Supplemental Materials

Figure S1 Age-associated phenotypes in the young and aged cynomolgus monkey

testes.

(A) Immunohistochemistry analysis of thickness of basement membrane (BM, marked
by Collagen IV) in testicular tissues from young and aged monkeys. Representative
images are shown on the left. Thickness of BM is quantified as fold changes (Aged
vs. Young), and shown as means =SEM on the right. Young, n = 4; aged, n = 4

monkeys. Scale bars, 20 um and 5 um (Zoomed-in image).

(B) Representative images of co-stainings of SPIDER-BGal, collagen 1V, and UTF1 in
testicular tissues from aged monkeys. Scale bars, 20 pm and 5 um (Zoomed-in

image).

(C) Representative images of co-stainings of SPIiDER-BGal, collagen IV, and WTL1 in
testicular tissues from aged monkeys. Scale bars, 20 pm and 5 um (Zoomed-in

image).

Figure S2 Single-nucleus transcriptome profiling of young and old cynomolgus
monkey testes.

(A) Plots showing the mean reads per nucleus, nucleus number, gene number and
unique molecular identifier (UMI) number per nucleus across each testicular

sample of young and aged monkeys.
(B) UMAP plots showing the distribution of cells across each sample of monkey testes.

(C) Dot plot showing the expression levels of representative marker genes for each cell

type in young and aged monkey testes.

(D) Box plots showing the cell proportion of each sample across different cell types in
young and aged monkey testes. The P-values of the aged group compared to the

young group were calculated using one-sided Wilcoxon Rank Sum test.
Figure S3 Single-nucleus transcriptomic signatures of NHP testicular aging.

(A) Heatmap showing the expression levels of cell type-specific marker genes
associated with Aging Atlas database across different cell types in monkey testes.

(B) Dot plot showing genes differentially expressed in at least six cell types.



Figure S4 Dynamic transcriptome programs along the spermatogenesis trajectory
in NHP testes.

(A) Pseudotime analysis showing the expression levels of representative genes in gene

clusters along the trajectory of spermatogenesis process in monkey testes.

(B) Left, box plot showing the gene set scores for perinuclear theca-related genes in
indicated cell types. Right, heatmap showing the expression levels of DEGs

associated with perinuclear theca.

(C) Heatmaps showing the expression levels of DEGs associated with indicated gene

sets.

(D) Core TFs predicted by SCENIC using pseudotime gene clusters of spermatogonia.
Left, network plot showing the core TFs, inter nodes represent core TFs and node
size positively correlates with the number of target genes regulated by specific TFs.
Each outer node represents one target gene. Right, curve charts showing the gene
expression levels of representative core TFs along the pseudotime trajectory of

spermatogonia.

(E) Core TFs predicted by SCENIC using aging-associated DEGs of spermatogonia.
Left, network plot showing the core TFs. Node size positively correlates with the
number of target genes regulated by specific TFs. Right, curve charts showing the
gene expression levels of representative core TFs along the pseudotime trajectory

of spermatogonia.
Figure S5 Age-dependent transcriptomic alterations in NHP Sertoli cells.

(A) Bar plots showing the enriched GO terms for upregulated and downregulated aging-
related DEGs of Sertoli cells.

(B) Heatmaps showing the cell-cell interaction numbers across cell types in young and

aged groups of monkey testes.

(C) The top 50 marker genes of each state of Sertoli cells. Marker genes are ranked by
LogFC and the rank 1-10 are annotated by gene names.

(D) Violin plots and heatmaps showing the gene set scores and expression levels of
aging-related DEGs associated with the indicated gene sets between different states

of Sertoli cells in monkey testes, respectively.



Figure S6 Downregulation of a panel of transcription factors in aged Sertoli cells.

(A) Network plot showing the upregulated core TFs predicted by SCENIC using aging-
related DEGs of Sertoli cells. Inter nodes represent upregulated core TFs and node
size positively correlates with the number of target genes regulated by specific TF.

Each outer node represents one target gene.

(B) Western blot analysis of GATA-4 protein expression in testicular tissues from young
and aged monkeys. GATA-4 protein levels are quantified as fold changes (Aged vs.
Young), and shown as means £SEM on the right. Young, n =4; aged, n =4 monkeys.

(C) Violin plot showing the WT1 mRNA expression level between different states of

Sertoli cells in monkey testes.

(D) SA-B-Gal staining of human Sertoli cells upon treatment of vehicle or H>O, (100
uM). Representative images are shown on the left. SA-B-Gal-positive cells are
quantified as fold changes (H20: vs. vehicle), and shown as means =SEM on the

right. n = 3, three independent replicates.

(E) Western blot analysis of WT1 protein expression in Sertoli cells upon treatment of
vehicle or H202 (100 uM). WT1 protein levels are quantified as fold changes (H20-
vs. vehicle), and shown as means = SEM on the right. n = 3, three independent

replicates.

(F) Western blot analysis of WT1 protein expression in Sertoli cells after
CRISPR/Cas9-mediated knockdown of WT1. Relative protein levels are quantified
as fold changes (sgWT1 vs. sgNC), and shown as means =SEM on the right. n = 3,
three independent replicates.

(G) SA-B-Gal staining of Sertoli cells after CRISPR-Cas9-mediated knockdown of
WT1. Representative images are shown on the left. SA-B-Gal-positive cells are
quantified as fold changes (sgWT1 vs. sgNC), and shown as means =SEM on the

right. n = 3, three independent replicates.

(H) Western blot analysis of SOX9 protein expression in testicular tissues from young
and aged monkeys. SOX9 protein levels are quantified as fold changes (Aged vs.

Young), and shown as means £SEM on the right. Young, n =4; aged, n =4 monkeys.

(1) Western blot analysis of WT1, SOX9 and ZO-1 protein expression in testicular



tissues from young and aged mice. Indicated protein levels are quantified as fold
changes (Aged vs. Young), and shown as means =SEM on the right. Young, n = 4;

aged, n =4 mice.

Supplementary Tables
Table S1. Marker genes and cell numbers of each cell type in monkey testes.

Table S2. Aging-related differentially expressed genes of each cell type in monkey
testes.

Table S3. Core transcriptional regulators for aging-related differentially expressed
genes or differentially expressed genes along the pseudotime of indicated cell types in

monkey testes.
Table S4. Gene sets used in this study.

Table S5. Top differentially expressed genes (DEGs) along pseudotime trajectories for
germ cells, spermatogonia and Sertoli cells.

Table S6. Cell-cell interaction pairs lost and gained with age between Sertoli cells and

other cell types in monkey testes.
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Figure S4
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Figure S5
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Figure S6
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