1	Supporting Information
2	Critical Review on Bromate Formation during Ozonation and Control Options for
3	its Minimization
4	
5	Christina M. Morrison ¹ , Samantha Hogard ^{2,3} , Robert Pearce ^{2,3} , Aarthi Mohan ¹ , Aleksey N.
6	Pisarenko ⁴ , Eric R.V. Dickenson ¹ , Urs von Gunten ^{5,6*} , Eric C. Wert ^{1*}
7	
8	¹ Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA
9	² Hampton Roads Sanitation District, PO Box 5911, Virginia Beach, VA 23471-0911, USA
10	³ Civil and Environmental Engineering Department, Virginia Polytechnic Institute and State
11	University, Blacksburg, VA, USA
12	⁴ Trussell Technologies, Inc., 380 Stevens Ave, Suite 212, Solana Beach, CA 92075, USA
13	⁵ Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133,
14	CH-8600 Dubendorf, Switzerland
15	⁶ School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique
16	Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
17	*Corresponding authors:
18	UvG: vongunten@eawag.ch
19	ECW: eric.wert@lvvwd.com
20	Manuscript for submission to Environmental Science & Technology Special Issue on "Oxidative
21	Water Treatment: The Track Ahead"
22	Submission Deadline: January 31, 2023
23	

24 S.1: Alternative Designs for O₃ and O₃/H₂O₂ Application

The HiPOX system uses multiple ozone injection locations in a tubular reactor while the PRO₃MIX approach uses a single ozone gas injection with a series of inefficient static mixers to sequentially transfer ozone.^{1,2} The MEMBRO₃X concept uses an ozoneresistant hollow fiber membrane for ozone mass transfer to the water phase containing H_2O_2 .³ Overall, these approaches are geared towards low local ozone residual concentrations by distributed ozone addition and fast transformation of O₃ to ·OH. This minimizes the formation of HOBr and can thus mitigate bromate formation.

32

33

35 concentration according to the rate constants for equation 12.

Water Matrix	Predictive Equation	Units	Boundary Conditions	Ref.
SW	1.[BrO ₃ ⁻] = 1.55x10 ⁻⁶ [Br] ^{-0.73} [DOC] ^{-1.26} [pH] ^{5.82} [O ₃] ^{1.57} t ^{0.28} 2. [BrO ₃ ⁻] = 1.63x10 ⁻⁶ [Br] ^{-0.73} [DOC] ^{-1.3} [pH] ^{5.79} [O ₃] ^{1.59} t ^{0.27} [NH ₃ -N] ^{-0.033}	BrO ₃ ⁻ (μg/L), Br (μg/L), DOC (mg/L), O ₃ (mg/L), NH ₃ -N (mg/L), pH, t (min), Temp (20 °C)	70 < Br < 440 1.1 < DOC < 8.4 6.5 < pH < 8.5 1.1 < O ₃ < 10.0 1 < t < 120	4
SW, GW	[BrO ₃ ⁻] = 1.5x10 ⁻³ [DOC] ^{-0.74} [pH] ^{2.26} [O ₃] ^{0.64} [Br ⁻] ^{0.61} [temp] ^{2.03}	BrO ₃ ⁻ (μ g/L), Br (μ g/L), DOC (mg/L), O ₃ (mg/L), pH, Temp (°C)	250 < Br < 1500 3.0 < DOC < 7.0 6.5 < pH < 8.5 1.5< O ₃ < 17.5 20 < T < 30	5
SW	[BrO ₃ ⁻] = 7.76x10 ⁻⁷ [Br] ^{0.88} [DOC] ^{-1.18} [NH ₃ -N] ^{-0.18} [O ₃] ^{1.42} pH ^{5.11} [IC] ^{0.18} t ^{0.27}	BrO ₃ ⁻ (μg/L), Br (μg/L), DOC (mg/L), O ₃ (mg/L), NH ₃ -N (mg/L), pH, IC (mg/Las CaCO ₃), t (min), Temp (20 °C)	100 < Br- < 1000 1.5 < DOC < 6.0 1.0 < IC < 216 6.5 < pH < 8.5 $0.005 < NH_3-N < 0.7$ $1.5 < O_3 < 6.0$ 1 < t < 30	6
SW	1. $[BrO_3^{-1}] = 4.36 \times 10^{-4} [Br^{-1.136} [DOC]^{-1.267} [pH]^{1.774} [O_3]^{1.575} [time]^{1.014}$ 2. $[BrO_3^{-1}] = 2.75 \times 10^{-4} [Br^{-1.137} [DOC]^{-1.186} [pH]^{0.253} [O_3]^{1.598} [time]^{1.014} [NH_3^{-N}]^{-0.086}$	BrO ₃ ⁻ (μg/L), Br ⁻ (μg/L), DOC (mg/L), O ₃ (mg/L), NH ₃ -N (mg/L), pH, IC (mg/Las CaCO ₃), t (min)	75 < Br - < 145 6.5 < pH < 8.5 T = 20 °C 1.1 < O ₃ < 10.0 1.1 < DOC < 8.4 1 < t < 120 0 < NH ₃ -N < 1.5	7
DW	$[BrO_{3}^{-}] = 5.41 \times 10^{-5} [Br]^{-0.040} [DOC]^{-1.080} [pH]^{4.7} [O_{3}]^{1.120} [time]^{0.304} [temp]^{0.580} [BrO_{3}^{-}]_{@temp} = [BrO_{3}^{-}]_{@20^{\circ}C} (1.035)^{Temp-20}$	BrO ₃ ⁻ (μg/L), Br ⁻ (μg/L), DOC (mg/L), O ₃ (mg/L), NH ₃ -N (mg/L), pH, IC (mg/Las CaCO ₃), t (min), Temp (°C)	70 < Br < 440 1.1 < DOC < 8.4 6.5 < pH < 8.5 1.1 < O ₃ < 10.0 1 < t < 120	8
DW	1. $[BrO_3^-] = 1.19x10^{-7} [Br^-]^{-0.96} [UV_{254}]^{-0.623} [pH]^{5.68} [O_3]^{1.307} [time]^{0.336} [Alk]^{-0.201}$	BrO ₃ ⁻ (μg/L), Br (μg/L), O ₃ (mg/L), UV ₂₅₄ (cm ⁻¹), pH, Alk	70 < Br < 440 0.010 < UV ₂₅₄ < 0.280	9

