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Supplementary Fig. 1 Myod is upregulated in TA muscle, but not in Sol muscle, in response 

to HFD feeding

a Venn diagram showing the numbers of upregulated (Up) and downregulated (Down) genes in 

TA and Sol muscles from HFD-fed mice compared to SD controls. b Heatmap showing the 

transcription factors (TFs) downregulated in TA and Sol muscles from HFD-fed mice compared 

to SD controls. 



Supplementary Fig. 2 Myod KO mice exhibit enhanced oxidative metabolism in skeletal 

muscle and resist HFD-induced obesity 

a Relative level of the mRNAs encoding long-chain acyl-CoA synthetase (ACSL) and fatty acid 

binding protein 3 (FABP3) in quadriceps (Qu) muscle of Myod KO mice and WT littermates 

fed with SD, determined by RT-qPCR. For ACSL gene, n = 5 (SD-WT), n = 6 (SD-KO); For 



FABP3 gene, n = 8 (SD-WT), n = 8 (SD-KO) mice. p = 0.0242 (SD-WT vs. SD-KO). b Relative 

levels of the mRNAs encoding peroxisome proliferator-activated receptor gamma coactivator 

1 beta (PGC-1), peroxisome proliferator-activated receptor alpha (PPAR), and cytochrome 

C (CytC) in Qu muscle of Myod KO mice and WT littermates fed with SD, as determined by 

RT-qPCR. n = 7 mice. c Relative levels of genes encoding key enzymes for glycolysis in Qu 

muscle of Myod KO mice and WT littermates fed with SD, as determined by RT-qPCR. For 

HK2 gene, n = 7 (SD-WT), n = 8 (SD-KO) mice. p = 0.0037 (SD-WT vs. SD-KO); For PFKm

gene, n = 8 (SD-WT), n = 8 (SD-KO) mice. p = 0.0220 (SD-WT vs. SD-KO); For LDHA gene, 

n = 8 (SD-WT), n = 8 (SD-KO) mice. p = 0.0333 (SD-WT vs. SD-KO). HK2, hexokinase 2.

PFKm, phosphofructokinase. LDHA, lactate dehydrogenase A. d Relative levels of genes 

encoding versions of fiber type-specific myosin-heavy chain (MHC), including Myh7

(encoding MHC-I), Myh2 (encoding MHC-IIa), Myh1 (encoding MHC-IIx), and Myh4

(encoding MHC-IIb), in Qu muscle of Myod KO mice and WT littermates fed with SD, as 

determined by RT-qPCR. For Myh7 gene, n = 7 (SD-WT), n = 4 (SD-KO) mice. p < 0.0001 

(SD-WT vs. SD-KO); For Myh2 gene, n = 6 (SD-WT), n = 7 (SD-KO) mice; For Myh4 gene, 

n = 6 (SD-WT), n = 8 (SD-KO) mice; For Myh1 gene, n = 6 (SD-WT), n = 7 (SD-KO) mice. e

O2 consumption by Myod KO mice and WT littermates fed with SD, as determined by metabolic 

chamber analysis, n = 4 mice. f CO2 production by Myod KO mice and WT littermates fed with 

SD, as determined by metabolic chamber analysis, n = 4 mice. g Energy expenditure by Myod

KO mice and WT littermates fed with SD, as determined by metabolic chamber analysis, n = 4 

mice. h Locomotor activities of Myod KO mice and WT littermates fed with SD, as determined 

by metabolic chamber analysis, n = 4 mice. i Food intake by Myod KO mice and WT littermates 

fed with HFD or SD, n = 4 (SD-WT), n = 7 (SD-KO), n = 4 (HFD-WT), n = 6 (HFD-KO) mice. 

p = 0.0041 (SD-WT vs. SD-KO). j Quantification of the area under the curve (AUC) from the 

GTT shown in Fig. 2h. n = 10 (SD-WT), n = 10 (SD-KO), n = 11 (HFD-WT), n = 9 (HFD-KO) 

mice. p = 0.0452 (SD-WT vs. SD-KO), p < 0.0001 (HFD-WT vs. HFD-KO). k Quantification 

of the area under the curve (AUC) from the ITT shown in Fig. 2i. n = 7 (SD-WT), n = 9 (SD-

KO), n = 9 (HFD-WT), n = 8 (HFD-KO) mice. p = 0.0012 (HFD-WT vs. HFD-KO). Data are 

presented as mean  SD. Significance was assessed by two-way ANOVA (a-d) or two tail 

Student’s t-test (i-k). *p < 0.05, **p < 0.01, ****p < 0.0001 compared to WT control group. 



