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1. LSTM-GLM Automated Hyperparameter Selection. We introduce an automated
selection process for two important LSTM-GLM hyperparameters: the dimension of the con-
text vectors, s, and the number of LSTM autoencoder training epochs, ep. The process is
outlined below at a given prediction time τ .

1. Specify a set of D candidate hyperparameter settings D = {(s1, ep1), . . . , (sD, epD)}.
2. For each d= 1, . . . ,D:

a) For each of the k = 1, . . . , p biomarkers:
i. Train an LSTM autoencoder for epd epochs to construct sd-dimensional, window-

specific context vectors ψd
ik(τ) for all i such that Yi > τ .

b) Define ψd
i (τ) = {ψd

i1(τ), . . . ,ψ
d
ip(τ)}.

3. Using R unique divisions of the data:
a) Divide the data into a training data set containing 100ω percent of at-risk patients and

a testing data set containing the other 100(1 − ω) percent of at-risk patients, where
ω ∈ (0,1). Stratify on the censoring indicator ∆i.

b) For each d= 1, . . . ,D:
i. Fit the LSTM-GLM on the baseline covariates Xi and the window-specific context

vectors ψd
i (τ) using patients i in the training data set.

ii. Compute the loss defined in Equation (1) on patients i in the testing data set.

(1)
1∑

i
∆iI(Yi>τ)

Ĝ(Yi)

m∑
i=1

∆iI(Yi > τ)

Ĝ(Yi)

[
(Yi − τ)− g{η(τ) + γ(τ)TXi +α(τ)

Tψd
i (τ)}

]2
4. For each d= 1, . . . ,D:

a) Calculate the median of the R testing losses computed in Step 3b. Denote the median
testing loss for hyperparameter setting d as m(d).

5. Define dopt = argmind{m(d)}. Select s= sdopt and ep= epdopt .

The selection of R and ω should be guided by the size of the data set under study and the
computational resources available. Note, the automated hyperparameter selection process
must be repeated at each prediction time τ ∈ T .

2. Comparative Methods for Performance Evaluation. We dynamically predict MRL
using the LSTM-GLM, the LSTM-NN, and six variations of the dynamic transformed MRL
model, and we compare the prediction performance of the competing methods. For each of
the six dynamic transformed MRL models, we define a distinct function of the history of
longitudinal biomarker measurements, ζi(τ) = f{Zi(ti1), ...,Zi(tiτi)}.

First, we specify ζ(B)
i (τ) = Zi(ti1) to be the p-dimensional vector of baseline biomarker

measurements collected on patient i. Second, we specify ζ(L)i (τ) = Zi(tiτi) to be the p-
dimensional vector of biomarker measurements collected most recently before prediction
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time τ on patient i. We refer to ζ(L)i (τ) as the “last-value carried forward” vector. Third, let

Zavg
ik (τ) = {

ni∑
j=1

I(tij < τ)}−1
ni∑
j=1

I(tij < τ)Zik(tij)

be the average value of biomarker k prior to time τ for patient i. We define the p-dimensional
vector ζ(A)

i (τ) = {Zavg
i1 (τ), . . . ,Zavg

ip (τ)}.
Next, we construct two formulations of ζi(τ) that contain the intercept and slope of each

biomarker regressed against time. To maintain the dynamic nature of prediction, at each pre-
diction time τ , we conduct regression using only biomarker measurements taken at times
tij < τ on patients with Yi > τ . Specifically, for each biomarker k = 1, . . . , p, at each predic-
tion time τ , we fit the linear model

(2) Zik(tij) = β
(τ)
0ik + β

(τ)
1iktij + ϵ

(τ)
ijk,

where tij ∈ [0, τ), β(τ)
0ik and β

(τ)
1ik are scalar parameters, and ϵ

(τ)
ijk is a scalar error term.

