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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The paper addresses a significant problem in drug discovery and proposed meta-learning-based 

subgraph matching method. Each target protein has its own model, adapted from the meta-model to 

explicitly capture the information from the binding target. The paper is generally easy to follow and 

well-presented. The authors also conducted intensive experiments to validate the advantage of the 

proposed method over a couple of state-of-the-art baseline methods. 

 

However, there are a couple of concerns of the paper, listed as follows. 

 

The experimental setup may be problematic. The paper uses random split to separate the whole dataset 

into training/validation/test sets, which may bring some biases for drug-target interaction problems. The 

scaffolding split (split training/validation/test set based on scaffolds of the drug and target protein) 

would be a better split strategy for the drug-target interaction problem, because scaffolding split would 

make sure that for the data points (drug-target pair) in the test set, both drug and target protein does 

not appear in training and validation set. Please refers to 

https://tdcommons.ai/functions/data_split/#scaffold-split for more details. 

For empirical studies, it could be great if the authors can show the results of multiple independent runs 

with different data split and random seeds, which would make results more convincing. 

The authors should emphasize the methodology novelty of the paper. What is the difference between 

the proposed method and the reference [48]? I understand the subgraph information bottleneck is the 

major methodology novelty. 

In your GCN formulation in Equation (2), do you use bias parameters? Based on my experience, 

removing the bias parameter would degrade the GCN's performance. 

For protein embedding, protein can be either represented as a 1D amino acid sequence or a 3D 

geometric structure, however, GCN can embed 2-dimensional graph only. So, it needs more explanation 

on how to use GCN to represent the target protein structure. 

The whole objective function is a min-max optimization problem, how do you solve this problem? Please 

elaborate on the details. 

I also suggest authors use bold capitalized letters for the matrix and bold lowercase letters for the vector 

to discriminate it from the scalar. 

 

 



Reviewer #2 (Remarks to the Author): 

 

Please kindly review the attached file. Thank you! 

 



Key results 
The paper presents a novel meta-learning framework for predicting protein-
drug interactions, addressing the challenge of learning interactions involving 
new drugs or proteins. The core architecture of the proposed model is a 
graph neural network that represents both the drug and protein structures 
as graphs, incorporating atom features and pre-trained residue embeddings 
as node features. To capture the binding pocket of the protein, a subgraph 
information bottleneck technique is employed. 

Validity 
1. Figure 2b does not provide conclusive evidence regarding the 

correlation between the number of training proteins and the 
performance of the models (DeepConv, GraphDTA, DeepPurpose, 
AIbind, and Zerobind). The plot suggests that there may not be a clear 
relationship between these factors. However, further analysis and 
statistical tests are needed to draw definitive conclusions. 

2. The authors introduce the Jaccard similarity between the learned 
binding pocket and the true binding pocket. From Figures 2a and 2b, 
it appears that the false positive rate is relatively high. Changing the 
binding pocket can indeed alter the binding configuration, leading to 
different binding affinity or interaction. There is a concern that the 
Subgraph Information Bottleneck (SIB) module may learn factors other 
than the binding pocket since the entire process is unsupervised. To 
address this concern, it would be valuable to investigate the 
performance when the true binding pocket is provided or when the SIB 
module is trained in a supervised manner. Additionally, conducting an 
ablation study could further support the argument for the validity of 
the SIB module.  

Significance 
The paper highlights three primary contributions: meta-learning, task 
adaptive self-attention, and IB-subgraph. However, it should be noted that 
these methods have been previously employed in the drug-protein 
prediction task, so the level of novelty may not be particularly high. For 
instance, MetaDTA [1] has utilized similar techniques for learning and task 
adaptive self-attention. Additionally, the idea of learning the binding pocket 
unsupervised through IB-subgraph has been extensively explored, as seen in 
studies like GEFA [2]. To demonstrate the effectiveness of the proposed 



approach, the authors should compare their results with these baseline 
methods and clearly showcase the improvements achieved through their 
design. 