Source data are provided as a Source Data file. 



Supplementary Fig. 3 Knockout of Myod might enhance mitochondrial respiration.  

a Core temperature in Myod KO mice (KO) and their WT controls at the thermal neutral 

conditions. n = 12 mice (WT), n = 13 mice (KO). p = 0.0373. b Core temperature in KO mice 

and their WT controls at 4℃ for the indicated time points (0, 1, 2, 3, 4 h). n = 12 mice (WT), n

= 13 mice (KO). n = 12 mice (WT), n = 13 mice (KO). p = 0.0145 (1 h), p = 0.0048 (3 h). c 



Schematic diagram showing acute deletion of Myod in differentiated myotubes. The primary 

myoblasts isolated from the Myodf/f mice were induced to differentiation for 48 h and then 

infected with adenovirus expressing Cre (Ad-Cre) to achieve deletion of Myod (cKO), infection 

with the adenovirus expressing EGFP (Ad-EGFP) as controls (cWT). d Relative levels of Myod

mRNA in cKO and cWT myotubes, as determined by RT-qPCR. p < 0.0001. Data are 

representative of three independent experiments. e Representative images showing 

immunostaining of myosin heavy chain (MHC) (red), a marker for the differentiated myotube, 

in cKO and cWT myotubes. DAPI (blue) served to visualize nuclei. Scale bar, 100 μm. f

Oxygen consumption rate (OCR), determined by Seahorse XFe24; p = 0.0007 (52.63 min), p < 

0.0001 (61.13 min), p < 0.0001 (69.63 min). Data are representative of three independent 

experiments. Data are presented as mean  SD. Significance was assessed by two-way ANOVA 

(b, f) or two tail Student’s t-test (a, d). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

compared to WT or cWT control group. Source data are provided as a Source Data file. 



Supplementary Fig. 4 iWAT browning occurs in Myod KO mice 

a Measurement of DNA contents in individual fat pads of iWAT from Myod KO mice and WT 

littermates fed with SD or HFD, n = 8 (SD-WT), n = 6 (SD-KO), n = 6 (HFD-WT), n = 6 (HFD-

KO) mice. b Relative mRNA levels of lipolysis-related genes in iWAT from Myod KO mice 

and WT littermates fed with SD or HFD, as determined by RT-qPCR. For HSL gene, n = 8 (SD-

WT), n = 6 (SD-KO), n = 7 (HFD-WT), n = 6 (HFD-KO) mice; For ATGL gene, n = 8 (SD-

WT), n = 5 (SD-KO), n = 7 (HFD-WT), n = 6 (HFD-KO) mice. HSL, hormone-sensitive lipase. 

ATGL, adipose triglyceride lipase. Data are presented as mean  SD. Significance was assessed 

by two-way ANOVA (b) or two tail Student’s t-test (a). Source data are provided as a Source 

Data file. 



Supplementary Fig. 5 DLPC induces iWAT browning in HFD-fed Myod KO mice

a Heatmap showing DEGs in TA and Sol muscles of Myod KO mice versus WT littermates fed 

with SD or HFD for 2 weeks, as described in Fig. 4a. b-g Relative mRNA levels of Ucp1 in 

iWAT-derived primary adipocytes treated with vehicle or various doses of the indicated PC 

species for 12 h, as determined by RT-qPCR. p < 0.0210 (Vehicle vs. 7mM PC (18:1/18:1(9E))). 

