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Supplementary Methods 
 

Equations of the fluctuating Elsässer variables   

 

From the MHD equations, a set of the Elsässer equations can be derived1:  
∂𝐙+

∂𝑡
+ (𝐙− ∙ 𝛁)𝐙+ +

1

𝜌
𝛁𝑃𝑡 +

𝐕𝐴

2
𝛁 ∙ (𝐙+ + 𝐕𝐴) = 0,    (1) 

∂𝐙−

∂𝑡
+ (𝐙+ ∙ 𝛁)𝐙− +

1

𝜌
𝛁𝑃𝑡 −

𝐕A

2
𝛁 ∙ (𝐙− − 𝐕𝐴) = 0,    (2) 

where 𝐙+ =  𝐕 + 𝐕𝐴, 𝐙− =  𝐕 − 𝐕𝐴 𝐕𝐴 =
𝐁

√𝜌
, and 𝑃𝑡 is total pressure. We define the fluctuating 

Elsässer variables as: δ𝐙+ =  δ𝐕 + δ𝐕𝐴, δ𝐙− =  δ𝐕 − δ𝐕𝐴, with δ𝐕𝐴 =
δ𝐁

√𝜌
, 𝐕A0 =

𝐁0

√𝜌
, so that 

𝐙+ = δ𝐙+ + 𝐕A0, 𝐙− = δ𝐙− − 𝐕A0. Then, (1) and (2) can be re-written as: 

∂δ𝐙+

∂𝑡
+

∂𝐕A0

∂𝑡
+ [(δ𝐙− − 𝐕A0) ∙ 𝛁](δ𝐙+ + 𝐕A0) +

1

𝜌
𝛁𝑃𝑡 + 

1

2
(
δ𝐙+ − δ𝐙−

2
+ 𝐕A0)𝛁 ∙ (δ𝐙+ + 𝐕A0 +

δ𝐙+ − δ𝐙−

2
+ 𝐕A0) = 0,    (3) 

∂δ𝐙−

∂𝑡
−

∂𝐕A0

∂𝑡
+ [(δ𝐙+ + 𝐕A0) ∙ 𝛁](δ𝐙− − 𝐕A0) +

1

𝜌
𝛁𝑃𝑡 − 

1

2
(
δ𝐙+ − δ𝐙−

2
+ 𝐕A0)𝛁 ∙ (δ𝐙− − 𝐕A0 −

δ𝐙+ − δ𝐙−

2
− 𝐕A0) = 0,    (4) 

As 𝐕A0 =
𝐁0

√ρ
, the direction of 𝐕A0 is in the direction parallel to B0. When deriving the equations 

of the perpendicular fluctuating Elsässer variables (δ𝐙⊥
+), we can reasonably assume zero values 

of 
∂𝐕A0

∂𝑡
, [(δ𝐙∓ ∓ 𝐕A0) ∙ 𝛁]𝐕A0, and 𝐕A0𝛁 ∙ (δ𝐙± ± 𝐕A0 ±

δ𝐙+−δ𝐙−

2
± 𝐕A0) since all of these terms 

are along the parallel direction and thus only contribute to the variations of the parallel 

fluctuating Elsässer variables. Under these assumptions, we obtain the equations of the 

fluctuating Elsässer variables perpendicular to 𝐁0: 

∂δ𝐙⊥
+

∂𝑡
− (𝐕A0 ∙ 𝛁)δ𝐙⊥

+ + (δ𝐙− ∙ 𝛁)δ𝐙⊥
+ +

1

𝜌
𝛁𝑃𝑡 + 

δ𝐙⊥
+ − δ𝐙⊥

−

8
𝛁 ∙ (3δ𝐙+ − δ𝐙−) +

δ𝐙⊥
+ − δ𝐙⊥

−

2
𝛁 ∙ 𝐕A0 = 0,    (5) 

∂δ𝐙⊥
−

∂𝑡
+ (𝐕A0 ∙ 𝛁)δ𝐙⊥

− + (δ𝐙+ ∙ 𝛁)δ𝐙⊥
− +

1

𝜌
𝛁𝑃𝑡 − 

δ𝐙⊥
+ − δ𝐙⊥

−

8
𝛁 ∙ (3δ𝐙− − δ𝐙+) +

δ𝐙⊥
+ − δ𝐙⊥

−

2
𝛁 ∙ 𝐕A0 = 0,    (6) 

Comparing to the incompressible equations for δ𝐙⊥
±, the compressible equations for δ𝐙⊥

