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Supplemental Methods 

Data acquisition 
Following Hotaling et al. (2020), we used the assembly-descriptors function in the NCBI datasets 
command line tool to download metadata for all nuclear genomes available for insects on 
GenBank (accessed 2 November 2020; Sayers et al. 2020). We then culled our data set to 
include only one representative genome per taxon (species or subspecies) by selecting the 
assembly with the highest contig N50 (the mid-point of the contig distribution where 50% of the 
genome is assembled into contigs of a given length or longer). Using provided NCBI metadata 
on the sequencing read technology used for assembly, assemblies were classified as “short-
read”, “long-read”, or “not provided” based on whether only short-reads (e.g., Illumina) were 
used, any amount of long-read sequences (e.g., PacBio) were used, or no information was 
provided. After identifying our focal genome set, we downloaded the relevant genomes for 
downstream analysis. Analysis scripts used in this study, including those that were used for data 
collection, are included in this study’s GitHub (https://github.com/johnssproul/Insect_REs). A full 
list of the genome assemblies used in this study are provided in Table S1. 

Quantifying assembly completeness and phylogenetic reconstruction 
To assess gene completeness, we ran “Benchmarking Universal Single Copy Orthologs” 
(BUSCO) v.4.1.4 (Seppey, et al. 2019) on each assembly using the 1,367 reference genes in the 
OrthoDB v.10 Insecta gene set (Kriventseva, et al. 2019) and the “--long” analysis mode. We 
divided our data set into three subsets: (1) the full data set with no filtering, (2) only assemblies 
with BUSCO gene content ≥ 50%, or (3) only assemblies with BUSCO gene content ≥ 90%. To 
organize our results in a phylogenetic framework, we then estimated a species tree for our full 
data set using single-copy orthologs resulting from the BUSCO analyses. We generated an 
unaligned FASTA file with sequences from each species for each single-copy ortholog. We then 
aligned each ortholog with the MAFFT L-INS-i algorithm (Katoh & Standley, 2013). We selected 
the best-fit substitution model for each alignment using ModelFinder (option -m mfp, 
(Kalyaanamoorthy et al., 2017) in IQtree v.2.0.6 (Minh et al., 2020) and estimated a maximum 
likelihood tree with 1000 ultrafast bootstrap replicates (Hoang et al., 2018) with BNNI correction 
(option -bb 1000 -bnni). We then generated a multi-species coalescent tree in ASTRAL-III 
(Zhang et al., 2018) using the best maximum likelihood tree from each ortholog as input. 
Because taxon sampling was not evenly distributed, some deep relationships within the tree 
conflicted with well-supported hypotheses from previous studies. To correct this, we modified the 
tree such that the ordinal-level relationships reflected those from Misof et al.
(2014).

We generated a genetic distance matrix on a concatenated alignment of single copy orthologs to 
evaluate the effect of genetic distance from model organisms on the successful classification of 
REs. To do this, we first trimmed the single gene alignments using Aliscore v.0.2.2 (Misof and 
Misof 2009;  Kück et al. 2010) and ALICUT v.2.31 (available from github: 
https://github.com/PatrickKueck/AliCUT). We then concatenated the ortholog alignments into a 
supermatrix using FASconCAT (Kück & Meusemann 2010). We estimated uncorrected pairwise 
distances in PAUP* v.4b (Swofford 2003) by adding the following nexus block to the supermatrix 
nexus file: “Begin paup;dset distance=p;savedist format=onecolumn;end;Quit;”. 
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Repeat element identification and annotation 
We identified REs in genome assemblies using RepeatModeler2.0 (Flynn et al. 2020) with 
search engine “ncbi”, which also generates a library of repeat consensus sequences. We 
annotated repeats in assemblies through two rounds of annotation with RepeatMasker4.1.0 
(Smit et al. 2020), the first round used custom repeat libraries generated by RepeatModeler2 
for each respective assembly and with search engine “ncbi” and option -xsmall. We then 
converted the softmasked assembly resulting from the first RepeatMasker round to a hardmasked 
assembly using the lc2n.py script (https://github.com/PdomGenomeProject/repeat-masking), 
and re-ran RepeatMasker on the hard-masked assembly with RepeatMasker’s internal 
arthropod repeat library and species “Arthropoda”. We then merged RepeatMasker output 
tables from both runs to summarize the abundance of RE categories. We studied patterns of 
repeat dynamics within and across taxonomic groups by parsing RepeatMasker output tables 
and visualizing the distribution and abundance of major RE categories using custom python and 
R scripts.  

