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Supplementary Material and Methods 27 

 28 

Reconstruction of genome-scale metabolic models 29 

Genome-scale metabolic models of prokaryotic genomes were reconstructed using 30 

gapseq(1). In brief, the gapseq reconstruction workflow consisted of five steps: (i) Reaction 31 

and pathway prediction, (ii) prediction of metabolite cross-membrane transporters, (iii) 32 

reconstruction of a draft metabolic network based on the results from i and ii, (iv) 33 

estimation of an organism-specific growth medium-based on the predicted metabolic 34 

capabilities, and (v) gap filling of the metabolic network to enable biomass production using 35 

flux balance analysis. Model reconstructions were limited to bacterial genomes marked as 36 

representative species in the HRGM collection. Further, genomes with an estimated 37 

contamination percentage of ≤2% or a completion ≥85% were included. Based on these 38 

filters, 3 687 bacterial genomes were subject to metabolic model reconstruction. Among 39 

those genomes, 22% are from bacterial isolates, and 78% are metagenome-assembled 40 

genomes.  41 

A recent computational study has shown in a systematic analysis of isolate- and 42 

metagenome-assembled genomes that the gap-filling medium strongly impacts the 43 

auxotrophies predicted by genome-scale metabolic modelling(2). We note that with the 44 

reconstruction procedure used in this study, we do not rely on an arbitrarily defined gap-45 

filling medium, which is used for every metabolic network model. Instead, for each draft 46 

network, a genome-specific gap-filling medium is predicted (see section “Prediction of a 47 

genome-specific gap-filling medium” below for details). In brief, if the medium prediction 48 

algorithm of gapseq finds a known biosynthetic pathway for a specific amino acid in the 49 

draft metabolic network, the amino acid will not be part of the resulting predicted medium, 50 
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as the compound is likely not required from the growth environment, thus, also not 51 

necessary for subsequent gap filling. In contrast, if the medium prediction algorithm does 52 

not detect at least one complete known biosynthetic pathway for a specific amino acid, the 53 

respective compound is added to the outcome gap-filling medium based on the rationale 54 

that this amino is a putative essential compound that needs to be obtained from the growth 55 

environment. However, it is important to note that this case does not directly imply that the 56 

organism is auxotrophic for the specific amino acid, as the subsequent gap-filling algorithm 57 

might add reactions to the model that complete a biosynthesis route from other 58 

compounds in the gap-filling medium to the amino acid. Such reactions are only added in 59 

cases where a gene was found in the query genome that displays sequence similarity to a 60 

reference gene sequence with the respective enzymatic function but where the sequence 61 

similarity was not high enough to pass the threshold of the bitscore 200 to be directly 62 

included in the draft network. For details on the gap-filling algorithm implemented in 63 

gapseq, please refer to the original gapseq publication(1). 64 

Taken together, the model reconstruction and auxotrophy prediction that we used for the 65 

present study do not depend on one gap-filling medium composition that is defined for all 66 

organisms but adjusts the medium for each organism based on its genome information and 67 

by using the multi-step gap-filling algorithm that is implemented in gapseq. 68 

 69 

Prediction of a genome-specific gap-filling medium 70 

The genome-scale metabolic network reconstruction process of gapseq requires a gap-filling 71 

medium for the final gap-filling step (see above). Here, we used a medium prediction 72 

feature (module “gapseq medium”) of the gapseq software, which can be plugged into the 73 

reconstruction workflow between the homology-based generation of a draft metabolic 74 
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network and the gap-filling algorithm. We provided the additional command line option “-c 75 

cpd00007:0” to ensure that the predicted medium does not contain oxygen (compound 76 

identifier: cpd00007). The algorithm for medium prediction tests which pathways and 77 

reactions are absent or present in the draft metabolic model. Whether a particular 78 

compound is added to the medium is decided using logical expressions that include 79 

variables for the presence (TRUE) and absence (FALSE) of pathways and reactions within the 80 

design network (see Supplementary Table S6 for all compounds and their logical 81 

expressions). For example, the disaccharide lactose (ModelSEED ID: cpd00208), has the 82 

logical expression ("LACTOSECAT-PWY" | "LACTOSEUTIL-PWY" | "BGALACT-PWY"), which 83 

means, that lactose is added to the medium if one of three known lactose degradation 84 

pathways as defined in MetaCyc(3) is already present in the draft network. In particular, for 85 

amino acids, the medium prediction module uses a similar approach to the auxotrophy 86 

prediction tool GapMind(4), which tests if a known biosynthetic pathway for a specific 87 

amino acids exists based on sequence homology. The amino acid biosynthetic pathways that 88 

are considered are also those that are defined in MetaCyc(3). For instance, if none of the 89 

five known biosynthesis pathways in prokaryotes for lysine 90 

(https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=LYSINE-SYN) is found, 91 

lysine is added to the gap-filling medium. 92 

The medium prediction module of gapseq considered 74 compounds (Supplementary Table 93 