Data and methodology 
It is important for the authors to include details about the data used in the 
COVID drug section. Without this information, it becomes difficult to verify 
the results of the experiment conducted in that particular domain. 

References 
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[2] Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). GEFA: early fusion 
approach in drug-target affinity prediction. IEEE/ACM Transactions on 
Computational Biology and Bioinformatics, 19(2), 718-728. 

Your expertise 
I have a high level of confidence in my review of the drug-protein modelling, 
data, and experiment, and I would rate it 4 out of 5. However, I am less 
confident in the usage of meta-learning in the drug-protein context, and I 
would give it a score of 2 out of 5. 



We carefully addressed all the comments. The changes have been highlighted in red in the revised 
manuscript. The detailed responses to the reviewers are attached below and highlighted in blue. We 
highly appreciate the constructive comments, which are very helpful in strengthening this paper. 
 

Response to reviewer 1 
The paper addresses a significant problem in drug discovery and proposed meta-learning-based 
subgraph matching method. Each target protein has its own model, adapted from the meta-model to 
explicitly capture the information from the binding target. The paper is generally easy to follow and 
well-presented. The authors also conducted intensive experiments to validate the advantage of the 
proposed method over a couple of state-of-the-art baseline methods. 
A：Thanks for your comments on our manuscript. Below comments are constructive to strengthen 
the manuscript. We have revised the manuscript according to the below comments. 
 
1. Q：The experimental setup may be problematic. The paper uses random split to separate the 

whole dataset into training/validation/test sets, which may bring some biases for drug-target 
interaction problems. The scaffolding split (split training/validation/test set based on scaffolds 
of the drug and target protein) would be a better split strategy for the drug-target interaction 
problem, because scaffolding split would make sure that for the data points (drug-target pair) 
in the test set, both drug and target protein does not appear in training and validation set. Please 
refers to https://tdcommons.ai/functions/data_split/#scaffold-split for more details. 
A：Thanks for your comments. We have updated our experiments with scaffold split setup. The 
updated results are shown in Results part and the scaffold split setting is presented in Dataset 
Generation and Augmentation section of the revised manuscript. 
 
We construct three independent test sets for model evaluation through protein sequence 
similarity clustering by cd-hit and molecule scaffold split: 1) Transductive test set, where 
molecules with the same scaffold and proteins with the same cluster are in the training set, but 
their interactions do not exist in the training set; 2) Semi-inductive test set, where the proteins 
in the same cluster are in the training set, but the molecules with the same scaffold are not; 3) 
Inductive test set, where molecules with the same scaffolds and proteins in the same clusters 
are not in the training set. 
 
 

2. Q：For empirical studies, it could be great if the authors can show the results of multiple 
independent runs with different data split and random seeds, which would make results more 
convincing. 
A：We have conducted five independent experiments using different random seeds. The updated 
average results are shown in Table S1 and Figure 2a of the revised manuscript, and the t-test p-
values are also significant for performance comparison. 
 

3. Q: The authors should emphasize the methodology novelty of the paper. What is the difference 
between the proposed method and the reference [48]? I understand the subgraph information 
bottleneck is the major methodology novelty. 
A: Thanks for your comments. We introduce our further development of reference [48] in our 



DTI prediction. Reference [48] aims to find the subgraph information bottleneck, i.e. the 
maximally informative and compressive subgraphs regarding the graph label. In our task, we 
aim to find the protein binding pockets under the unsupervised training process that does not 
use binding pocket labels during model training, since the amount of protein pockets data is 
much smaller than the amount of DTI binding data. So we design the IB-subgraph to find the 
protein pocket by optimizing IB-Subgraph on the binding DTI labels instead of the binding 
pocket labels. Considering the protein pockets are determined by both proteins and molecules, 
we take the concatenation of molecule embedding and protein embedding as input when we 
generate the node assignment matrix ܼ  in Equation (4). In addition, the ܫሺܻ,ܩ௦௨௕ሻ  in 
Equation (8) is formulated as the opposite value of ℒ௖௟௦  which corresponds to the cross-
entropy loss between the predicted binding DTI label and the ground truth. It is important to 
note that our ℒ௖௟௦ does not refer to the cross-entropy loss between the predicted binding pocket 
labels and the true binding pocket labels, as described in reference [48]. We claim these points 
in section “Subgraph learning in ZeroBind for potential binding pockets in proteins” of the 
revised manuscript. 
 