37 **Table S1** Summary of bromate formation models based on multiple linear regressions and water matrix.

	2. $[BrO_3^-] = 8.71 \times 10^{-8} [Br^-]^{-0.944} [UV_{254}]^{-0.593} [pH]^{5.81} [O_3]^{1.279} [time]^{0.337} [Alk]^{-0.167} [NH_3^-N]^{-0.051}$	(mg/Las CaCO ₃), t (min), Temp (°C)	1.1 < DOC < 8.4 6.5 < pH < 8.5 1.1 < O ₃ < 10.0 1 < t < 120 13 < Alk <216 0.02 < NH ₃ -N < 3	
DW	$[BrO_3^{-}] = 1.5xO_3 CT + 0.5 + 1.4xO_3 CT + 0.2$	BrO ₃ ⁻ (μ g/L), O ₃ CT (mg-O ₃ -min/L)	0 < O ₃ CT < 2.0 T = 12, 20 °	10
DW	$\begin{split} & [BrO_{3}^{-}] = [NH_{3}\text{-}N]^{-0.15} [DOC]^{-0.26} [Alk]^{0.45} pH^{-0.44} [Cl^{-}]^{-0.14} [O_{3}]^{0.63} \text{ time}^{0.54} \\ & [BrO_{3}^{-}] = [NH_{3}\text{-}N]^{-0.14} [DOC]^{-0.22} [Alk]^{0.42} pH^{-0.3} [O_{3}]^{0.63} \text{ time}^{0.54} \\ & [BrO_{3}^{-}] = [Br]^{-1.74} [Turbidity]^{-0.31} [EC]^{2.11} \\ & [BrO_{3}^{-}] = [Br]^{0.78} [Cl^{-}]^{0.75} [EC]^{-1.19} \\ & [BrO_{3}^{-}] = [Br]^{0.47} [O_{3}]^{0.62} \text{ time}^{0.51} \\ & [BrO_{3}^{-}] = [EC]^{0.46} [O_{3}]^{0.62} \text{ time}^{0.50} \end{split}$	BrO ₃ ⁻ (μg/L), Br (μg/L), DOC (mg/L), O ₃ (mg/L), NH ₃ -N (mg/L), Cl (mg/L), pH, Alk (mg/Las CaCO ₃), t (min), EC (μS/cm), Turbidity (NTU)	$\begin{array}{c} 161 < Br < 4084 \\ 115 < Alk < 246 \\ 0.50 < DOC < 1.4 \\ 16 < Cl < 1170 \\ 334 < EC < 3940 \\ 0.06 < NTU < 0.60 \\ 7.10 < pH < 8.07 \\ 0.0 < NH_3 - N < 0.019 \\ 0.5 < O_3 < 3.5 \\ 0 < t < 60 \\ T = 20 - 23 \ ^{\circ}C \end{array}$	11
RO	[BrO ₃ ⁻] = e ^{-19.40} [Br] ^{0.8} dose ^{1.26} t ^{0.89} pH ^{7.28}	BrO ₃ - (mg/L), Br- (mg/L), pH, O ₃ (mg/L), t (min)	1. < Br ⁻ < 4.0 6.0 < pH < 9.0 25 < O ₃ < 58.3 15 < t < 35	12
RW	[BrO ₃ ⁻] = 3.855x10 ⁻⁸ [Br ⁻] ^{1.43} (O ₃ mg/min) ^{0.93} pH ^{3.01} T ^{1.20} t ^{A0.83}	BrO ₃ ⁻ (μg/L), Br ⁻ (μg/L), DOC (mg/L), O ₃ (mg/min), NH ₃ -N (mg/L), pH, IC (mg/Las CaCO ₃), t (min), Temp (°C)	50 < Br < 1000 3.0 < pH < 8.0 0.5 < O ₃ < 2.25 0 < t < 180 15 < T < 35	13
