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1 Melting temperature

Due to the slow kinetics of the gel-liquid phase transition, estimating the melting temperature

can be difficult to estimate in simulations.S1 For use in automated parameterization methods,

where the melting temperature of many candidate solutions has to be estimated, the trade-

off between accuracy and computational cost is of particular high importance. Preparing

the system in stripes, i.e., half gel and half fluid (cf. Figure S1A), bypasses the slowest

step in the transition, the nucleation.S1 By simulating the biphasic system at a range of

temperatures, observing the direction and rate of domain growth, and fitting rates to an

Arrhenius-like equation, Coppock and Kindt have estimated Tm for atomistic DPPC and

DPSM.S1 In tests performed by us with Martini DPPC and DPSM, this procedure did

not provide results reliable enough for application in a high-throughput manner. A similar

biphasic system setup was used by Carpenter et al.S2 in Martini lipid refinement. Instead

of fitting domain growth rates, they used the area per lipid as a proxy for which phase

prevails at a certain temperature, utilizing the fact that the highly ordered tails in the

gel phase result in a much smaller area per lipid compared to the liquid phase. Phase

identification with this procedure is very fast and reliable at temperatures more than a

few Kelvin away from the transition temperature. The melting temperature is then given

as a range between the highest temperature where the system converges to a gel phase

and the lowest temperature the system ends up in the liquid phase. The accuracy of this

method is strongly influenced by the employed temperature-spacing. Close to the transition

temperature, longer and repeated simulations are necessary, due to the stochasticity of the

melting/freezing process (cf Figure S1B).

The area per lipid has a positive linear relationship with temperature and a sharp increase

at the melting temperature, as shown in Figure S2a. Therefore, to estimate the melting

temperature from the temperature-dependent APL data, we fit the sigmoidal function

APL(T ) = APL0 + c · T +
∆APL

(1 + exp(−k · (T − Tm)))
(1)
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A

B

Figure S1: Melting temperature estimation. A: Snapshot of initial configuration of a DPSM
bilayer, where half of the lipids is in the gel phase, while the other half is in the fluid phase.
B: Area per lipid vs. time at different temperatures. The shaded area represents the time
window over which the area per lipid is averaged for use in the fit of Eq. 1. Production
simulations during PSO are typically 25 ns long.
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(b) melting temperature.S3

Figure S2: Estimation of melting temperatures with two independent methods for the old
DPSM model.

where T is the temperature, APL0 is the theoretical area per lipid at T = 0K, c is the slope

in the linear regime, ∆APL describes the height of the APL jump at the melting temperature

Tm, and k determines the broadness of the transition.

When using this method in an automated parameterization setting, the case that Tm

might be outside of the predefined temperature range has to be handled properly. To this

end we additionally fit a line to the APL(T ) data and use the Akaike information criterion

(AIC)S4,S5 with the modification for small sample sizes (AICc)S6 to determine which model

(sigmoidal or linear) is a better description of the data. If the linear model is better, i.e.,

it has a lower AICc, and all APL values are above or below a threshold (the average initial

APLs), Tm is considered to be out of range and Tm is set to a particular low or high value,

respectively. Hereby, candidate solutions with a melting temperature far off the target value

receive a high cost value in the PSO. If the sigmoidal model is selected, or the linear model

is a better fit but the APL values cross the threshold, Tm is taken from the sigmoidal fit. A

few typical examples of this procedure are shown in Figure S3.

All of the above biphasic methods are sensitive to the construction of the stripe structure.
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In particular, an improperly equilibrated gel phase can lead to an underestimation of Tm.S1

An alternative, independent approach to estimate Tm is based on a two-state kinetic rate

model from Kowalik et al.S3 In this approach a system in the gel phase is heated with different

heating rates. According to the two-state kinetic rate model, the melting process can be

divided into regimes of reversible and irreversible melting. In the reversible melting regime,

for slow heating rates, the system is assumed to be close to thermal equilibrium and melting

and freezing can both occur. In this regime the apparent melting temperature is independent

of the heating rate r, i.e., T app
m (r) ≈ T eq

m . For fast heating rates, melting is assumed to be

irreversible. In the irreversible melting regime, the two-state model predicts a dependency

of the apparent melting temperature on the heating rate which can be approximated by

T app
m (r) ∝ ln r. Both regimes are divided by a characteristic heating rate req.