4. Q: In your GCN formulation in Equation (2), do you use bias parameters? Based on my 
experience, removing the bias parameter would degrade the GCN's performance. 
A: We have used the bias parameters in Equation (2) and other similar equations. We have 
revised the formulations in the revised manuscript. 
 

5. Q: For protein embedding, protein can be either represented as a 1D amino acid sequence or a 
3D geometric structure, however, GCN can embed 2-dimensional graph only. So, it needs more 
explanation on how to use GCN to represent the target protein structure. 
A: Thanks for your comments. As you can see in “Graph construction for proteins and drugs” 
section and Figure 5(b), we encode protein 3D structure information into a graph by taking 
residues as graph nodes and whether the distance between residues in 3D structure space 
exceeds a threshold as graph edges. If the distance between two residues is less than 8 angstroms 
(Å) 1, the two residue nodes are connected with one edge. For node features of the protein graph, 
we use the pre-trained embeddings of residues as the node features. We updated the details in 
Definition 2 of section “Graph construction for proteins and drugs” in the revised manuscript. 
 

6. Q: The whole objective function is a min-max optimization problem, how do you solve this 
problem? Please elaborate on the details. 
A: To accurately estimate the predicted values, Equation (11) serves as the overall loss function, 
which is optimized using the gradient descent during the model training:  minఏಾ,ఏು,ఝభ,ఝమ,ఏ೎೗ೞ ℒ௕௔௦௘ = ℒ௖௟௦ + ଵℒெௌாߣ + ଶℒெூି௣௥௢ߣ ሺ11ሻ ݏ. ∗ଶ߮.ݐ = maxఝమ݃ݎܽ ℒெூି௣௥௢ 
The ℒ௖௟௦ measures the discrepancy between the estimated distribution and the original data 
distribution by utilizing the cross-entropy between the predicted values and the ground truth 
(the DTI labels instead of local binding pocket labels). The ℒெௌா, as indicated by Equation 
(6), encourages the node assignment matrix ܼ to approach either 1 or 0. The ℒெூି௣௥௢, as 



indicated by Equation (8), represents the approximation of the mutual information of ܩ and ܩ௦௨௕ introduced in Equation 7. The Equation (7) seeks the subgraph information bottleneck 
by maximum the mutual information of ܻ and ܩ௦௨௕ minus the mutual information of ܩ and ܩ௦௨௕.  maxீೞೠ್ ௦௨௕ሻܩ,ሺܻܫ − ௦௨௕ሻܩ,ܩሺܫߚ ሺ7ሻ 
The lower bound of ܫሺܻ,ܩ௦௨௕ሻ is formulated as the opposite value of ℒ௖௟௦. Therefore, the 
minimization of ℒ௖௟௦  also increases the lower bound of ܫሺܻ,ܩ௦௨௕ሻ . The upper bound of ܫሺܩ,ܩ௦௨௕ሻ could be approximate by using the DONSKER-VARADHAN representation of the 
KL-divergence. 

maxఝమ ℒெூି௣௥௢ሺ߮ଶ,ܩ௦௨௕ሻ = 1ܰ ෍݁ݏ݊݁ܦ൫ܩ௜ ௦௨௕೔;߮ଶ൯ேܩ,
௜ୀଵ − log 1ܰ ෍ ݁஽௘௡௦௘ቀீ೔,ீೞೠ್ೕ;ఝమቁே

௜ୀଵ,௝ஷ௜ ሺ8ሻ 
where ݁ݏ݊݁ܦሺ∙ሻ is the dense network of several MLP layers with the concatenation of the 
embedding of ܩ and ܩ௦௨௕ as the input.  

