Contents

Appendix Figure S1	2
Appendix Figure S2	3
Appendix Figure S3	4
Appendix Figure S4	5
Appendix Table S1	6
Appendix Table S2	7

Appendix Figure S1

Appendix Figure S1. Emergency granulopoiesis response upon LPS stimulation. (A) Peripheral blood (PB) and bone marrow (BM) analysis 4, 6, 12-16 or 24 hours after 35 µg LPS (shades of orange) or PBS control (gray) injection into C57Bl/6 mice. Each symbol represents values for one mouse. Data represents mean \pm SD from 4 independent experiments. (B) Flow cytometric analysis of BM cells isolated from PBS-(gray) or LPS- (orange) treated mice. Left dot plots illustrate expression of c-Kit and Sca-1 in the Lin- BM cells, and CD48 and CD150 expression in the LKS population. Right histograms indicate expression of Sca-1 in the LKS population and CD150 expression in the HSC population. (C) Quantitative RT-PCR from HSCs isolated from C57Bl/6 mice treated with PBS (gray) or 35 µg LPS (orange) for 4 hours. Expression of *Cebpb, 116*, and *Bcl3* is indicated. The y-axes represent relative expression compared with *Actb* control. Data represent mean \pm SD from a representative experiment out of 2 independent experiments. (D) Number of HSCs in BM (leg and hip) 4 hours upon PBS or LPS administration. Y-axis indicates absolute number. Data represents mean \pm SD from 2 independent experiments. In this figure, two-tailed Student's t test was used to assess statistical significance (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant).

Appendix Figure S2

Appendix Figure S2. CD201 levels in HSCs upon LPS-induced emergency granulopoiesis. (A) CD201 in HSCs 4 hours after administration of LPS or PBS control. Values indicate CD201 mean fluorescence intensity (MFI) relative to PBS treatment. X-axis indicates fold change. (B) Percentage of CD201+ HSCs in BM upon administration of PBS or LPS. X-axis indicates time of analysis upon LPS administration. Data represents mean \pm SD from 2 independent experiments. Each symbol represents values for 1 mouse. At least 6 mice were used in each group. Two-tailed Student's t test was used to assess statistical significance (***P < 0.001, ****P < 0.0001).

Appendix Figure S3

Appendix Figure S3. CD201 levels in HSCs during emergency granulopoiesis induced by administration of G-CSF and *Candida albicans (C. albicans)*. (A) Representative flow cytometric plots of BM HSCs isolated from mice treated with PBS control or 250 μ g/kg G-CSF (intraperitoneally) for 4 hours. X-axes indicate expression of CD201 in HSCs. Numbers indicate percentage of CD201+ HSCs. (B-C) Quantification of panel a. Panel b indicates percentage of CD201+ HSCs upon treatment, and panel c indicates the mean fluorescence intensity (MFI) relative to PBS treatment. (D) Representative flow cytometric plots of HSCs isolated from PBS or *C. albicans* treated mice. X-axes indicate CD201 expression in HSCs. Numbers indicate percentage of CD201+ HSCs.(E-G) Quantification of panel d. Panel e indicates percentage of CD201+ HSCs, panel f number of CD201+ HSCs, and panel g indicates the MFI relative to PBS treatment. (H) Representative plots from BM isolated from mice challenged with PBS (left) or *C. albicans* (right). Plots indicate gating strategy to identify progenitor and stem cell populations. Numbers indicate percentages of LKS. (I) Quantification of panel h. Y-axes indicate fold change from PBS- to *C. albicans*-treated mice. In this figure, at least 4 animals were included in each group. All data represent mean \pm SD from 2 independent experiments. Two-tailed Student's t test was used to assess statistical significance (*P < 0.05, **P < 0.01, and ****P < 0.0001).

Appendix Figure S4


```
CD201
```

Appendix Figure S4. CD201+ and CD201- HSC output in steady-state conditions. (A) BM analysis of mice transplanted with CD201+ or CD201- HSCs. Y-axis indicates percentage of Ly5.2+ donor derived CD201+ or CD201- HSCs in BM 16 weeks after transplantation. X-axis indicates group transplanted with CD201+ or CD201- HSCs. This is a representative experiment out of 3. Each symbol indicates one mouse. (B) Quantification of the number of animals that exhibited engraftment upon transplantation. A mouse was considered as a responder when engraftment in BM LKS was > 0.5 % of donor derived Lin- cells 16 weeks after transplantation. Y-axis indicates the percentage of responders in mice transplanted with CD201+ or CD201- HSCs. (C) Representative flow cytometric plots showing tri-lineage reconstitution in BM 16 weeks upon transplantation of CD201+ and CD201- HSCs. The x-axes indicate expression of Gr1, CD11b, and B220. The y-axes indicate expression of CD3e and B220. Upper left quadrant indicates percentage of T cells, upper right quadrant indicates percentage of B cells, and lower right quadrant indicates percentage of myeloid cells. (D) Quantification of panel c. At least 5 animals were included in each group. (E) Quantification of lymphoid versus myeloid derived cells upon transplantation of CD201+ and CD201-HSCs. Y-axis indicates the lymphoid to myeloid ratio in BM 16 weeks upon transplantation. Data in this figure represent mean ± SD from 2 independent experiments. Two-tailed Student's t test was used to assess statistical significance (*P < 0.05, *P < 0.01). (F) Representative flow cytometry plots based on expression of CD135 and CD34 in LKS cells (left panel). CD135-CD34- cells were gated into CD150- (blue gate) and CD150 (green gate), and further divided according to CD201 expression levels (lower plots). Numbers indicate average \pm standard deviation (n=5 mice).