RW	1. $[BrO_3^-] = 0.603 \times 10^{-1} [Br^-]^{0.35} [O_3]^{1.31}$ 2. $d[BrO_3^-]/dt = k' \times [O_3^-]^{1.4}$	1. BrO ₃ ⁻ (μg/L), Br (μg/L), O ₃ (mg/L), pH = 7.5 2. [BrO ₃ ⁻] (M), [O ₃] (M), k' (M ₋ ^(ab-1) s ⁻¹)	50 < Br < 300 $0.7 < O_3 < 3.8$ a = 0.5, b = 1.4 k' = 0.069 at pH 6.5 k' = 0.45 at pH 7.5 k' = 2.1 at pH 8.5	14
SW, WW	$[BrO_{3}^{-}] = 7.64 \times 10^{-9*} e^{(0.237*HS(\%))}$	BrO ₃ - (μg/L), Br (μg/L), DOC (mg/L),	0 < HS % <100 100 < Br < 500	15

		UV ₂₅₄ (cm ⁻¹), EC (μ S/cm), HS (%) = % reduction in emission at 415 - 490 nm	5.82 < DOC < 14.87 0.130 < UV ₂₅₄ < 0.727 6.92 < pH < 7.48 314 < EC < 652	
WW	[Br: BrO ₃ -] = 0.08[O ₃ :TOC] ^{2.26}	Br: BrO_3^- (mg Br: mg BrO_3^-), O_3 :TOC (mg O_3 : mg TOC)	0.2 < O ₃ :TOC < 1.95 42 < Br < 820	16
WW	[Br: BrO ₃ -] = 0.07[O ₃ :TOC] ^{2.13}	Br: BrO_3^- (mg Br: mg BrO_3^-), O_3 :TOC (mg O_3 : mg TOC)	0.2 < O ₃ :TOC < 1.55 100 < Br < 870 86 < Alk <206 6.26 < DOC < 11.0 7.0 < pH < 8.0 T = 20-28 °C	17

38 SW = surface water; GW = ground water; RO = reverse osmosis permeate; RW = reagent water; WW = waste water.

- 39 **Table S2** Studies on ammonium addition as a bromate control strategy during
- 40 ozonation. SW = Surface Water, *DOC (mg/L)

Scale	Water Type	рН	TOC (mg/L)	Alkalinity (mg/L as CaCO ₃)	Ozone exposure (Ct) (mg.min/L)	NH ₃ Dose (ug NH ₃ - N/L)	Bromate Minimization (%)	Reference
Bench	GW	8.2	4.0	132	~0.37	300	67	18
Bench	GW	8.2	4.0	132	~0.93	600	83	18
Bench	SW	8	1.3*	2.4 mM	8-9	164	50	19
Pilot	SW	8	2.59	137	4.1	100	42-62	20
Pilot	SW	8	2.59	137	4.09	300	65-70	20
Pilot	SW	8	2.59	137	3.93	500	70-73	20
Pilot	SW	8.3	3.7	73	~6.8	200	40-67	21
Pilot	SW	8.3	3.7	73	~6.8	900	60	21