To maximize Equation (7) and achieve subgraph information bottleneck, the lower bound 
of ܫሺܻ,ܩ௦௨௕ሻ need to increase as much as possible and the upper bound of ܫሺܩ,ܩ௦௨௕ሻ needs 
to decrease. Therefore, we begin by performing gradient descent on the negative of ℒெூି௣௥௢ 
within the dense network. The goal is to maximize ℒெூି௣௥௢ and achieve the upper bound of ܫሺܩ,ܩ௦௨௕ሻ, thus satisfying the constraints of Equation 11. After that, we utilize gradient descent 
to optimize Equation (11). By optimizing ℒ௖௟௦, we increase the lower bound of ܫሺܻ,ܩ௦௨௕ሻ, 
and by optimizing ℒெூି௣௥௢, we decrease the upper bound of ܫሺܩ,ܩ௦௨௕ሻ. This approach aims 
to maximum Equation (7) and seek the subgraph information bottleneck.  

We summarized the details in section “Subgraph learning in ZeroBind for potential 
binding pockets in proteins” of the revised manuscript 

 
7. Q: I also suggest authors use bold capitalized letters for the matrix and bold lowercase letters 

for the vector to discriminate it from the scalar. 
A: Thanks for your suggestions. The letters in Equations have been standardized in the revised 
manuscript. 

 
 
 
 

Response to Reviewer2 
Key results  
The paper presents a novel meta-learning framework for predicting protein-drug interactions, 
addressing the challenge of learning interactions involving new drugs or proteins. The core 
architecture of the proposed model is a graph neural network that represents both the drug and 
protein structures as graphs, incorporating atom features and pre-trained residue embeddings as 
node features. To capture the binding pocket of the protein, a subgraph information bottleneck 
technique is employed. 
A：Thanks for your comments on our manuscript. Below comments are constructive to strengthen 
the manuscript. We have revised the manuscript according to the below comments. 



 
1. Q: Figure 2b does not provide conclusive evidence regarding the correlation between the 

number of training proteins and the performance of the models (DeepConv, GraphDTA, 
DeepPurpose, AIbind, and Zerobind). The plot suggests that there may not be a clear 
relationship between these factors. However, further analysis and statistical tests are needed to 
draw definitive conclusions. 
A: Thanks for your comments. If we understand correctly, you may ask the correlation between 
the number of the training molecules (not proteins) and the performance of the models. Figure 
2b mainly shows AUROC comparison of the protein-specific ZeroBind and the baseline 
methods for 775 proteins. We have additionally provided Figure 2c, which presents the number 
of proteins that the method performs the best among the six methods for different ranges of the 
binding molecule numbers. We can see that ZeroBind outperforms other baseline methods for 
most proteins with only a few known binding drugs, followed by AI-Bind. 
 