Appendix Table S1

Rank	Meg/E	Transition	Lymphoid	Inflamm	Myeloid
1	Hmgb2	Cmtm7	Hlf	Iigp1	Ccl5
2	Top2a	Gpx1	Prtn3	Cxcl10	Rsad2
3	Stmn1	Coro1a	Lmo2	Lуба	Isg15
4	Dut	Prdx2	Txnip	Gbp2	Nfkbia
5	Mki67	Park7	Gent2	Gm4951	Fyb
6	Ran	Igfbp4	Adgrg1	Ifit3	Marcks
7	Pf4	Gpi1	Mllt3	Serpina3g	Neur13
8	Cks2	Fkbp3	Cbfa2t3	Stat1	Gbp3
9	Tgfb1	Aprt	Hacd4	Plac8	Cd74
10	Tuba1b	Aldh2	Lst1	Rgs1	Gadd45b
11	Tubb5	Lyz2	Adgrl4	Slfn5	Ifit1
12	Hmgb1	Taldo1	Angpt1	Ifi203	Tnip3
13	Lmnb1	Pgam1	Mettl7a1	Igtp	Batf
14	Dctpp1	Mvc	Eif4a2	Mndal	Manf
15	Nap111	Vim	Procr	Ifi44	Hspa5
16	Pbx1	Nme4	Arhgdib	Ifi204	Ccl4
17	Ldha	Tecr	Sox4	Socs1	Fth1
18	Ann32h	Trmt112	Smarca2	Gbn7	Oasl1
19	Nrgn	Pehn1	Zfn3612	Zhn1	Traf1
20	Nucks1	Lamtor4	Zhth20	Gbn5	Cebnd
20	Cdk6	Emn3	Ptnn18	Gbp4	Sod2
$\frac{21}{22}$	Cdca8	Vamp8	Msi2	Sernina3f	Ikhke
22	Tmpo	Pkm	Nfic	Ms/a/c	Spil
$\frac{23}{24}$	Chalb	Tenen4	Pomp1	Cyclo	Cd60
24	Dtmo	Geto1	Ramp1 Rdzk1ip1	Lrf7	Icosl
25	A trif1	Dtov1	Dil/3in1		Cycl2
20	Popo	Golm	Vpol3	Bet?	Ddia6
27	Smo2	Dhadh	Gimen1	DSt2 Dim1	Nfleb1
20			Dily3r1	Sambd1	Mankank2
30	Biro5	Ech1	Cov7a21	Jun	Cebrb
30	Cdk1	Dongrf	Kit	Juli Ifi47	Dou 2f2
31	Smal	Dfl/1	Sirt2	III47	Tm/sf1
32	Silic4	F1K1 S1o25o4	Eovp1	Horo6	Cmpl/2
24	I UXS	SIC2384	FOXP1	Inerco Inf1	
34 25	Spc24	Metti20	Dterroop	Cd52	Dig1
33 26	Ligi Suur di	Adno Imm 2	Clui	Luss Ifitm 1	
30 27	Shrpd1	Dra26	Giui	Chico 5	IIIIII Nof1
3/	Dnmt1	Kps26		Shisas	INCI I
38	Itga2b	FKbp1a	Zfp608	Oasi2	Herpudl
39	Rrm1	Gmfg	Akap13	Infsf10	
40	Mcm3	Ctsd		Pnp	Lsp1
41	Tyms	Ccdc10/	Ncehl	Junb	Ptms
42	Pclaf	Dtdl	Ptpre	Trim30a	Clic4
43	Atad2	Scp2	Mecom	Apobec3	Lcn2
44	SIc25a5	RpI32	Sptssa	Ititm3	Parp14
45	Hdgf	Naca	Ldhb	Epsti1	Slfn2
46	Dtymk	Mrp152	Sptbn1	Selp	Hspa8
47	Nasp	Tmem205	Tsc22d3	Socs3	Eif1
48	Dek	Matk	Klhl24	Ppa1	Ebi3
49	Gmnn	Il11ra1	Alox5ap	Irgm1	Rasip1
50	Hmgb3	Abhd14a	Atp2b4	Ly6e	Serp1

Appendix Table S1. List of Top50 genes differentially expressed in the 5 distinct sub-clusters.

Appendix Table S2

Myeloid	Lymphoid
Hdc	Flt3
Csf3r	Tcf3
Irf8	Notch1
Nr4a1	Zbtb1
Ccl5	Satb1
Cebpb	Ikzf1
Cebpd	Egr1

Appendix Table S2. List of genes used to define the myeloid-biased or lymphoid-biased HSCs in Figure 1g.