communities as revealed by PacBio
sequencing of the full-length ITS region.

(B) Phylum Basidiomycota. Node size denotes the occurrence of taxa, the color is proportional to
the number of reads.
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Fig. S2. Global taxonomic diversity of soil fungal communities as revealed by PacBio
sequencing of the full-length ITS region.

(C) The other fungal phyla. Node size denotes the occurrence of taxa, the color is proportional to
the number of reads.

Occurrence, %



NMA Unicell.

Mold Yeast

B Tundra . |
Taiga IR
Temp. coniferous forests - Il Taxonomic rank
Temp. broadleaf forests | i
Temp. grasslands - IIa Kingdom
Mediterranean forests ~ mmm N rhylum
Trop. coniferous forests Il N Class
Trop. grasslands B P oder
Trop. dry forests . Family
Trop. moist forests B | G
Montane grasslands . | e
Deserts and drylands e
Tundra PN :
Taiga ~ ——— e Functonsl group
Temp. coniferous TN = EcMm
Temp. broadleaf NIV AM

=

e e =
Trop. con. orests Mo MOLD
Trop. grasslands [ MMM M PATH

B UCEL

M YEAST
I Unknown

Fig. S3. Partitioning of OTU richness among fungal ecological groups.

(A) Partitioning of OTU richness among fungal ecological groups depicted as Euler diagram; AM,
arbuscular mycorrhizal fungi; EcM, ectomycorrhizal fungi; NMA, non-ectomycorrhizal
Agaricomycetes; Path., putative pathogens; Unicell., unicellular non-yeast fungi.

(B) Proportions of OTUs with the least resolved taxonomic annotation and functional annotation in
biomes.
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Fig. S4. Latitudinal distributions of OTU richness of all fungi (Stor)

in the samples collected in different surveys in the northern hemisphere (green) and the southern
hemispheres (blue). Coefficients of determination are shown for cubic polynomials.
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Fig. S4c. Latitudinal distribution of the alpha diversity (S) of fungal ecological groups based
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determination are shown for cubic polynomials.
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Fig. S5. Relative importance of environmental variables for Stor in different datasets.

Variables: edaphic (brown bars; OCS, organic carbon stock), coenotic (green bars; EcM pl. div.,
EcM pl. freq, and NL EcM pl. are the richness, frequency, and number of lineages of EcM plants,
respectively; LC is land cover type; NDVI is normalized difference vegetation index in summer,
winter, and its summer-winter difference; AGB is aboveground biomass carbon stock; BGB is
belowground biomass carbon stock), coeno-climatic (yellow bars; PETvar is seasonality of potential
evapotranspiration; AETx is monthly actual evapotranspiration; Defl is moisture deficit in January),
edapho-climatic (red bars; soil moisture, and soil climatic parameters (59)), and climatic

(blue bars; bioclimatic parameters (56, 58); MAT is mean annual temperature; MAP is mean

annual precipitation; WL is winter length; FWOS is duration of snow-free frozen ground period,;
SCV is snow cover variability).
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legend below).
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Fig. S8. The prediction uncertainty of fungal richness and phylogenetic diversity estimates.
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Fig. S8b. The prediction uncertainty of richness estimates for fungal ecological groups. The
standard deviation of model predictions is used as a measure of uncertainty. Marginal distributions
of the uncertainty values are shown as density plots to the right of the maps.
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Fig. S9. Area of applicability (AOA) for the expected richness (S'ror) of fungi and fungal

ecological groups.

Areas outside the AOA are shown in light-green and denote geographical space where
environmental predictors differ from the values observed in the training data (considering the
variable importance of predictors included in the model).
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Fig. S9b. Ecoregion-scale estimates of the area of applicability (AOA), represented as a
percentage of the ecoregion’s total area.

A darker shade indicates a higher percentage of the area, suggesting that the samples in the
training set aptly represent ecoregion’s habitats. In contrast, lighter shades indicate smaller areas
under AOA, pointing to regions with lower prediction precision. In particular, regions with
pronounced environmental heterogeneity might necessitate a denser sampling to encompass all
ecological niches, warranting future research emphasis. The grey color marks rock and ice areas,
which were excluded from the analysis.
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Fig. S10. Global distribution of hotspots and coldspots of fungal community diversity based
on richness and phylogenetic diversity measures.