First, we fit Equation (2) independently for each patient i and each biomarker k at each
prediction time τ via linear regression. We assume ϵ

(τ)
ijk

ind∼ N (0, (σ
(τ)
ik )2), where N (µ,Σ)

denotes a normal distribution with mean µ and variance-covariance Σ.
Second, we frame Equation (2) as a linear mixed effects model by defining

β
(τ)
0ik = η

(τ)
0k + b

(τ)
0ik, β

(τ)
1ik = η

(τ)
1k + b

(τ)
1ik,

where η
(τ)
0k and η

(τ)
1k are scalar fixed parameters, and b

(τ)
0ik and b

(τ)
1ik are scalar random effects.

Let b(τ)
ik = (b

(τ)
0ik, b

(τ)
1ik). We assume b

(τ)
ik ∼N (0,D

(τ)
k ) and ϵ

(τ)
ijk

ind∼ N (0, (σ
(τ)
k )2). Addition-

ally, we assume the random effects b(τ)
ik and the errors ϵ(τ)ijk are independent. We fit the linear

mixed effects model independently for each biomarker k at each prediction time τ based on
the data for all patients with Yi > τ via maximum likelihood methods.

We then specify the “linear regression” vector ζ(S)i (τ) and the “mixed effects” vector
ζ
(M)
i (τ) to be the 2p-dimensional vector (β̂

(τ)
0i1 , β̂

(τ)
1i1 , . . . , β̂

(τ)
0ip , β̂

(τ)
1ip), where the parameter

estimates are obtained via the aforementioned methods.
Lastly, motivated by the work of Lin et al. (2018), we construct the sixth formulation of

ζi(τ) using FPCA. At each prediction time τ , we approximate the measurement of biomarker
k for patient i at time tij ∈ [0, τ) as

Zik(tij)≈ µ
(τ)
k (tij) +

L
(τ)
k∑

l=1

λ
(τ)
ilk · ρ(τ)lk (tij) + ϵ

(τ)
ijk,

where µ
(τ)
k (·) is the mean function, λ(τ)

ilk is the lth FPC score, ρ(τ)lk (·) is the lth eigenfunction,

and ϵ
(τ)
ijk

ind∼ N (0, (σ
(τ)
k )2).

Define L(τ)
k to be the minimum number of FPC scores required to explain 99 percent of the

total variance of biomarker k with respect to prediction time τ . We then specify ζ(F )
i (τ) =

(λ
(τ)
i11, . . . , λ

(τ)

iL
(τ)
1 1

, . . . , λ
(τ)
i1p, . . . , λ

(τ)

iL
(τ)
p p

) to be a vector of the L
(τ)
k FPC scores for each of the

k = 1, . . . , p biomarkers. Then the dimension of ζ(F )
i (τ) is

∑p
k=1L

(τ)
k .

We estimate µ
(τ)
k (·), ρ(τ)lk (·), and λ

(τ)
ilk independently for each biomarker k at each predic-

tion time τ using the principal components analysis through conditional estimation (PACE)
algorithm (Yao, Müller and Wang (2005)). To uphold the dynamic nature of prediction, we
conduct estimation at prediction time τ using only biomarker measurements collected at
times tij < τ on patients with Yi > τ .
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3. Simulated Survival Times. We conduct two simulation studies to assess the predic-
tion performance of the LSTM-GLM and the LSTM-NN. In each study, we conduct 500
simulations. For each of the 500 simulations, we generate a new data set of survival times
Ti and censoring times Ci for all patients i= 1,2, . . . ,5000. In both studies, we generate the
censoring times as Ci

iid∼ U(0,100). Conversely, we generate the survival times Ti using a
different model for each study.

In the first study, we generate Ti according to the accelerated failure time (AFT) model

νi =

∫ Ti

0
exp{β1Bi(s) + β2Xi}ds,

where β1 = β2 = 1. For each patient, we generate a random νi = exp(θi), where θi
iid∼

N (3,1).
In the second study, we generate Ti according to the Cox proportional hazards model

hi(t | Bi(t),Xi) = λ exp{β1Bi(t) + β2Xi},
where β1 = β2 = 1 and λ= 0.05. For each patient, we generate a random νi =−log(1− θi),

where θi
iid∼ U(0,1).