S6), including inorganic compounds, carbohydrates, amino acids, other carboxylic acids, and 94 

vitamins. Most of those potential nutrients are also compounds that can be found in the 95 

growth environment of colonic microorganisms, such as fibers (e.g., pectin, inulin), other 96 

dietary compounds (e.g., sulfoquinovose, daidzein), constituents of the mucins (e.g., N-97 

acetylneuraminate, N-acetylneuraminate) and inorganics (e.g., H2, H2S, H2O). 98 
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Besides the enumeration of available nutrients, a gap-filling medium requires their 99 

individual maximum uptake rates by the microorganism. The medium prediction 100 

implemented in gapseq uses rates commonly used in manually curated genome-scale 101 

metabolic network models, e.g., 0.1 mmol*gDW-1*hr-1 for amino acids or 5 mmol*gDW-1*hr-102 

1 for monosaccharides. In the case of oligo- and polysaccharides, the maximum uptake rates 103 

are scaled to allow the same uptake rate per subunit (e.g., 5 mmol*gDW-1*hr-1 for the 104 

monosaccharide D-glucose and 2.5 mmol*gDW-1*hr-1 for the disaccharide maltose). 105 

 106 

Validation of auxotrophy predictions 107 

To validate our in silico predicted auxotrophies, we collected the genome sequences from 108 

NCBI RefSeq for 36 bacterial strains for which experimental data were available on amino 109 

acid auxotrophies/prototrophies. The majority of these strains were already summarized 110 

previously(5). In that study, the authors even list more than the 36 strains we analyzed here. 111 

This is because we excluded cases where we could not find a genome assembly of the exact 112 

strain used in the referenced experimental study. Moreover, we excluded the entries for 113 

species belonging to the genus Bifidobacterium since their auxotrophy for cysteine is 114 

ambiguous: Some studies report cysteine as an essential nutrient for growth(6,7), while 115 

genomic analysis and genome-scale metabolic modeling indicated the presence of cysteine 116 

biosynthetic pathways(8,9). This ambiguity most likely stems from the fact that cysteine 117 

biosynthesis in Bifidobacterium species depends on the available sulfur source(8).  Genomic 118 

analysis of Bifidobacterium bifidum PRL2010, for instance, suggested the strain’s inability to 119 

use sulfate as a sulfur source, while hydrogen sulfide or methionine could potentially serve 120 

as a sulfur source for the biosynthesis of cysteine(6,8). 121 
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Genome-scale metabolic models for all 36 strains were reconstructed as described above. 122 

Auxotrophies were predicted with the method described in the main manuscript.  123 

In addition to the gapseq-reconstructed models, we also predicted auxotrophies for 20 of 124 

the 36 bacterial strains using genome-scale models from the AGORA2 collection(10) 125 

(Supplementary Table S2). Auxotrophies were predicted in the same manner as for gapseq 126 

models. In contrast to the gapseq models, which can contain only free amino acids and not 127 

peptides in the predicted medium, some AGORA2 models have exchange reactions with 128 

lower bounds < 0 for dipeptides. In those cases, and for predicting the auxotrophy status for 129 

amino acid x, we changed the lower bound to 0 for all exchange reactions of dipeptides 130 

involving amino acid x. At the same time, we introduced a new inflow reaction of the non-x 131 

amino acid moiety to the model to predict only the essentiality of x and not of the other 132 

amino acids in the respective peptides. The sensitivity, specificity, and accuracy of 133 

auxotrophy predictions were calculated for gapseq models (n=36) and AGORA2 models 134 