± in (5)-

(6) have two additional terms: one relates to the compressibility of δ𝐙±, ±
δ𝐙⊥

+−δ𝐙⊥
−

8
𝛁 ∙

(3δ𝐙± − δ𝐙∓), and the other relates to density fluctuations, 
δ𝐙⊥

+−δ𝐙⊥
−

2
𝛁 ∙ 𝐕A0. These two terms 

modify the interpretation of the Elsässer variables compared to the incompressible case: they no 

longer represent fluctuations with opposite directions of propagation, nor can they be considered 

as merely counter-propagating fluctuations. According to Equations (5-6), in the compressible 
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regime, nonlinearities do not only arise from counter-propagating fluctuations δ𝐙⊥
±. Besides 

(δ𝐙∓ ∙ 𝛁)δ𝐙⊥
±, the compressibility terms ±

δ𝐙⊥
+−δ𝐙⊥

−

8
𝛁 ∙ (3δ𝐙± − δ𝐙∓) also contribute to 

nonlinearities. 

 

Based on Equations (5)-(6), we analyze the contributions of the linear terms (±(𝐕A0 ∙ 𝛁)δ𝐙⊥
±), 

the nonlinear terms (−(δ𝐙∓ ∙ 𝛁)δ𝐙⊥
±), and the generalized compressible terms 𝑇comp

δ𝐙⊥
±

=

−
1

𝜌
𝛁𝑃𝑡 ∓

δ𝐙⊥
+−δ𝐙⊥

−

8
𝛁 ∙ (3δ𝐙± − δ𝐙∓) −

δ𝐙⊥
+−δ𝐙⊥

−

2
𝛁 ∙ 𝐕A0 to the evolution of the perpendicular 

fluctuating Elsässer variables (
∂δ𝐙⊥

±

∂𝑡
) as well as the scale locality of nonlinear interactions. From 

the numerical solution of the MHD equations, we discretize  𝛁 and 
∂

∂𝑡
 in (5) and (6) through 

central differences to obtain the spatial distributions of 
∂δ𝐙⊥

±

∂𝑡
, ±(𝐕A0 ∙ 𝛁)δ𝐙⊥

±, −(δ𝐙∓ ∙ 𝛁)δ𝐙⊥
±,  as 

well as 𝑇comp
δ𝐙⊥

±

.  

Fig. S3 illustrates the time evolution of the fluctuating kinetic energy, the fluctuating magnetic 

energy, the fluctuating Elsässer variables (δ𝐙+ and δ𝐙−), and the normalized cross-helicity σc 

for the case with an initial cross-helicity of 0.7. 

Fig. S8 presents 2D distributions of the discretized ±(𝐕𝐀𝟎 ∙ 𝛁)δZ𝑥
±, −(𝛅𝐙∓ ∙ 𝛁)δZ𝑥

±, 𝑇com
δZ𝑥

±

, and 

their PSD as functions of wavenumber 𝑘 but for the case with an initial cross-helicity of 0. At 

𝑘 > 5, the PSDs of the linear and nonlinear terms are approximately equal, suggesting the 

critical balance between the linear and nonlinear times.  

 

Supplementary Discussion 

 
Estimation of the spectral indexes for 𝛅𝐙+ and  𝛅𝐙− 

 

For δ𝐙−, the large-scale fields of δ𝐙+ influence the energy cascade of δ𝐙− more than the 

local-scale fields. We estimate δ𝐙−'s nonlinear time as 𝜏δZ−~𝐿/δZL
+, with 𝐿 being the large 

scale. From the constant energy flux of δ𝐙−, 𝜖δZ−~
|δ𝐙−|2

𝜏δZ−
, it can be derived that |δ𝐙−|2 does not 

change with scale, leading to an energy spectrum ~𝑘−1. 

From the fluctuating Elsässer equations (5-6), the nonlinear term for the evolution of 

δ𝐙+is δ𝐙− ∙ 𝛁δ𝐙+ ~ δ𝐙− ∙ 𝐤⊥
+δ𝐙+~ δZ−𝑘⊥

+ cos 𝜃δZ−𝑘⊥
+ δZ+, where 𝜃δZ−𝑘⊥

+ is the angle between 

δ𝐙− and 𝐤⊥
+. The nonlinear time for δ𝐙+ can be estimated as 𝜏δZ+~(δZ−𝑘⊥

+ cos 𝜃δZ−𝑘⊥
+)−1. Since 

δZ− shows no variations with scale, 𝜏δZ+~(𝑘⊥
+ cos 𝜃δZ−𝑘⊥

+)−1. The variation of cos 𝜃δZ−k⊥
+  with 

scale influences the spectral index of δ𝐙+. 