43 **Table S3** Performance of Cl_2 -NH₃ as a bromate control strategy during ozone

44 treatment. *DOC (mg/L)

Scale	Water Type	рН	TOC (mg/L)	Alkalinity (mg/L as CaCO ₃)	Ozone Exposure (mg.min/L)	Cl ₂ dose (mg/L)	NH ₃ dose (ug NH ₃ - N/L)	Bromate Minimization (%)	Reference
Bench	SW	7.5	1.7*	2.6 mM	6	0.7	82	61	22
Bench	SW	7.5	1.7*	2.6 mM	6	0.7	164	81	22
Bench	SW	7.5	1.7*	2.6 mM	6	0.7	247	83	22
Bench	SW	7.5	1.7*	2.6 mM	6	0.7	329	83	22
Bench	GW	8.2	4	132	0.35	2	0.6	92	18
Pilot	SW	8	2.59	137	4.50	0.25	100	44-69	20
Pilot	SW	8	2.59	137	4.19	0.5	100	66-72	20
Pilot	SW	8	2.59	137	3.98	0.25	300	78-82	20
Pilot	SW	8	2.59	137	3.90	0.5	300	75-81	20
Pilot	SW	8	2.59	137	4.41	0.5	500	93-94	20

45

- 47 **Table S4** Performance of preformed monochloramine for bromate control during ozone
- 48 treatment

Scale	Water Type	рН	TOC (mg/L)	Alkalinity (mg/L as CaCO ₃)	Specific Ozone Dose*	Dose (mg NH ₂ CI as CI ₂ /L)	Bromate Minimization (%)	Reference
Pilot	WW	7.1	6.6	178	Up to 1.2 mg O ₃ :TOC	1	68	23
Pilot	WW	7.1	6.6	178	Up to 1.2 mg O ₃ :TOC	3	84	23
Pilot	WW	7.1	6.6	178	Up to 1.2 mg O ₃ :TOC	5	87	23

- **Table S5** Performance of hydrogen peroxide for bromate control during ozonetreatment, ND=not determined, *DOC (mg/L) 51
- 52

Scale	Water Type	рН	TOC (mg/L)	Alkalinity (mg/L as CaCO ₃)	Specific Ozone Dose (mg O ₃ : mg DOC)	$\begin{array}{c} H_2O_2\\ Dose\\ (mol\\ H_2O_2:mol\\ O_3) \end{array}$	Bromate Minimization (%)	Reference
Bench	SW	8.1	1.6	96.4	1.61	0.14	21	24
Bench	SW	8.1	1.6	96.4	1.61	0.28	26	24
Bench	SW	8.1	1.6	96.4	1.61	0.71	45	24
Bench	SW	8.1	1.6	96.4	1.61	1.4	60	24
Bench	SW	7.9	2.4	163.3	1.05	0.14	-29	24
Bench	SW	7.9	2.4	163.3	1.05	0.28	-21	24
Bench	SW	7.9	2.4	163.3	1.05	0.71	-7	24
Bench	SW	7.9	2.4	163.3	1.05	1.4	14	24
Bench	SW	8.0	6.4	106.9	0.39	0.14	-60	24
Bench	SW	8.0	6.4	106.9	0.39	0.28	-114	24
Bench	SW	8.0	6.4	106.9	0.39	0.71	-120	24
Bench	SW	8.0	6.4	106.9	0.39	1.4	-129	24
Bench	WW	7.3	8.6	ND	1.2	0.5	15	25
Bench	ww	7.3	8.6	ND	1.2	1	35	25
Bench	WW	7.0	4.7	145	1	0.5	32	26
Bench	WW	7.0	4.7	145	1	1	46	26
Bench	WW	7.2	4.7	220	1	0.5	19	26
Bench	WW	7.2	4.7	220	1	1	32	26
Bench	WW	7.1	7.0	105	1	0.5	27	26
Bench	WW	7.1	7.0	105	1	1	25	26
Bench	WW	6.9	7.1	123	1	0.5	14	26
Bench	WW	6.9	7.1	123	1	1	17	26
Bench	WW	7.6	5.7	134	1	0.5	-50	26