Data are representative of three independent experiments. h Levels of PC (36:4) in muscle-



derived CM from the mice described in (Fig. 4a); n = 8 (SD-WT), n= 6 (SD-KO), n= 8 (HFD-

WT), n= 6 (HFD-KO) mice. p = 0.0148 (HFD-WT vs. HFD-KO). i Levels of PC (36:4) in sera 

collected from the mice described in (Fig. 4a); n = 6 (SD-WT), n= 5 (SD-KO), n= 4 (HFD-

WT), n= 5 (HFD-KO) mice. p = 0.0314 (HFD-WT vs. HFD-KO). Data are presented as mean 

 SD. Significance was assessed by one-way ANOVA (b-g) or two tail Student’s t-test (h-i). *p

< 0.05 compared to vehicle control group. Source data are provided as a Source Data file. 



Supplementary Fig. 6 DLPC is detected in the conditioned medium from the 

differentiated myotubes.  

a Experimental scheme for using lipidomics analyses to detect myotubes-secreted DLPC from 

conditioned medium (CM). b Levels of DLPC (18:2/ 18:2) in myotubes-derived CM. p = 

0.0050. Data are representative of three independent experiments. Data are presented as mean 

 SD. Significance was assessed by two tail Student’s t-test (b). **p < 0.01, compared to 

DMEM (Ctrl) control. Source data are provided as a Source Data file. 



Supplementary Fig. 7 Expression levels of the genes involved in the PC biosynthesis 

pathway in Soleus muscle of Myod KO mice 

a-l The data (TPM) were determined by RNA-seq. n = 3 mice. p = 0.0030 (PCYT1A, SD-WT 

vs. SD-KO), p = 0.0170 (Cpt1a, SD-WT vs. SD-KO), p = 0.0186 (HFD-WT vs. HFD-KO), p



= 0.0356 (HFD-WT vs. HFD-KO). Data are presented as mean  SD. Significance was assessed 

by two tail Student’s t-test (a-l). *p < 0.05, **p < 0.01, compared to WT. Source data are 

provided as a Source Data file. 



Supplementary Fig. 8 DLPC prevents HFD-induced obesity



a Body weights of mice that were fed with SD or HFD and simultaneously i.p. administered 

with vehicle or various doses of DLPC (50, 100, 200 mg/kg) daily for 14 weeks, n = 8 (SD), n

= 11 (Vehicle), n = 11 (50 mg/kg), n = 11 (100 mg/kg), n = 12 (200 mg/kg) mice. For Vehicle 

vs. 50mg/kg, p = 0.0437 (10-week), p = 0.0186 (12-week), p = 0.0499 (14-week); For Vehicle 

vs. 100mg/kg, p = 0.0250 (6-week), p = 0.0280 (8-week), p = 0.0020 (10-week), p = 0.0001 

(12-week), p = 0.0006 (14-week); For Vehicle vs. 200mg/kg, p = 0.0091 (2-week), p = 0.0076 

(4-week), p = 0.0021 (6-week), p = 0.0019 (8-week), p < 0.0001 (10-week), p < 0.0001 (12-

week), p < 0.0001 (14-week). b GTT performance of the mice described in (Fig. 5a); n = 7 

(SD), n = 9 (Vehicle), n = 9 (50 mg/kg), n = 8 (100 mg/kg) mice. For Vehicle vs. 50mg/kg, p = 

0.0185 (15 min), p = 0.0072 (90 min), p = 0.0202 (120 min). c Quantification of the area under 

the curve (AUC) from the GTT shown in Fig. 5h and Supplementary Fig. 5b. n = 7 (SD), n = 9 

(Vehicle), n = 9 (50 mg/kg), n = 8 (100 mg/kg), n = 9 (200 mg/kg) mice. p = 0.0199 (Vehicle 

vs. 50mg/kg), p = 0.0040 (Vehicle vs. 200mg/kg). d ITT performance of the mice described in 

Fig. 5a. n = 8 (SD), n = 10 (Vehicle), n = 10 (50 mg/kg), n = 10 (100 mg/kg) mice. For Vehicle 

vs. 50mg/kg, p = 0.0005 (15 min), p = 0.0049 (30 min), p = 0.0230 (45 min), p = 0.0038 (60 

min), p = 0.0006 (90 min), p = 0.0005 (120 min); For Vehicle vs. 100mg/kg, p < 0.0001 (15 

min), p = 0.0027 (30 min), p = 0.0007 (60 min), p = 0.0059 (90 min), p = 0.0311 (120 min). e