If we assume that cos 𝜃δZ−k⊥
+  does not depend on scale, 𝜏δZ+~𝑘⊥

+−1
. Under the condition of 

the constant energy flux, an energy spectrum ~𝑘−2 is obtained for δ𝐙+. 

If the phenomenon of scale-dependent dynamic alignment occurs, the alignment angle varies 

with scale as 𝜃δZ+δZ−  ~𝑘−1/4(2). Since δ𝐙+, to first order, behaves like Alfvén waves, δ𝐙+ ⊥
𝐤⊥

+, cos 𝜃δZ−𝑘⊥
+ = sin 𝜃δZ+δZ−. Then, 
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𝜏δZ+~(𝑘⊥
+ cos 𝜃δZ−𝑘⊥

+)−1~(𝑘⊥
+ sin 𝜃δZ+δZ−)−1~(𝑘⊥

+𝜃δZ+δZ−)−1~𝑘⊥
+−3/4

. The energy 

flux of δ𝐙+ is estimated as 𝜖δZ+~
|δ𝐙+|2

𝜏δZ+
~|δ𝐙+|2𝑘⊥

+3/4
, which results in an energy spectrum 

~𝑘−1.75 for δ𝐙+.   

If the angle varies with scale as 𝜃δZ+δZ−  ~𝑘−1/3, 𝜏δZ+~𝑘⊥
+−2/3

, and δ𝐙+ would have an 

energy spectrum ~𝑘−5/3. 

 

Fig. S12 shows the probability density function (PDF) of linear time over nonlinear time for 

δZ𝑥
+  and δZ𝑥

−, with the linear and nonlinear time being estimated by the discretized terms 

|
δZ𝑥

±

(𝐕𝐀𝟎∙𝛁)δZ𝑥
±| and |

δZ𝑥
±

(𝛅𝐙∓∙𝛁)δZ𝑥
±|, respectively. For δZ𝑥

+, the linear time is less than the nonlinear time, 

while for δZx
−, the linear time is greater than the nonlinear time.  

 

Supplementary Fig. 1-13 
 

 

 
 

Supplementary Fig. 1 Distributions of occurrence numbers and pixel-averaged < |δ𝐕A
2| >0.5  in 

the 𝜎𝑟 − 𝜎𝑐 plane as well as variations of the intermittency-related scaling exponents with the 

order moments of the structure function for the PSP data when the PSP was around its first 

perihelion (upper panels) and for the numerical simulation data at time = 4.0 for the case with 

an initial cross-helicity of 0.7 (lower panels). 
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Supplementary Fig. 2 2D distributions of the discretized |𝛁 × 𝐕|, |𝛁 ∙ 𝐕|, 𝜕𝜌/𝜕𝑡, −𝐕 ∙ 𝛁𝜌, 
magnetic pressure 𝑃mag, and thermal pressure 𝑃th at time = 4.0 for the case with an initial 

cross-helicity of 0.7. 
 

 

 

Supplementary Fig. 3 Time evolution of the fluctuating kinetic energy (
1

2
ρδV𝑥

2, 
1

2
ρδV𝑦

2, 
1

2
ρδV𝑧

2), the fluctuating magnetic energy (
1

2
δB𝑥

2, 
1

2
δB𝑦

2, 
1

2
δB𝑧

2), the fluctuating Elsässer variables 

(δ𝐙+ and δ𝐙−) – all shown component by component, and the normalized cross-helicity 𝜎𝑐 for 

the case with an initial cross-helicity of 0.7. 
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Supplementary Fig. 4 Propagation of δZ𝑥
+ and δZ𝑥

− along perpendicular directions for the case 

with an initial cross-helicity of 0.7. (A, B, C and D) Time-distance diagrams of δZ𝑥
+ and δZ𝑥

− for 

the time from 4.0 until 6.0 for the 1D cut along the 𝑥 −direction (A and B) and for the 1D cut 

along the 𝑦 −direction (C and D). (E, F, G and H) Distributions of the auto-correlation function 

(ACF) of δZ𝑥
+ and δZ𝑥

− in the 𝜏 (time lag) −𝑙 (spatial lag) plane for the 1D cut along the 

𝑥 −direction (E and F) and for the 1D cut along the 𝑦 −direction (G and H). The white dashed 

lines are along 𝑙 = 0. 
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Supplementary Fig. 5 Distributions of the auto-correlation function (ACF) of δZ𝑥