Comparison of assembly-based and cluster-based methods 
As an orthogonal approach to identifying repetitive elements with our assembly-based analysis, 
we explored genome repetitiveness and RE abundance with assembly-free approaches based 
on clustering of low-coverage short-read data as implemented in both dnaPipeTE v1.3.1 
(Goubert et al. 2015) and RepeatExplorer2 (Novák et al. 2013). The former program relies on 
similar dependencies (e.g., RepeatMasker, Dfam, and Repbase) as our assembly-based 
approach and is thus well suited to exploring the effects of the clustering-based approach on RE 
estimates while reducing potential noise introduced by program-specific software and database 
dependencies. RepeatExplorer2 provides a comparison using a tool that uses a different 
underlying repeat database (i.e., Metazoa 3.0) and set of dependencies including TAREAN 
(Novák et al. 2017) which specializes in identification of satellite DNAs. 

Samples for these analyses were chosen to both spread taxonomic representation across 
multiple insect orders and to minimize potential noise introduced by variation in technical details 
surrounding data generation. Briefly, we used NCBI metadata to identify samples for which the 
assembly was generated using long-read PacBio RSII chemistry (which was the 
category/sequencing chemistry of long-read assemblies that afforded the densest potential 
sampling), and for which metadata indicated that paired-end short-read Illumina data 
(specifically, either 100 or 150 paired-end data) were available for the same species as part of 
the same Bioproject. Of the 22 species that fit the above criteria we downloaded reads from 
NCBI’s Sequence Read Archive and removed adapters/quality-trimmed raw reads using 
TrimGalore v0.6.3 (Krueger 2015). Trimmed, paired-end reads were mapped against indexed 
mitogenomes of the same species (or genus) using bwa mem 0.7.17 (Li 2013) (see additional 
methods for this step below). Reads which did not map to the mitogenome were identified with 
bam2fq.pl of FastQ Screen like tools (https://github.com/schellt/fqs-tools) and extracted with 
seqtk v1.3 command subseq (https://github.com/lh3/seqtk). Two samples for which we were 
unable to acquire a mitochondrial genome (either through de-novo assembly of the reads or 
finding the same species or a congeneric species on NCBI – see below) were excluded at this 
stage.  

Paired, trimmed, mtDNA-filtered reads were then downsampled to 0.5x of the assembly length 
using seqtk and run using RepeatExplorer2 paired-end clustering with default settings and the 
taxon database Metazoa version 3.0. Single-end, trimmed, mtDNA-filtered reads were 
downsampled to 0.5x of the assembly length using seqtk and run in dnaPipeTE v1.3.1. For 
both analyses, runs that failed to complete were restarted using maximum allowed wall times 
which allowed all but five samples with failed runs to finish. We summarized overall 
repetitiveness and 
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RE abundance estimates from dnaPipeTE and RepeatExplorer2 as stacked bar charts and box 
plots ggplot2 (Wickham 2016) within R version 3.6.3 (R Core Team 2013). 

Filtering mtDNA from short read data 
Trimmed paired-end reads were mapped against the indexed mitogenomes of the same species 
(if a mitogenome of the same species was not available, we used a mitogenome of the same 
genus) using bwa mem 0.7.17 (Li, 2013) separately in unpaired mode. Alignments were printed 
to standard output in BAM format and sorted by leftmost coordinates using sort function with 
parameters -l 9 -O BAM -@10 of SAMtools v1.17 (Danecek et al., 2021). A list containing each 
read ID and the corresponding hit to the mitogenome was created using the script bam2fq.pl of 
FastQ Screen like tools for forward and reverse reads separately. The script classified 
unmapped reads as “No_hit”. IDs of reads which did not map were extracted from these lists 
using grep -P “No_hit” | cut -f1. To restore paired information, it was checked, if both lists 
contain the ID and a final list of paired, unmapped reads was created using awk (cat 
ids_for_no_mt ids_rev_no_mt | sort | uniq -c | awk '$1==2{print $2}' > paired.ids_no_mt). 
Unmapped reads were extracted with the seqtk 1.3 command subseq. A list of mitochondrial 
genomes used for filtering can be found in on GitHub 
(https://github.com/johnssproul/Insect_REs) and Supplemental Materials. 