Define λ= 1 for the AFT model. Then for both the AFT and Cox models,

νi =

∫ Ti

0
λ exp{β1Bi(s) + β2Xi}ds.

Define K(t) = 1+
∑8

j=1 jI{t > j, t≤ (j + 1)}+ 9I(t > 9). Then

νi(t) =

∫ t

0
λ exp{β1Bi(s) + β2Xi}ds

= ν∗i {t;K(t)}+ I{K(t)> 1}
K(t)−1∑
j=1

ν∗i (j; j),

where

ν∗i (t;K) =

∫ t

K−1
λ exp{β1Bi(s) + β2Xi}ds

=
λ exp{β2Xi + β1(a+ bi0)− β1

∑K
j=1(cj + bij)(j − 1)}

β1
∑K

j=1(cj + bij)
×

exp
tβ1

K∑
j=1

(cj + bij)

− exp

(K − 1)β1

K∑
j=1

(cj + bij)


 .

We invert νi(t). Define

R{νi(t)}= 1+

8∑
j=1

jI{νi(t)> νi(j), νi(t)≤ νi(j + 1)}+ 9I{νi(t)> νi(9)}.

To simplify notation, we suppress the dependence of R on νi(t). Then

ν−1
i (t) =

log

[
{νi(t)−I(R>1)

∑R−1
j=1 ν∗

i (j;j)}β1

∑R
j=1(cj+bij)

λ exp{β2Xi+β1(a+bi0)−β1

∑R
j=1(cj+bij)(j−1)} + exp

{
(R− 1)β1

∑R
j=1(cj + bij)

}]
β1

∑R
j=1(cj + bij)

.
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For each simulation, we compute the survival time Ti = ν−1
i (t) for each randomly gener-

ated νi, i= 1,2, . . . ,5000. We administratively censor patients whose randomly generated νi
is not in the range of

∫ Ti

0 λ exp{β1Bi(s) + β2Xi}ds.

4. Supplemental Simulation Studies. We repeat the simulation studies described in
Section 4 of the manuscript. To simulate a longitudinal biomarker measured using a pre-
cise instrument, we reduce both the measurement error and the variation in measurement
times. Specifically, we generate the longitudinal biomarker Zi(tij) = Bi(tij) + ϵij at the

patient-specific measurement times tij = min(0, τj + εij), where ϵij
iid∼ N (0,0.052) and

εij
iid∼ N (0,0.012). With reduced measurement error, we are less concerned with overfitting

the LSTM-NN, so we train the network for 25,000 epochs. We define all other simulation
settings to be identical to those described in Section 4 of the manuscript.

We plot the distributions of the 500 testing losses and 500 testing C-indexes for each of
the eight studied dynamic MRL models in Figure (1). For both the AFT and Cox simulations,

FIG 1. Distribution of the 500 testing losses and 500 testing C-indexes for each of the 8 dynamic prediction
models. The models resulting in the lowest median testing loss and the highest median testing C-index are labelled
1. The models resulting in the highest median testing loss and the lowest median testing C-index are labelled 8.
The six dynamic transformed MRL models are labelled according to their formulation of ζi(τ). “B” represents
the baseline vector. “L” represents the last-value carried forward vector. “A” represents the average vector. “S”
represents the linear regression vector. “M” represents the mixed effects vector. “F” represents the FPCA vector.
Furthermore, ‘G” represents the LSTM-GLM, and “N” represents the LSTM-NN.
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the LSTM-NN results in the lowest median testing loss, followed by the LSTM-GLM. The
LSTM-NN and LSTM-GLM also result in the highest median testing C-indexes. The FPCA
model consistently results in the third-best median testing loss and testing C-index. Compared
to the simulation studies presented in Section 4 of the manuscript, these results demonstrate a
more significant improvement in calibration and discrimination for the LSTM-GLM and the
LSTM-NN relative to competing methods. Thus, these results suggest that the LSTM-GLM
and the LSTM-NN are especially useful for producing accurate dynamic predictions of MRL
in settings where the longitudinal biomarkers are measured using precise instruments.