+ and δZ𝑥
− in 

the 𝜏 (time lag) −𝑙 (spatial lag in the 𝑧 −direction) plane for the time from 0.0 until1.0 (A and B) 

and from 4.0 until 6.0 (C and D) for the case with an initial cross-helicity of 0.0. The white 

dashed lines show the expected propagation of Alfvén waves along the 𝑧 −direction.  
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Supplementary Fig. 6 Distributions of the terms in the governing equation of the 
perpendicular fluctuating Elsässer variable δZ𝑥

+  at time = 4.0 for the case with an initial 
cross-helicity of 0.7. (A) the evolution term, (B)  the linear term,  (C) the nonlinear term ,  
(D) the generalized compressible term 𝑇comp,  (E) the term 𝑇div,  (F) the term 𝑇den. 
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Supplementary Fig. 7 Distributions of ACFs and the terms for  δZ𝑥

+ and δZ𝑥
− for the case 

with a small perturbation of  δBrms/𝐵0 ≈ 0.1 and an initial cross-helicity of 0.7. 
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Supplementary Fig. 8 2D distributions of the discretized ±(𝐕𝐀𝟎 ∙ 𝛁)δZ𝑥

±, −(𝛅𝐙∓ ∙

𝛁)δZ𝑥
±, 𝑇com

δZ𝑥
±

, and their PSDs as functions of wavenumber k at time = 4.0 for the case with an 

initial cross-helicity of 0.0. 

 

 

 

 

 

 

 

 

 



 

 

11 

 

 

Supplementary Fig. 9 2D distributions of the discretized 
∂δZ𝑥

±

∂t
, ±(𝐕𝐀𝟎 ∙ 𝛁)δZ𝑥

±,

−(𝛅𝐙∓ ∙ 𝛁)δZ𝑥
± term and time-distance (time−𝑧) diagrams of δZ𝑥

+ and δZ𝑥
−  for our 

imbalanced RMHD simulation. 
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Supplementary Fig. 10 (A and B) Energy transfer rates from shell 𝑄 to shell 𝐾 by mediation of 

all 𝑃 modes (A) and by mediation of 𝑃 modes with 𝑃 ≥ 6 for δ𝐙+ (𝐁). (C and D) Energy 

transfer rates from shell 𝑄 to shell 𝐾 by mediation of all 𝑃 modes (C) and by mediation of 𝑃 

modes with 𝑃 < 6 for δ𝐙− (𝐃) at time = 4.0 for the case with an initial cross-helicity of 0.7. 

 

 
Supplementary Fig. 11 (A) Power spectra of the Elsässer variables δ𝐙+ (green lines) and δ𝐙− 

(blue lines). (B) Ratios of the energy transfers from the large-scale interactions (dashed lines) 

and from the local interactions (solid lines) to the transfer due to all triadic interactions on a band 

of 𝐾-shells for δ𝐙+(green lines) and δ𝐙− (blue lines) at time = 4.0 for the case with an initial 

cross-helicity of 0.0. 
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Supplementary Fig. 12 Probability density function (PDF) of linear time over nonlinear time for 

δZ𝑥
+ (left) and δZ𝑥

− (right) at time = 4.0 for the case with an initial cross-helicity of 0.7. Here, 

the linear and nonlinear times are computed from the discretized terms |
δZ𝑥

±

(𝐕𝐀𝟎∙𝛁)δZ𝑥
±| and 

|
δZ𝑥

±

(𝛅𝐙∓∙𝛁)δZ𝑥
±|, respectively.  
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Supplementary Fig. 13 2D distributions of the discretized terms 𝜕𝜌/𝜕𝑡 (A), −𝐕 ∙ 𝛁𝜌 (B), −𝜌𝛁 ∙

𝐕 (C), 
∂δZ𝑥

−

∂𝑡
+(𝐕𝐀𝟎 ∙ 𝛁)δZ𝑥

− (𝐃), −(δ𝐙+ ∙ 𝛁)δZ𝑥
− (𝐄),  and 𝑇comp (𝐅)  at time = 1.0 for the case 

with an initial cross-helicity of 0.7. The purple boxes in the top row highlight the region where 

the Euler derivative of density with respect to time is predominantly controlled by the 

compressible term related to the divergence of the velocity field. The black boxes in the bottom 

row highlight the region where the "Lagrangian" derivative of δZ𝑥
− in the 𝐕𝐀𝟎 frame of motion is 

predominantly controlled by the corresponding compressible term.  
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