Bench	WW	7.6	5.7	134	1	1	0	26
Bench	WW	7.3	15.0	332	1	0.5	37	26
Bench	WW	7.3	15.0	332	1	1	48	26
Bench	WW	7.3	7.0	205	1	0.5	14	26
Bench	WW	7.3	7.0	205	1	1	14	26
Bench	WW	7.3	6.3	169	1	0.5	13	26
Bench	WW	7.3	6.3	169	1	1	8	26
Bench	WW	7.0	4.7	145	1.5	0.5	32	26
Bench	WW	7.0	4.7	145	1.5	1	45	26
Bench	WW	7.2	4.7	220	1.5	0.5	10	26
Bench	WW	7.2	4.7	220	1.5	1	36	26
Bench	WW	7.1	7.0	105	1.5	0.5	13	26
Bench	WW	7.1	7.0	105	1.5	1	34	26
Bench	WW	6.9	7.1	123	1.5	0.5	23	26
Bench	WW	6.9	7.1	123	1.5	1	41	26
Bench	WW	7.6	5.7	134	1.5	0.5	11	26
Bench	WW	7.6	5.7	134	1.5	1	22	26
Bench	WW	7.3	15.0	332	1.5	0.5	0	26
Bench	WW	7.3	15.0	332	1.5	1	-5	26
Bench	WW	7.3	7.0	205	1.5	0.5	55	26
Bench	WW	7.3	7.0	205	1.5	1	57	26
Bench	WW	7.3	6.3	169	1.5	0.5	-7	26
Bench	WW	7.3	6.3	169	1.5	1	14	26
Bench	WW	7.8	7.8*	ND	1.5	0.6-1.5	36-67	16

54 References

73

74

75

76

77

78 79

83

84

85

89

- Bowman, R. H. Hipox Advanced Oxidation of Tba and Mtbe in Groundwater. in
 Contaminated Soils, Sediments, and Water: Science in the Real World (eds. Calabrese,
 E. J., Kostecki, P. T. & Dragun, J.) 299–213 (Springer US, 2005).
 doi:https://doi.org/10.1007/0-387-23079-3 19.
- Bourgin, M., Borowska, W., Helbing, J., Hollender, J., Kaiser, H.-P., Kienle, C., McArell,
 C. S., Simon, E., & von Gunten, U. Effect of operational and water quality parameters on
 conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of
 micropollutant abatement, transformation product and bromate formation in a surface
 water. Water Res. (2017) 122, 234–245.
- Merle, T., Pronk, W. & von Gunten, U. MEMBRO3X, a novel combination of a
 membrane contactor with advanced oxidation (O3/H2O2) for simultaneous
 micropollutant abatement and bromate minimization. Environ. Sci. Technol. Lett. (2017)
 4, 180–185.
- 68
 4. Ozekin, K. Modeling Bromate Formation During Ozonation and Assessing its Control,
 69
 PhD. (University of Colorado, Boulder, 1994).
- Siddiqui, M., Amy, G., Ozekin, K. & Westerhoff, P. Empirically and Theoretically-Based
 Models for Predicting Brominated Ozonated by-Products. Ozone Sci. Eng. (1994)16,
 157–178.
 - 6. Song, R. et al. Empirical Modeling of Bromate Formation During Ozonation of Bromide-Containing Waters. Water Res. (1996) 30, 1161–1168.
 - 7. Ozekin, K. & Amy, G. L. Threshold Levels for Bromate Formation In Drinking Water. Ozone Sci. Eng. (1997) 19, 323–337.
 - 8. Galey, C., Sohn, J., Amy, G. & Cavard, J. Modeling Bromate Formation at the Full Scale: A Comparison of Three Ozonation Plants. in Am. Water Work. Assoc. Water Quality and Technology Conference (1997).
- Sohn, J., Amy, G., Cho, J., Lee, Y. & Yoon, Y. Disinfectant decay and disinfection byproducts formation model development: Chlorination and ozonation by-products. Water
 Res. (2004) 38, 2461–2478.
 - Van Der Helm, A. W. C., Smeets, P. W. M. H., Baars, E. T., Rietveld, L. C. & Van Dijk, J. C. Modeling of ozonation for dissolved ozone dosing. Ozone Sci. Eng. (2007) 29, 379– 389.
- 11. Civelekoglu, G., Yigit, N. O., Diamadopoulos, E. & Kitis, M. Prediction of bromate
 formation using multi-linear regression and artificial neural networks. Ozone Sci. Eng.
 (2007) 29, 353–362.
 - 12. Aljundi, I. H. Bromate formation during ozonation of drinking water: A response surface methodology study. Desalination (2011) 277, 24–28.
- 91 13. Moslemi, M., Davies, S. H. & Masten, S. J. Empirical modeling of bromate formation
 92 during drinking water treatment using hybrid ozonation membrane filtration. Desalination
 93 (2012) 292, 113–118.
- 94 14. Mizuno, T., Tsuno, H. & Yamada, H. A simple model to predict formation of bromate ion
 95 and hypobromous acid/hypobromite ion through hydroxyl radical pathway during
 96 ozonation. Ozone Sci. Eng. (2007) 29, 3–11.
- 15. Li, W. T., Cao, M.-J., Young, T., Ruffino, B., Dodd, M., Li. A.-M., & Korshin, G.
 Application of UV absorbance and fluorescence indicators to assess the formation of