5. MIMIC-III Data Application Hyperparameter Selection. In the MIMIC-III data
application, we must specify the hyperparameter settings of the LSTM-GLM and the LSTM-
NN. The LSTM autoencoders used to construct the window-specific context vectors for the
LSTM-GLM and the LSTM-NN have two important hyperparameters: the dimension of
the window-specific context vectors, s, and the number of training epochs, epa. As s in-
creases, the total number of parameters in the autoencoder increases, so more epochs are
needed to train the autoencoder. Accordingly, at each prediction time τ ∈ T , we construct
four sets of window-specific context vectors using the hyperparameter settings (s, epa) ∈
{(3,150), (5,150), (5,300), (7,300)}.

We fit four LSTM-GLMs that each regress on one of the four sets of context vectors. The
distribution of 100 testing losses for each LSTM-GLM is plotted at each prediction time in
Figure (2). For each τ ∈ T , we define the LSTM-GLM that results in the lowest median
testing loss to be the “best” LSTM-GLM at time τ . The hyperparameter settings of the best
LSTM-GLM at each τ ∈ T can be seen in Table (1).

Additionally, we fit an “automated” LSTM-GLM. For each unique data division in the
performance evaluation, we select the hyperparameter settings of the automated LSTM-
GLM by conducting the automated hyperparameter selection process detailed in Section
1 on the training data. We define the set of candidate hyperparameter settings to be D =
{(3,150), (5,150), (5,300), (7,300)}. We set the number of iterations to R= 50, and we set
the proportion of patients in the sub-training data set to ω = 0.5.

The LSTM-NN feed-forward neural network has three additional hyperparameters that in-
fluence prediction performance: the L2-penalty tuning parameter, λ, the dimension of the pa-
rameter matrices, u, and the number of training epochs, epn. We train eight LSTM-NNs using
all eight possible combinations of λ ∈ {0.005,0.01}, u ∈ {1,2}, and epn ∈ {2000,3000}.

It would be computationally expensive to tune λ, u, and epn with respect to all four sets of
window-specific context vectors. Consequently, we train the LSTM-NNs using only the set
of context vectors constructed with hyperparameter settings (7,300). Because these context
vectors have the largest dimension, they have the potential to retain the most information
from the biomarker trajectories. Moreover, feed-forward neural networks like the LSTM-NN
are capable of handling a large number of covariates.

TABLE 1
The hyperparameter settings of the best LSTM-GLM and the best LSTM-NN at each prediction time τ ∈ T ,

where the “best” model is defined to be the one resulting in the lowest median testing loss.

Prediction Time LSTM-GLM LSTM-NN
Days s epa s epa λ u epn

1 3 150 7 300 0.01 1 2000
1.5 7 300 7 300 0.005 2 3000
2 3 150 7 300 0.005 2 2000

2.5 5 300 7 300 0.01 2 2000
3 7 300 7 300 0.01 2 3000
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The distribution of 100 testing losses for each LSTM-NN is plotted at each prediction time
in Figure (3). For each τ ∈ T , we define the LSTM-NN that results in the lowest median
testing loss to be the “best” LSTM-NN at time τ . The hyperparameter settings of the best
LSTM-NN at each τ ∈ T can be seen in Table (1).

FIG 2. Distribution of the 100 testing losses for each of the four LSTM-GLMs fit using a different set of window-
specific context vectors at prediction times τ ∈ T = {1,1.5,2,2.5,3}. Let s be the dimension of the window-
specific context vectors, and let epa be the number of epochs used to train the LSTM autoencoders. The x-axis is
labelled with the hyperparameter settings “s− epa.”
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FIG 3. Distribution of the 100 testing losses for each of the eight LSTM-NNs trained using different hyperpa-
rameter settings at prediction times τ ∈ T = {1,1.5,2,2.5,3}. Let λ be the L2-penalty tuning parameter in the
LSTM-NN objective function. Let u be the dimension of the LSTM-NN parameter matrices W1 and W2. Let
epn be the number of epochs used to train the LSTM-NN. The x-axis is labelled with the hyperparameter settings
“u− λ− epn.”
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