2. Q: The authors introduce the Jaccard similarity between the learned binding pocket and the true 
binding pocket. From Figures 2a and 2b, it appears that the false positive rate is relatively high. 
Changing the binding pocket can indeed alter the binding configuration, leading to different 
binding affinity or interaction. There is a concern that the Subgraph Information Bottleneck 
(SIB) module may learn factors other than the binding pocket since the entire process is 
unsupervised. To address this concern, it would be valuable to investigate the performance when 
the true binding pocket is provided or when the SIB module is trained in a supervised manner. 
Additionally, conducting an ablation study could further support the argument for the validity 
of the SIB module. 
A: The binding pocket data is far less than the DTI data, and the protein structures predicted by 
AlphaFold2 still have no known binding pockets. Of the 1603 proteins in the benchmark dataset, 
only 535 proteins have part of known binding pockets. Thus, it is difficult to train the SIB 
module in ZeroBind for all proteins to detect binding pockets using the local binding pocket 
labels. Instead, we train SIB module of ZeroBind using the global DTI binding labels, which 
potentially guides the SIB module to locate the potential pockets in proteins. We discuss this 
point in the Discussion section of the revised manuscript. 
In addition, we presented the ablation study about the SIB module and we further conduct an 
experiment by setting the node assignment matrix ܼ in Equation (4) randomly. The results 
show that randomly selected residues as binding pockets almost have no overlap with true 
binding pockets (Figure 3a and b), and the Jacaard similarity is much smaller than that of 
ZeroBind for predicted binding pockets. The results prove the validity of the SIB module for 
identifying potential binding pockets in an unsupervised way. The results are also shown in 
Ablation studies part. In summary, the results indicate that the SIB module in ZeroBind learns 
the potential binding pockets instead of other unrelated factors. 
 

3. Q: The paper highlights three primary contributions: meta-learning, task adaptive self-attention, 
and IB-subgraph. However, it should be noted that these methods have been previously 
employed in the drug-protein prediction task, so the level of novelty may not be particularly 
high. For instance, MetaDTA has utilized similar techniques for learning and task adaptive self-
attention. Additionally, the idea of learning the binding pocket unsupervised through IB-



subgraph has been extensively explored, as seen in studies like GEFA. To demonstrate the 
effectiveness of the proposed approach, the authors should compare their results with these 
baseline methods and clearly showcase the improvements achieved through their design. 
A: Thanks for your comments. We mentioned both MetaDTA and GEFA in the Introduction 
section of the revised manuscript. 
MetaDTA is a ligand-based DTI prediction method under the meta-learning framework, it is a 
few-shot predictor for proteins with a few known binding drugs. MetaDTA uses Multi-head 
Cross-Attention network to capture the relationship between the support and the query ligands 
instead of different proteins. In contrast, ZeroBind utilizes a Task Adaptive Self-Attention 
module to learn the importance of different tasks of proteins. MetaDTA does not use any 
protein information and cannot support zero-shot prediction for unseen proteins without any 
known binding drugs in the training set. Our method ZeroBind is focused on the zero-shot 
prediction, although ZeroBind supports few-shot prediction, and we also demonstrate the 
effectiveness of ZeroBind for few-shot prediction. In addition, MetaDTA is still an ICLR 
conference workshop paper, and did not provide the source codes publically for independent 
running. Thus, it is difficult for us to compare our method with MetaDTA. 
 

GEFA combines pre-trained protein embeddings and a graph-in-graph neural network with 
attention mechanism to capture the interactions between drugs and protein residues, it does not 
use any subgraph-based methods, including IB-subgraph, to learn potential binding pockets. 
We also searched the literature and did not find any published methods that uses subgraph 
matching to identify potential binding pockets in the proteins.  
GEFA requires 2D contact map information, embeddings, secondary structure element and 
solvent accessibility as input features, which require third-party tools to obtain them. We tried 
to run their source codes on our benchmark datasets, but it failed since the authors of GEFA did 
not provide Readme (https://github.com/ngminhtri0394/GEFA) about how to run the method 
on new datasets and make it difficult to run it on our datasets. We opened an issue at GEFA 
Github, but we still did not receive a response. 
To validate the effectiveness of our method, we added another recently published baseline 
method DrugBAN2 to compare with our method and the results show that ZeroBind is superior 
to DrugBAN. 
 