(n=20). 135 

As an additional auxotrophy prediction validation step, 124 genome-scale metabolic models 136 

were reconstructed for bacterial strains that were reported by Price, 2023, to be able to 137 

grow in a defined growth medium containing no amino acids(11). Thus, these 124 organisms 138 

are known amino acid prototrophs and can be used to estimate the rate of false auxotrophy 139 

predictions. The original publication by Price reported 127 genomes of prototrophs; 140 

however, 3 of the corresponding genome assemblies (GCF_000014265.1, 141 

GCF_000020545.1, GCF_900188395.1) were suppressed on RefSeq at the time we 142 

performed the analysis in March 2023. Auxotrophies for the 124 genome assemblies of this 143 

prototroph collection were predicted as described above, and results are summarized in 144 

Supplementary Table S3. 145 
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 146 

Metagenome data processing 147 

Metagenomic reads were subject to quality control and filtering using the ‘qc’ workflow 148 

from the metagenome-atlas pipeline tool v2.9.0(12). In detail, reads were (i) deduplicated, 149 

(ii) quality filtered, and (iii) decontaminated. Modules from the BBmap suite v37.99 (BBMap 150 

- Bushnell B. - sourceforge.net/projects/bbmap/) were used for all three steps. In the 151 

deduplication step (i), the BBmap module clumpify.sh was used with the parameters 152 

“dedupe=t dupesubs=2”, which removed duplicate reads with a maximum of 2 substitutions 153 

between duplicates. The quality filter (ii) employed the BBmap module bbduk.sh with the 154 

parameters “hdist=1 ktrim=r mink=8 trimq=10 qtrim=rl minlength=51 maxns=-1 155 

minbasefrequency=0.05” and otherwise default options. This quality filter trimmed reads 156 

from the right if adapter sequences were detected, trimmed reads on both sides from the 157 

first base with a quality score below 10, removed sequences that were shorter than 51 bp 158 

after trimming, removed sequences with ambiguous base calls (i.e., “N”s), and removed 159 

reads if any base had a frequency of less than 5%. Finally, reads that are likely 160 

contaminations from the human host genome or Illumina PhiX sequences were removed 161 

using the BBmap module bbsplit.sh using the option “maxratio=0.65” and otherwise default 162 

parametrization. This tool tested if specific reads mapped to the host genome or PhiX 163 

sequences based on sequence similarity and mapped reads were discarded from the 164 

sample’s fastq files. For the decontamination step (iii), the human reference genome 165 

assembly ‘Genome Reference Consortium Human Build 38’ (GRCh38) was used, in which 166 

low entropy regions (entropy < 0.7) were masked using the bbmask.sh tool within the 167 

BBmap suite. Moreover, regions that display high similarity to prokaryotic rRNA genes were 168 

additionally masked. To this end, prokaryotic small and large subunit rRNA gene sequences 169 
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were retrieved from SILVA version 138.1(13) and shredded into shorter (80 bp) sequences 170 

with 40 bp overlaps using shred.sh. Shredded sequences were aligned to GRCh38 with a 171 

minimum identity of 85% and maximum indel length of 2 bp. Regions in GRCh38 with 172 

alignment hits were masked.  173 

As mentioned in the main manuscript, we used the Human Reference Gut Microbiome 174 

‘HRGM’ catalog(14) as reference genomes for quantifying representative microbial genomes 175 

in the metagenomic data sets. We had chosen this collection, as it was the latest published 176 

human gut microorganism genome collection when we were finalizing the results of the 177 

present study. Furthermore, the HRGM collection contains 780 species-level representative 178 

genomes, which were absent in previous genome collections and assembled from 179 

metagenome samples from before under-represented Asian countries, namely Korea, 180 

Japan, and India. For each metagenome sample, the relative abundance of HRGM genomes 181 

was estimated using coverM(15) v0.6.1 with default parametrization of the module `coverm 182 

genome`. 183 

 184 

Targeted metabolomics of blood samples 185 

Serum samples were collected using serum s-monovette (9ml, Sarstedt, Germany). Samples 186 

were incubated upright at RT for 30 min. and centrifuged (10 min., 2000 x g). Serum was 187 

aliquoted in 500μl tubes and stored at -80°C. Metabolite quantification for serum was 188 

performed by liquid chromatography tandem mass spectrometry (LC-MS-MS) using the MxP 189 

Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria) according to the 190 

manufacturer's instructions. The MxP Quant 500 kit simultaneously measures 630 191 

metabolites covering 14 small molecule and 12 different lipid classes. It combines flow 192 

injection analysis tandem mass spectrometry (FIA-MS/MS) using SCIEX 5500 QTrap mass 193 
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spectrometer (SCIEX, Darmstadt, Germany) for lipids and liquid chromatography tandem 194 

mass spectrometry (LC-MS/MS) using Agilent 1290 Infinity II liquid chromatography (Santa 195 