Quantification of the area under the curve (AUC) from the ITT shown in Fig. 5i and 

Supplementary Fig. 5d. n = 8 (SD), n = 10 (Vehicle), n = 10 (50 mg/kg), n = 10 (100 mg/kg), n

= 9 (200 mg/kg) mice. p = 0.0029 (Vehicle vs. 50mg/kg), p = 0.0054 (Vehicle vs. 100mg/kg), 

p = 0.0152 (Vehicle vs. 200mg/kg). f Total cholesterol (T-CHO) in sera from the mice described 

in (Fig. 5a); n = 6 (SD), n = 6 (Vehicle), n = 5 (50 mg/kg), n = 5 (100 mg/kg), n = 6 (200 mg/kg) 

mice. p = 0.0038 (Vehicle vs. 50mg/kg), p < 0.0001 (Vehicle vs. 200mg/kg). g Low density 

lipoprotein cholesterol (LDL-C) in sera of the mice described in (Fig. 5a); n = 6 mice. p = 

0.0109 (Vehicle vs. 50mg/kg), p = 0.0028 (Vehicle vs. 100mg/kg), p < 0.0001 (Vehicle vs. 

200mg/kg). h Food intake by the mice described in (Fig. 5a), n = 3 biologically independent 

experiments. i Water intake by the mice described in (Fig. 5a), n = 3 biologically independent 

experiments. Data are presented as mean  SD. Significance was assessed by one-way ANOVA 

(f-i), two-way ANOVA (a-b, d), or two tail Student’s t-test (c, e). *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001 compared to vehicle control group. Source data are provided as a Source 



Data file. 



Supplementary Fig. 9 DLPC prevents HFD-induced obesity

a-g Relative mRNA levels of browning-related genes in iWAT of the mice described in Fig. 5a, 

as determined by RT-qPCR. For Ucp1 gene, n = 3 (Vehicle), n = 4 (200 mg/kg) mice; For 

Prdm16 gene, n = 3 (Vehicle), n = 3 (200 mg/kg) mice; For Cidea gene, n = 3 (Vehicle), n = 4 

(200 mg/kg) mice; For Cox7a gene, n = 3 (Vehicle), n = 4 (200 mg/kg) mice; For Cox8b gene, 

n = 3 (Vehicle), n = 4 (200 mg/kg) mice; For PGC1α gene, n = 3 (Vehicle), n = 4 (200 mg/kg) 

mice; For Tfam gene, n = 3 (Vehicle), n = 4 (200 mg/kg) mice. p = 0.0471 (Vehicle vs. 

200mg/kg). Data are presented as mean  SD. Significance was assessed by two tail Student’s 

t-test (a-g). *p < 0.05 compared to vehicle control group. Source data are provided as a Source 

Data file. 



Supplementary Fig. 10 DLPC treats obesity in DIO mice

a Weight gain of DIO mice that were i.p. administered with vehicle or various doses of DLPC 

(50, 100, 200 mg/kg) daily for 10 weeks. n = 10 (Vehicle), n = 10 (50 mg/kg), n = 12 (100 

mg/kg), n = 10 (200 mg/kg) mice. For Vehicle vs. 50mg/kg, p = 0.0313 (4-week), p = 0.0039 

(10-week); For Vehicle vs. 100mg/kg, p = 0.0314 (3-week), p = 0.0023 (4-week), p = 0.0342 

(5-week), p = 0.0337 (6-week), p = 0.0456 (7-week), p = 0.0380 (8-week), p = 0.0010 (9-week), 

p < 0.0001 (10-week); For Vehicle vs. 200mg/kg, p = 0.0011 (3-week), p < 0.0001 (4-week), p 

< 0.0001 (5-week), p < 0.0001 (6-week), p < 0.0001 (7-week), p < 0.0001 (8-week), p < 0.0001 

(9-week), p < 0.0001 (10-week). Mice treated with vehicle served as controls. b GTT 

performance of the mice described in Fig. 6a. n = 8 (SD), n = 7 (Vehicle), n = 6 (50 mg/kg), n



= 6 (100 mg/kg) mice. For Vehicle vs. 100mg/kg, p = 0.0134 (60 min). c Quantification of the 

area under the curve (AUC) from the GTT shown in Fig. 6d and Supplementary Fig. 7b. n = 8 