 

4. Q: It is important for the authors to include details about the data used in the COVID drug 
section. Without this information, it becomes difficult to verify the results of the experiment 
conducted in that particular domain. 
A: The PDB IDs for protein structures used in the COVID drug section are shown in 
Supplementary Table 3 and the data is also available at 
http://www.csbio.sjtu.edu.cn/bioinf/ZeroBind/datasets.html and the Github repository 
https://github.com/myprecioushh/ZeroBind/tree/main/data. 
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REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have adequately addressed the majority of my concerns. However, I still have one 

remaining question: 

 

In relation to the ablation study concerning the SIB module for the binding pocket, I find that randomly 

selecting residues as the binding pocket represents a rather simplistic baseline. This approach does not 

convincingly demonstrate whether SIB can effectively learn the binding pocket. To further investigate 

this aspect, I would suggest conducting an experiment using a subset of 535 proteins that have well-

defined binding pockets. In this experiment, the Z component can be replaced with the ground truth 

binding pocket. If SIB is indeed capable of learning the binding pocket, the performance difference 

between the original experiment and this modified version should not be too significant. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript didn't show enough novelty in comparison to previous works, and as a result the 

improvement is quite marginal relative to graphDTA, AI-bind, etc. As for the prestigious journal, I would 

like to see wet experimental validation . 



We carefully addressed all the comments. The changes have been highlighted in red in the revised 

manuscript. The detailed responses to the reviewers are attached below and highlighted in blue. We 

highly appreciate the constructive comments, which are very helpful in strengthening this paper. 

 

Response to reviewer 2 

REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have adequately addressed the majority of my concerns. However, I still have one 

remaining question: 

 

In relation to the ablation study concerning the SIB module for the binding pocket, I find that 

randomly selecting residues as the binding pocket represents a rather simplistic baseline. This 

approach does not convincingly demonstrate whether SIB can effectively learn the binding pocket. 

To further investigate this aspect, I would suggest conducting an experiment using a subset of 535 

proteins that have well-defined binding pockets. In this experiment, the Z component can be 

replaced with the ground truth binding pocket. If SIB is indeed capable of learning the binding 

pocket, the performance difference between the original experiment and this modified version 

should not be too significant. 

R: Thanks for your comments. As suggested, we train a variant ZeroBind of using true 

binding pocket as the node assignment matrix 𝐙 for the inductive test set. This variant 

ZeroBind achieves an average AUROC of 0.8278, which is higher than the AUROC 0.8032 

of the ZeroBind that uses learned node assignment matrix 𝐙  by a narrow margin. The 

experimental results further validate the effectiveness of the IB-subgraph module in 

ZeroBind. We mentioned this result in third paragraph of the section “ZeroBind detects the 

subgraphs that align well with known binding pockets of proteins in a weakly supervised 

way” 

 

 

Response to reviewer 3 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript didn't show enough novelty in comparison to previous works, and as a result the 

improvement is quite marginal relative to graphDTA, AI-bind, etc. As for the prestigious journal, I 

would like to see wet experimental validation . 

R: Thanks for your comments. As mentioned in our manuscript, we summarized our 

contribution as follows: 

1) We propose model-agnostic IB-subgraph learning to automatically discover compressed 

subgraphs as potential binding pockets in proteins instead of redundant graph information 

derived from the whole protein. To date, there are still no existing methods that using 

subgraph to detect potential binding pockets in proteins. graphDTA, AI-bind only can be 

used to predict DTIs without too much biological interpretability. 



2) We conduct extensive experiments on three independent zero-shot test sets and one 

few-shot test set. Results show that ZeroBind consistently outperforms existing methods. 

Compared to the second best method, ZeroBind achieves relative improvements in AUROC 

with 2.86% on the Transductive test set, 10.29% on the Semi-inductive test set, and 3.38% 

on the Inductive test set, the corresponding t-test p-value is 1.02×10-6, 8.02×10-11, 3.06

×10-7, respectively. We can see that ZeroBind significantly outperforms existing methods. 

3) We are a pure computational biology group, it is very difficult for us to validate the 

results using wet-lab experiments. Further validation of real-world SARS-COV-2 drug-

target binding prediction demonstrates the reliability of ZeroBind predictions using 

docking software, which is widely used to evaluate the detected drug-target interactions. 
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