nature neuroscience

Article

https://doi.org/10.1038/s41593-023-01484-4

Cryo-EM of A β fibrils from mouse models find tg-APP_{ArcSwe} fibrils resemble those found in patients with sporadic Alzheimer's disease

In the format provided by the authors and unedited

Cryo-EM of Aβ Fibrils from Mouse Models find tg-APP_{ArcSwe} fibrils resemble those found in sporadic Alzheimer's disease patients

SUPPLEMENTARY DATA

15

Mara Zielinski^{1,2*}, Fernanda S. Peralta Reyes^{3*}, Lothar Gremer^{1,2,3§}, Sarah Schemmert¹, Benedikt Frieg^{1,2}, Luisa U. Schäfer^{1,2}, Antje Willuweit⁴, Lili Donner⁵, Margitta Elvers⁵, Lars N. G. Nilsson⁶, Stina Syvänen⁷, Dag Sehlin⁷, Martin Ingelsson^{7,8,9}, Dieter Willbold^{1,2,3§}, Gunnar F. Schröder^{1,2,10§}

10 ¹Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany

²JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany

³Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

⁴Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany

⁵Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany

⁶Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway

⁷Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden

⁸Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada

⁹Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada

¹⁰Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

[§]corresponding authors.

*These authors contributed equally to this work

LUS current address: Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany

This file includes:

Supplementary Figures 1-6

Supplementary Table 1

Supplementary figures

Figure S1: FSC curves for cryo-EM maps and structures of (A) APP/PS1 murine type III, (B) ARTE10 murine type III, (C) ARTE 10 type II, (D) DI1, (E) DI2, (F) DI3, (G) tg-APP_{Swe} type II, (H) APP23 type II, and (I) tg-APP_{ArcSwe} murine_{Arc} type I fibrils. FSC curves for two independently refined half maps are shown in blue; FSC curves for the refined atomic model against the final cryo-EM map in orange.

Figure S2: Molecular lipophilicity potential (MLP) maps for (A) APP/PS1 murine type III, (B) ARTE10 murine type III, (C) ARTE10 type II, (D) DI1, (E) DI2, (F) DI3, (G) tg-APP_{Swe} type III, (H) APP23 type II, and (J) murine_{Arc} type I. Coloring on the surface ranging from cyan (most hydrophilic) to white to yellow (most lipophilic/hydrophobic).

Figure S3: DI2 density map at different thresholds. At (A) 4σ , (B) 5σ , and (C) 6σ

Figure S4: DireX analysis of DI2. (A) The table contains the C_{work} and C_{free} values from the DireX fitting of all possible eight sequence assignments (black box) in both possible C_{α} -chain directions into the DI2 density maps. The C_{free} value was used to rank the results. The N-terminus of the sequence is coloured in grey, the C-terminus is coloured in green. (B) The most favourable sequence fit. (C)-(E) The 2nd to 4th most favourable sequence fit.

3σ

4σ

Figure S5: DI3 density map at different thresholds. At (A) 3σ , (B) 4σ , (C) 5σ , and (D) 6σ .

Α

~			
	Cfree	Cwork	1 32
1	0.21486	0.83129	D A E F R H D S G Y E V H H Q K L V F F A E D V G S N K G A I I G L M V G G V V I A
2	0.20279	0.788	D A E F R H D S G Y E V H H Q K L V F F A E D V G S N K G A I I G L M V G G V V I A
3	0.19498	0.79647	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
4	0.18539	0.80618	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
5	0.17551	0.80869	DAEFRHDSGYEVHHOKLVFFAEDVGSNKGAIIGLMVGGVVIA
7	0.16304	0.7844	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
8	0.15993	0.78889	D A E F R H D S G Y E V H H Q K L V F F A E D V G S N K G A I I G L M V G G V V I A
9	0.15597	0.80193	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
10	0.15094	0.78938	D A E F R H D S G Y E V H H Q K L V F F A E D V G S N K G A I I G L M V G G V V I A
11	0.1497	0.79756	
12	0.14226	0.7817	AT V V G G V M J G T T A G K N S G V DE A FF V J K O H H V E Y G S D H R FE A D
14	0.13798	0.79018	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
15	0.13771	0.80256	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
16	0.13592	0.79658	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
17	0.13524	0.8013	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
18	0.13382	0.78705	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
19	0.12439	0.78646	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H K F E A D
20	0.11127	0.76346	DAE FRHDSGYEVHHOKLVFFAEDVGSNKGALIGLMVGGVVIA
22	0.09261	0.78783	A I V V G G V M L G I I A G K N S G V D E A F F V L K Q H H V E Y G S D H R F E A D
D			
1)	S_	
	633		
D 3	V39		

Figure S6: DireX analysis of DI3. (A) The table contains the C_{work} and C_{free} values from the DireX fitting of all possible 22 sequence assignments (black box) in both possible C_{α} -chain directions into the DI3 density maps. The C_{free} value was used to rank the results. The N-terminus of the

sequence is coloured in grey, the C-terminus is coloured in green. (B) The most favourable sequence fit. (C)-(E) The 2nd to 4th most favourable sequence fit.

Supplementary Tables

Table S1: Distribution of polymorphs in extracted $A\beta$ fibril samples from different mouse models. The term "unassigned" refers to particles that were originally picked by crYOLO but discarded because they were false positives or of too low quality for high-resolution reconstruction.

_
•
•
~
-

Mouse Model	Distribution
APP/PS1	murine type III: 12.2%; unassigned: 87.8%
ARTE10	type II: 13.2%; murine type III: 0.6%; unassigned: 86.2%
tg-SwDI	DI1: 3.6%; DI2: 2.6%; DI3: 0.7%; unassigned: 93.1%
tg-APP _{Swe}	type II: 1.7%; unassigned: 98.3%
APP23	type II: 10%; unassigned: 90%
tg-APP _{ArcSwe}	murineArc type I: 4.4%; unassigned: 95.6%