Correlation analyses 
We tested for correlations between RE abundance and a range of aspects for each genome 
assembly using R version 3.6.3 (R Core Team 2020). These included a comparison of total REs 
identified as well as specific classes (e.g., LINEs) versus the primary sequencing technology 
used (short- or long-reads). We also tested the relationship between the sequencing technology 
used and assembly length to assess the degree to which the technology might influence our 
findings. Next, we considered how genome assembly contiguity (as measured by contig N50) 
and completeness (as measured by BUSCO scores), compared to the same suite of RE total 
metrics (i.e., overall and classes). For all correlation analyses, we tested for normality in our 
data sets with a Shapiro-Wilk test and since the null hypothesis was rejected for all data sets (P 
< 0.05), we used Spearman’s rank correlation tests. 

Repetitive elements and protein coding gene associations 
For all assemblies with ≥ 90% BUSCO gene content, we measured RE-gene associations (i.e., 
RE sequences inserted within or adjacent to protein-coding genes) following Heckenhauer et al 
(2021). Their study validated a new approach to quantifying RE sequences associated with 
BUSCOs. In some cases, the RE fragments are embedded within BUSCOs and in others REs 
with open reading frames that are immediately adjacent to BUSCOs are inadvertently classified 
by the BUSCO algorithm as being part of the BUSCO. They showed that quantifying such 
instances of RE sequences in BUSCOs can serve as a proxy for genome-wide RE-gene 
associations. We used a similar approach to Heckenhauer et al., except we adapted the 
protocol for higher throughput by using BLAST to identify BUSCOs containing RE sequences as 
opposed to using coverage read mapping coverage depth-based approach. Prior to moving 
forward with our modified approach, we performed a sanity check by directly comparing our 
BLAST-based methods to the coverage depth-based approach from Heckenhauer et al. (2022) 
in eight assemblies used in that study. We found estimates from our modified approach to be 
similar, but slightly more conservative (i.e., lower counts of RE-associated BUSCOs) in every 
comparison.  

Our approach defined RE-associated BUSCOs as those which showed 10X the expected 
number of BLAST hits when used as a query against its genome assembly. To determine which 
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BUSCOs met this criterion, we stored each assembly as a custom BLAST database, used each 
BUSCO sequence as a query in a BLAST search against its respective assembly, and parsed 
the resulting output to make a table that summarized BLAST hit counts for each BUSCO query 
in a given assembly. We then sorted the BLAST output tables such that BUSCOs were ordered 
from lowest to highest BLAST hit counts and calculated the mean number of hits for the first 
three quantiles of the ordered data such that any BUSCOs with unexpectedly high blast hits 
(i.e., those residing in the fourth quartile of the data) would be excluded from the average 
calculation. We used this average as a baseline for expected BLAST hits, and any BUSCOs 
that had at least 10X the expected number of hits were considered “RE-associated BUSCOs”. 
Prior to settling on use of the first three quantiles as the fraction of data from which to calculate 
expected hit numbers, we plotted and visualized histograms of sorted BLAST hit counts for all 
assemblies and confirmed that BUSCOs with obvious hit inflation made up no more than 25% of 
all BUSCOs.  

We searched for correlation between RE-associated BUSCOs and various measures in our 
data including sequencing technology (see above). We tested whether assembly artifacts might 
be driving the patterns of RE-associated BUSCOs by comparing detection trends in long-read 
vs short-read assemblies, with the expectation that if assembly artifacts were driving overall 
patterns we would see inflation of RE-associated BUSCOs in less contiguous short read 
assemblies. 

Investigating the effects of taxonomic sampling bias 
We investigated effects of taxonomic sampling bias on our understanding of REs in insects 
by  analyzing the composition of the Repbase repository for RE sequences and the resulting 
impact on repeat annotation in our assemblies. We downloaded all Repbase database entries 
(01-27-2022 release) from https://www.girinst.org/repbase/. We used custom scripts to parse 
the insect database and quantify the taxonomic representation of insect orders and families 
included in our data set, as well as the rate of insect repeat submissions over time. We 
compared addition of new families to Repbase to data from Hotaling et al. (2021) which reported 
new family additions to Genbank.  