Red grid cells represent hotspots of diversity, indicating areas with the highest 2.5% percentile of
global diversity, while blue grid cells represent coldspots of diversity, indicating areas with the lowest
2.5% percentile of diversity.
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S12. Global distribution of the alpha diversity of fungal ecological groups in soil.

Predicted richness (S’) of (A) AM fungi, (B) EcM fungi, (C) pathogens, (D) non-mycorrhizal Agaricomycetes,
(E) molds, (F) yeasts, (G) unicellular fungi, and (H) opportunistic human pathogens. Above and below the
color legends, respectively, OTU numbers and residuals are shown. Plots show latitudinal distributions of S’
for each ecological group through Americas (left), Europe and Africa (central), and Asia and Oceania (right).
Blue and green lines denote southern and northern hemispheres, respectively. Barplots show the importance
of the nine most influential environmental variables for the group’s S (for variable names, see Fig. S5

footnote).
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Fig. S13. Relationships of the richness of ecological groups with environmental variables.

Distribution of S’ of fungal ecological groups along the gradients of mean annual temperature (MAT), mean
annual precipitation (AP), aboveground biomass carbon stock (AGB), soil pH, soil organic carbon stock
(OCS), and soil total nitrogen content (Ntot). Vertical dashed lines denote the within-AOA margins of the
variable range.
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Fig. S17. Predicted global distribution of phylogenetic alpha diversity (Spp’) of soil fungi.

Below the map, latitudinal distribution of the indices in Northern (green) and Southern (blue)
hemispheres (left, Americas; middle, Europe and Africa; right, Asia and Oceania) as well as the
importance of the most influential environmental variables are shown.
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Fig. S18. Compaositional similarity of soil fungal communities.
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Axis 1

(A) PCoA ordination of GSMc samples by OTU composition. Each biome type is highlighted by a
specific color. Diagrams indicate biomes with a dominance of woody vegetation (located on the
left), biomes characterized by herbaceous vegetation (middle), and contribution of predictor
variables to ordination axes (right). Con. denotes coniferous forests; br., broadleaf forests; gr.,

grasslands, savannas, and shrublands.

(B) GDM-based ordination of ecoregion centroids (based on Drax values; Fig. 4D). Biome types are
color-coded, and the point shape denotes biogeographic realm. The predicted OTU composition
along the first axis demonstrates a strong correlation with climate temperature (ruar = 0.90), soil N
content (r =0.77), and seasonality parameters (r >=|0.70]); the second and third axes are correlated
with soil pH (r = 0.58) and soil temperature diurnal range (r = -0.55), respectively.
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Fig. S19. Fitted I-splines of environmental variables affecting.

(A) OTU (Drax) and (B) phylogenetic lineages (Dep) composition of soil fungal communities as
identified by the generalized dissimilarity modeling (GDM). The relative y-axis range of variables
indicates the relative strength of that variable in determining community dissimilarity, while the
nonlinearity of the response indicates which sections of the environmental gradient have steeper
predicted compositional dissimilarity. BioO1, mean annual temperature (°C); Bio02, mean diurnal
range (°C); AET, actual monthly evapotranspiration (mm); AGB, aboveground biomass carbon
density (MgC/ha); N, total nitrogen in soil (cg/kg); NDVI, normalized difference vegetation index;
NDVInp, normalized difference between summer and winter NDVI; OCS, organic carbon stocks
(ton/ha); PET seasonality, monthly variability in potential evapotranspiration (mm/month); WL,
winter length (number of days)
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Fig. S20. Predicted phylogenetic dissimilarity of soil fungal communities.

(A) Gradients in phylogenetic lineages composition derived from GDM-transformed environmental predictors. Color similarity between
localocations is proportional to phylogenetic similarity of their fungal communities. (B) Predicted dissimilarity in phylogenetic lineages
composition among soil fungal communities within ecoregions (median of D'pp).
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.

Fig. S21. Global distribution of the expected (A) local turnover and (B) local phylogenetic turnover of fungal communities.
D'rax and D'pp averaged within a 150-km radius. Darker values denote higher turnover.
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Fig. S22. Latitudinal distribution of median values of fungal community taxonomic (D'rax) and
phylogenetic (D'rp) dissimilarities in the ecoregions with different degrees of altitudinal
heterogeneity in northern (green circles, solid lines) and southern (blue triangles, dashed
lines) hemispheres.