Clara, CA, USA) coupled with a SCIEX 5500 QTrap mass spectrometer for small molecules 196 

using multiple reaction monitoring (MRM) to detect the analytes. Data evaluation for serum 197 

metabolite concentrations and quality assessment was performed with the software SCIEX 198 

Analyst software (Version 1.7.2) and the MetIDQ™ software package (Oxygen-DB110-3023), 199 

which is an integral part of the MxP Quant 500 kit. 200 

For downstream statistical analysis, the serum metabolome data were pre-processed by 201 

imputing missing specific values using a random forests approach as implemented in the R-202 

package ‘missForest’  and the function with the same name in default parametrization (16). 203 

This imputation was limited to missing values for metabolites, which have less than 20% 204 

missing values across the data set. 205 

With a partial Spearman correlation, the association between the frequency of auxotrophic 206 

bacteria and serum metabolites and other hematology parameters from the DZHK cohort 207 

was evaluated (17). We adjusted for the potential confounders sex, age, and BMI. p values 208 

were corrected for multiple testing using the False Discovery Rate (FDR) method. 209 

  210 
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Supplementary Figures 211 
 212 

 213 

Supp. Figure S1: Estimated genome completeness and the predicted number of 214 

auxotrophies for 3 687 genomes of representative species from the Human Reference Gut 215 

Microbiome (HRGM) collection(14). The blue line shows the regression line (= -0.50, p ≤ 216 

2.2e-16).  217 
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 218 

Supp. Figure S2: Percentage of in silico predicted prototrophies with metabolic modeling in 219 

124 genomes known to be prototrophic(11) from laboratory experiments (grey bars). The 220 

red dots indicate the frequency of prototrophies among 3 687 genomes from human gut 221 

bacteria(14). 222 

  223 
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 224 

Supp. Figure S3: Overview of the proportions of auxotrophy to prototrophy genomes per 225 

phylum from the HRGM catalog(14).  226 
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 227 

Supp. Figure S4: Number of auxotrophies for every phylum. Other is a category that 228 

combines different phyla with a lower abundance in the overall HRGM catalogue(14) and for 229 

a reduction of complexity. 230 

  231 
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 232 

Supp. Figure S5: The bar plots display the abundance of missing enzymes in the biosynthesis 233 

pathways for several amino acids and BCAA biosynthesis pathways in auxotrophic bacteria. 234 

The order of the enzymes in the bar plots represents the one in the pathway. (A) Missing 235 

enzymes in the tryptophan pathway of tryptophan auxotrophic bacteria, (B) Missing 236 

enzymes in the histidine pathway of histidine auxotrophic bacteria, (C) Missing enzymes in 237 

the chorismate pathway of chorismate auxotrophic bacteria, (D) Missing enzymes in the 238 

serine pathway of serine auxotrophic bacteria, (E) Comparison of the BCAA pathways of 239 
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isoleucine, leucine, and valine auxotrophic bacteria, the colors indicate which enzymes are 240 

shared in the biosynthesis pathways, the definition of the pathways are based on MetaCyc. 241 

  242 
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 243 

Supp. Figure S6: Relative abundance of predicted amino acids auxotrophs depending on the 244 

completeness cutoff for reference genomes from the HRGM catalog. Four different genome 245 

completeness cutoffs were tested: 80% (A), 85% (B, same as Figure 4A), 90% (C), and 95% 246 

(D). The results indicate that the distribution of the relative abundance of predicted amino 247 

acid auxotrophies was stable with respect to the chosen completeness cut-off for reference 248 

genome filtering. 249 

 250 

  251 
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 252 

Supp. Figure S7: Spearman correlation between the dietary intake of amino acids and the 253 

frequency of amino acid auxotrophic bacteria in the gut microbiomes, (A) at the beginning 254 

of the study, (B) at the end of the study (3 years later). No statistically significant 255 

associations were found (FDR-corrected p value >0.05). 256 

  257 
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 258 

Supp. Figure S8: Percentage of quality-controlled metagenomic reads from three cohorts 259 

(this study, Troci et al. 2022 (18), and Chen et al. 2021 (19)) to reference genomes from the 260 

HRGM catalog.   261 
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