In addition, we wanted to understand how the historical taxonomic bias in assemblies 
sequenced (in which some groups such as dipterans and hymenopterans are over-represented 
given their taxonomic diversity) would impact average assembly length and RE abundance 
values across the whole data set. To address this we randomly subsampled insect orders in 
proportion to their species abundance in order to re-frame general trends in assembly length 
and RE content without the bias introduced by over-represented lineages (e.g., Diptera, 
Hymenoptera, Lepidoptera). We used expected species abundance following Hotaling et. al 
(2021) and subsampled orders in proportion to ratios determined by expected values and 
calculated average assembly length and RE abundance based on the subsampled data. 

Supplemental Results 

Given the uneven taxonomic sampling in our data set, we tested how normalizing the data set 
would impact overall trends we report by randomly sampling insect orders from our full data set 
in proportion to their estimated species richness (see Supplemental Materials). In essence, this 
corrected for the disproportionate abundance of species with small, relatively repeat-poor 
genomes which dominated early genomics projects. After reducing sampling bias in this way, 
we found that the average insect assembly length increased by 47.2% (from ~387 to ~569 Mb) 
and the average genomic proportion of LINEs, SINEs, DNA transposons, other repeats, and 
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unclassified repeats showed all increased by 11.9–66.8%. This suggests that REs are more 
abundant in undersampled taxonomic groups. 
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Supplemental Figures 
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Figure S1. Genomic proportion of SINEs (A), tandem repeats (B), and other repeats (C) within the 
context of assembly length, total repeats, RE-associated BUSCOs, and phylogenetic 
relationships presented in Fig. 1. 
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Figure S3. (A) Correlation between genomic proportion of repeats and assembly length to assess 
whether species with the largest genome assemblies show an inflection point at which genomic 
abundance of repeats falls below levels predicted by the trend line. The regression line is shown in 
blue and 99% confidence intervals are shown with gray shading. Analysis includes only long-read 
assemblies above the 90% complete BUSCO quality threshold. Genomic propotion of SINEs (B), 
tandem repeats (C), and “Other” repeats (D) with Helitrons accounting for the high abundance in 
some Lepidoptera species.
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Figure S4. Comparison of assembly-based vs cluster-based RE detection in a subset of insect species. 
Method “A” used our standard assembly-based approach on long-read PacBio (RSII chemistry) 
assemblies using RepeatModeler2 and RepeatMasker for Re annotation. Methods “B” and “C” indicate 
dnaPipeTE and RepeatExplorer2 analyses, respectively. Both use assembly-free cluster-based analysis 
of short read Illumina (100 or 150 PE data) taken from the same studies for which PacBio assemblies 
were obtained. Note that “Other repeats” and “Tandem/simple/low comp categories are not entirely 
equivalent comparisons across analyses as each program differs slightly in RE categories reported in the 
output. For example, RepeatExplorer2 does not report simple or low complexity repeats and thus that 
category only represents tandem satDNA repeats for Method 3.  
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Figure S5. Difference in genome proportion in assembly-based vs cluster-based RE detection. For each 
repeat category the genomic proportion of REs detected in the long-read PacBio assemblies was 
subtracted from the proportion observed in the dnaPipeTE cluster-based approach (Calc “A”), and 
PacBio long-read assembly-based vs RE2 cluster-based approaches (Calc “B”). If box plots are 
distributed to the left of “0” on the x-axis, that repeat category was more abundant in the cluster-based 
analysis and less in the assembly-based. Right-distributed boxes followed the reverse trend. Note that 
not all comparisons could be made as RE2 lacks some of the categories of interest (hence, there is not a 
“B” for every instance of an “A”). 
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Figure S6. Spearman correlation for the number of RE-associated BUSCOs and bases 
of LINEs across insect genomes, color-coded by sequencing technology. 
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Figure S7. A comparison of the number of RE-associated BUSCOs identified versus the sequencing 
technology used. Significance was assessed with Welch two-sample T-tests. 
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Supplemental Figure S8. Length distribution of unknown repeats based on sequencing 
technol-ogy (A), and broken down by insect order (B). 
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