99	biodegradable dissolved organic carbon and bromate during ozonation. Water Res.
100	(2017) 111, 154–162.
101	16. Soltermann, F., Abegglen, C., Tschui, M., Stahel, S. & von Gunten, U. Options and
102	limitations for bromate control during ozonation of wastewater. Water Res. (2017) 116,
103	76–85.
104	17. Babcock, N., Breche, N. La, Robinson, K. & Pisarenko, A. N. Empirical Modeling of
105	Bromate Formation and Chemical Control Strategies at Multiple Water Reuse Facilities
106	Using Ozone. Ozone Sci. Eng. (2023) doi.org/10.1080/01919512.2022.2161469
107	18. Ikehata, K., Wang, L., Nessl, M. B., Komor, A. T., Cooper, W. J., & McVicker, R. R.
108	Effect of Ammonia and Chloramine Pretreatment during the Ozonation of a Colored
109	Groundwater with Elevated Bromide. Ozone Sci. Eng. (2013) 35, 438–447.
110	19. Pinkernell, U. & von Gunten, U. Bromate minimization during ozonation: Mechanistic
111	considerations. Environ. Sci. Technol. (2001) 35, 2525–2531.
112	20. Wert, E. C., Neemann, J. J., Johnson, D., Rexing, D. & Zegers, R. Pilot-scale and full-
113	scale evaluation of the chlorine-ammonia process for bromate control during ozonation.
114	Ozone Sci. Eng. (2007) 29, 363–372.
115	21. Williams, M. D., Coffey, B. M. & Krasner, S. W. Evaluation of pH and ammonia for
116	controlling bromate during Cryptosporidium disinfection. J. Am. Water Work. Assoc.
117	(2003) 95, 82–93.
118	22. Buffle, MO., Galli, S. & von Gunten, U. Enhanced Bromate Control during Ozonation:
119	The Chlorine-Ammonia Process. Environ. Sci. Technol. (2004) 38, 5187–5195.
120	23. Pearce, R., Hogard, S., Buehlmann, P., Salazar-Benities, G., Wilson, C., Bott, C.
121	Evaluation of preformed monochloramine for bromate control in ozonation for potable
122	reuse. Water Res. (2022) 211.
123	24. Yu, J., Wang, Y., Wang, Q., Wang, Z., Zhang, D., Yang, M. Implications of bromate
124	depression from H2O2 addition during ozonation of different bromide-bearing source
125	waters. Chemosphere (2020) 252, 126596.
126	25. Hübner, U., Zucker, I. & Jekel, M. Options and limitations of hydrogen peroxide addition
127	to enhance radical formation during ozonation of secondary effluents. J. Water Reuse
128	Desalin. (2015) 5, 8–16.
129	26. Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R. A., Canonica, S.,
130	Snyder, S. A., & von Gunten, U. Organic Contaminant Abatement in Reclaimed Water
131	by UV/H2O2 and a Combined Process consisting of O3/H2O2 followed by UV/H2O2:
132	Prediction of abatement efficiency, energy consumption, and byproduct formation.
133	Environ. Sci. Technol. (2016) 50, 7, 3809-3819 acs.est.5b04904.