Kowalik et al. used a series of melting simulations with fast heating rates, i.e., in the

irreversible regime, to obtain several T app
m (r) values, determine the characteristic melting

rate req, and finally extrapolate the equilibrium melting temperature T eq
m . Based on the

two-state kinetic rate model from Kowalik et al., Sun and BöckmannS7 simply used a broad

range of heating rates, including the reversible regime. The equilibrium melting temperature

was calculated by averaging over the Tm(r) in the reversible regime, i.e., r < req.

Due to the slow rates and concomitant long simulation times, we use this approach only

for validation. To minimize bias caused by the quenched starting conformations we typically

generate eight independent conformations for each validated candidate solution.

The rate dependent melting temperatures in this approach are obtained by fitting

H(T ) = H0 + cp · T +
∆H

(1 + exp(−k · (T − Tm)))
(2)

where H is the enthalpy, cp the heat capacity, H0 is the enthalpy at T = 0K, ∆APL

describes the height of the APL jump at the melting temperature Tm, and k determines the

broadness of the transition. The functional form is the same as in Eq. 1. Figure S2b shows
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results of this approach for the old DPSM model. The heating rate dependency matches

the prediction of the two-state model. Comparision of Figures S2a and S2b show that the

melting temperatures for the old DPSM model, obtained with both approaches, are in good

agreement.
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Figure S3: Examples of fit model selection in the biphasic approach to estimate Tm.
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1.1 Melting temperature validation of 4 best candidate solutions
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Figure S4: Tm of the 4 best candidate solutions with the reversible melting approach.
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2 Noise
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Figure S5: Noise levels of individual observables.
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Figure S6: Comparison of cost evolution during optimization with and without noise-
mitigation through resampling.
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Figure S7: Evolution of the cost of gbest(t) with different swarm sizes.
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3 DPSM-CHOL 2d center-of-mass radial distribution func-

tion
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Figure S8: 2d COM radial distribution function (RDF). The distance r is measured in the
x-y plane, i.e., parallel to the membrane. The 2d RDF is calculated per leaflet and averaged.
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4 DPSM topology for Gromacs
[ moleculetype ]
; molname nrexcl
DPSM 1

[ atoms ]
; id type resnr resname atomname cgnr charge

1 Q1 1 DPSM NC3 1 1.0
2 Q5 1 DPSM PO4 2 -1.0
3 SP2 1 DPSM AM1 3 0.0
4 P1 1 DPSM AM2 4 0.0
5 C1 1 DPSM T1A 5 0.0
6 C1 1 DPSM C2A 6 0.0
7 C1 1 DPSM C3A 7 0.0
8 C1 1 DPSM C1B 8 0.0
9 C1 1 DPSM C2B 9 0.0

10 C1 1 DPSM C3B 10 0.0
11 C1 1 DPSM C4B 11 0.0

[ bonds ]
; i j funct r0 fc

1 2 1 0.40000 7000
2 3 1 0.33632 8207
3 4 1 0.29241 6909
3 5 1 0.50190 5239
5 6 1 0.47000 3800
6 7 1 0.47000 3800
4 8 1 0.34964 4483
8 9 1 0.47000 3800
9 10 1 0.47000 3800

10 11 1 0.47000 3800

[ angles ]
; i j k funct theta0 fc

2 3 4 2 147.805 81.78
2 3 5 2 173.718 88.64
3 5 6 2 180.000 45.16
5 6 7 2 180.000 35
4 8 9 2 180.000 96.23
8 9 10 2 180.000 35
9 10 11 2 180.000 35
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