Standard error bounds around regression lines are shown with shaded areas. Altitudinal
heterogeneity is defined as the interquartile range (IQR) of elevations within an ecoregion; point size
is proportional to the elevation IQR within each IQR class. The table contains standardized
regression coefficients and corresponding P-values for the effect of latitude revealed by the
linear regression model.
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Fig. S23. Latitudinal distribution of ecoregional D'rax-to-D'ro ratio in ecoregions classified by low,
medium, and high altitudinal differences.

Linear regression fits are indicated by lines, and shaded areas represent confidence limits.
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Fig. S24. Gamma diversity of fungal ecological groups at the ecoregion scale.
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Shaded areas denote the 95% confidence interval on the fitted values.
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Figures Pertaining to Methodological Approaches

For alpha diversity analyses, we initially compared several metrics, viz. residuals of logarithmically-
transformed fungal richness against the logarithm of sequencing depth, residuals from
untransformed richness against square-root-transformed and log-transformed sequencing depth
(5), exclusion of singletons, Shannon index of diversity, traditional rarefaction to minimum common
sequencing depth (500 reads), and SRS normalization (69) to 500 or 3894 (median) reads (fig.
S26). Because the approach including singletons and log-log transformation for selecting
residuals resulted in best-supported models (fig. S27), we chose this approach for further analyses.
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Fig. S26. Standardization effect on richness of fungal communities.
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Comparison of (A) richness proxies (use of log-transformation, residuals of sequencing depth, SRS
or simple rarefaction) and (B) measures of soil pH on analytical performance. Relative goodness
was estimated based on the determination coefficients of the best models (A) or pH-only models (B).
In the panels to the left, significant among-group differences are indicated with different letters based
on Tukey post hoc tests; bars, means; whiskers, SE. Soil pHkc was determined experimentally,
whereas pHu20 was obtained from (67).
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Fig. S27. Relative ‘species’ accumulation curves (A-C), sequencing depth (D) and ‘species’
richness (E-F) across four datasets.

(A) The log-log relationship between the number of reads and ‘species’ richness that was used for
calculation of residuals and further analyses; (B-C) Relatively lower performance of log-linear

relationships of log-transformed and square-root-transformed sequencing depth;

(D) Initial

differences in sequencing depth among datasets; (E-F) Fungal ‘species’ richness differences relative
to the average in the raw data (F) and residuals of the log-log regression analysis (F). In D-F, boxes
indicate standard errors around the mean and whiskers indicate 95% confidence intervals; letters
above whiskers indicate statistically significant differences among datasets (using log-transformed
data for D-E). These analyses indicate that the log-log transformation for calculating residuals is
relatively more robust compared to other methods and that richness estimates from studies with

different methods cannot be directly compared.
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Fig. S28. Maps of the spatial distribution of the environmental variables, associated with
fungal richness.

(A) annual mean temperature (56); (B) percent of days of frozen ground without snow (lack of
subnivium); (72)); and actual evapotranspiration in (C) January and (D) June (60). Marginal
distributions of the predictors' values are shown as density plots to the right of the maps.
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Supplementary Tables

Table S1. Partitioning of OTUs among fungal ecological groups
Table S2. A list of explanatory variables included in the modeling

Table S3. Fungal richness (S'ror, consensus map) across different ecoregions and land cover types

Table S4. Importance of key environmental variables in relation to fungal richness and phylogenetic
diversity

Table S5. Global variability of predicted local richness of fungal ecological groups

Table S6. Correlations of fungal phylogenetic diversity (Sep) and dispersion (SESpp) with richness
of ecological groups (S). LCI and UCI, lower and upper 95% confidence intervals.

Table S7. Divergence of all terrestrial biomes in mycobiota composition (results of PERMANOVA)

Table S8. Average alpha, beta, and gamma diversity of soil fungal communities in different
ecoregions (46)

Table S9. Impact of geographical factors including area type (continent or island), island area,
distance from mainland, and altitudinal span on gamma diversity estimates of soil fungi

Table S10. Correlation matrix of alpha (S’) and gamma (G) diversity estimates for soil fungi
Table S11. Key predictors influencing fungal gamma diversity
Table S12. The structure of the datasets used in the analysis (the number of samples and OTUS)

Table S13. Summary of quality-filtered sequencing reads per sample across different datasets

Tables S1-S13 are available online as a Separate . XLSX file under the Supporting Materials for
this article.
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