(SD), n = 7 (Vehicle), n = 6 (50 mg/kg), n = 6 (100 mg/kg), n = 6 (200 mg/kg) mice. p = 0.0182 

(Vehicle vs. 200mg/kg) d ITT performance of the mice described in Fig. 6a. n = 8 (SD), n = 11 

(Vehicle), n = 9 (50 mg/kg), n = 9 (100 mg/kg) mice. For Vehicle vs. 100mg/kg, p = 0.0461 (30 

min), p = 0.0241 (60 min). e Quantification of the area under the curve (AUC) from the ITT 

shown in Fig. 6e and Supplementary Fig. 7d. n = 8 (SD), n = 11 (Vehicle), n = 9 (50 mg/kg), n

= 9 (100 mg/kg), n = 8 (200 mg/kg) mice. p = 0.0480 (Vehicle vs. 100mg/kg). f Food intake by 

the mice described in Fig. 6a, n = 3 biologically independent experiments. g Water intake by 

the mice described in Fig. 6a, n = 3 biologically independent experiments. Data are presented 

as mean  SD. Significance was assessed by one-way ANOVA (f-g), two-way ANOVA (a, b, 

d), or two tail Student’s t-test (c, e). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

compared to vehicle control group. Source data are provided as a Source Data file. 



Supplementary Fig. 11 DLPC treats obesity in DIO mice

a-g Relative mRNA levels of browning-related genes in iWAT tissues of the mice described in 

(Fig. 6a), as determined by RT-qPCR. For Ucp1 gene, n = 3 (Vehicle), n = 4 (200 mg/kg) mice; 

For Prdm16 gene, n = 3 (Vehicle), n = 4 (200 mg/kg) mice; For Cidea gene, n = 3 (Vehicle), n

= 4 (200 mg/kg) mice, p = 0.0277 (Vehicle vs. 200mg/kg); For Cox7a gene, n = 3 (Vehicle), n

= 3 (200 mg/kg) mice, p = 0.0048 (Vehicle vs. 200mg/kg); For Cox8b gene, n = 3 (Vehicle), n

= 3 (200 mg/kg) mice, p = 0.0002 (Vehicle vs. 200mg/kg); For PGC1α gene, n = 3 (Vehicle), n

= 4 (200 mg/kg) mice, p = 0.0204 (Vehicle vs. 200mg/kg); For Tfam gene, n = 3 (Vehicle), n = 

4 (200 mg/kg) mice. Data are presented as mean  SD. Significance was assessed by two tail 

Student’s t-test (a-g). *p < 0.05, **p < 0.01, ***p < 0.001 compared to vehicle control group. 

Source data are provided as a Source Data file. 



Supplementary Fig. 12 DLPC induces iWAT browning via lipid peroxidation-mediated 

p38 activation



a Gating strategy used for FACS sorting of BODIPY C11 positive cells. b Pearson correlation 

matrix of quantitative proteomics data. c Heatmap showing proteins that were differentially 

expressed between DLPC-treated and vehicle control adipocytes in the absence of Lip-1, as 

determined by proteomics analysis. d Volcano plot showing proteins that were differentially 

expressed between DLPC-treated and vehicle control adipocytes in the absence of Lip-1, as 

determined by proteomics analysis. e Pearson correlation matrix of quantitative redox 

proteomics data. f Heatmap showing proteins that were differentially expressed between 

DLPC-treated and vehicle control adipocytes in the absence of Lip-1, as determined by redox 

proteomics analysis. g Volcano plot showing the differentially oxidized proteins between 

DLPC-treated and vehicle control adipocytes in the absence of Lip-1, as determined by redox 

proteomics analysis. h Pearson correlation matrix of quantitative phospho-proteomics data. i

Heatmap showing proteins that were differentially expressed between DLPC-treated and 

vehicle control adipocytes in the absence of Lip-1, as determined by phospho-proteomics 

analysis. j Volcano plot showing phospho-proteins that were differentially present between 

DLPC-treated and vehicle control adipocytes in the absence of Lip-1, as determined by 

phospho-proteomics analysis. 


