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Supplementary Methods
Equations of the fluctuating Els&asser variables

From the MHD equations, a set of the Elséasser equations can be derived®:
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whereZt=V+V,,Z-=V-V, V, = %, and P; is total pressure. We define the fluctuating
Elsasser variables as: 8Zt = 8V + 8V,, 862~ = 8V — 8V,, with 8V, = j—;, Vao = 3—%, so that

Z* =81% 4+ Vyuy,Z™ = 8Z~ — V. Then, (1) and (2) can be re-written as:
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AsVy, = %, the direction of V,, is in the direction parallel to Bo. When deriving the equations

of the perpendicular fluctuating Elsasser variables (§Z7}), we can reasonably assume zero values

— +_ -
of %, [(8ZF F Vyo) - V]|Vap, and VoV - (<SZJ—r +V,+ 2 262 + VAO) since all of these terms

are along the parallel direction and thus only contribute to the variations of the parallel
fluctuating Elsasser variables. Under these assumptions, we obtain the equations of the
fluctuating Elsésser variables perpendicular to B,:
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Comparing to the incompressible equations for 8Z, the compressible equations for 8Z7 in (5)-
8ZT-877
s v

(6) have two additional terms: one relates to the compressibility of §Z*, +

—_ +_ -
(38Z* — 8ZT), and the other relates to density fluctuations, @V - V0. These two terms

modify the interpretation of the Elsésser variables compared to the incompressible case: they no
longer represent fluctuations with opposite directions of propagation, nor can they be considered
as merely counter-propagating fluctuations. According to Equations (5-6), in the compressible



regime, nonlinearities do not only arise from counter-propagating fluctuations 8Z. Besides
_ +_s7— —_

(8Z7 - V)8Z7, the compressibility terms + %V - (38Z* — 8Z7) also contribute to

nonlinearities.

Based on Equations (5)-(6), we analyze the contributions of the linear terms (+(V,o - V)8Z7),
T +
the nonlinear terms (—(8Z™ - V)8Z7), and the generalized compressible terms 7°%

comp —
+_ - _ +_co—
—%VPt F Szlsszl V- (362 —8Z7) - %V -V to the evolution of the perpendicular
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fluctuating Elsasser variables (a—tl) as well as the scale locality of nonlinear interactions. From

the numerical solution of the MHD equations, we discretize V and % in (5) and (6) through

t —
central differences to obtain the spatial distributions of %, +(Vyo - V)SZT, —(8Z% - V)SZ7T, as
+
well as Tciznﬁp.
Fig. S3 illustrates the time evolution of the fluctuating kinetic energy, the fluctuating magnetic
energy, the fluctuating Elsasser variables (8Z* and 6Z ™), and the normalized cross-helicity o,

for the case with an initial cross-helicity of 0.7.

— t
Fig. S8 presents 2D distributions of the discretized + (Vo - V)8ZF, —(8Z7 - V)S8ZE, T2 and
their PSD as functions of wavenumber k but for the case with an initial cross-helicity of 0. At

k > 5, the PSDs of the linear and nonlinear terms are approximately equal, suggesting the
critical balance between the linear and nonlinear times.

Supplementary Discussion

Estimation of the spectral indexes for 8Z* and 8Z~

For 8Z, the large-scale fields of 8Z* influence the energy cascade of 8Z~ more than the
local-scale fields. We estimate 8§Z~'s nonlinear time as 757-~L/8Z;, with L being the large

-2
scale. From the constant energy flux of 6Z~, eg;-~ 1827 , it can be derived that |§Z~|? does not

—

change with scale, leading to an energy spectrum ~k~1,

From the fluctuating Elsasser equations (5-6), the nonlinear term for the evolution of
8Z*is 8Z™ - V8Z* ~ 877 - KI8Z" ~ 8Z7k{ cos O5;-j+ 8ZT, where 05—+ is the angle between
8Z~ and kT. The nonlinear time for 8Z* can be estimated as 75,+~(8Z k] cos 95z-k1)_1- Since
8Z~ shows no variations with scale, Tsz+~(k] cos 8s;-,+)~". The variation of cos 65;-+ with
scale influences the spectral index of §Z*.

If we assume that cos 6;- .+ does not depend on scale, 15Z+~k1_1. Under the condition of

the constant energy flux, an energy spectrum ~k~2 is obtained for §Z*.

If the phenomenon of scale-dependent dynamic alignment occurs, the alignment angle varies
with scale as 8g7+5,- ~k~/*(2). Since 8Z*, to first order, behaves like Alfvén waves, Z* L
K1, cos 0574+ = sin Osz+s7-. Then,



Tsz+~(kT cos 982_k+)—1~(k1 Sin Osp+57-) "t~ (kT Osgrsg-) " ~kT>"*. The energy
|8Z

flux of 8Z7 is estimated as €57+~ |6Z+|2k+3/ which results in an energy spectrum

~k=175 for 8Z*.

If the angle varies with scale as O+ 57 ~k~1/3, Ts7+~kT>/*, and 8Z*+ would have an
energy spectrum ~k=5/3,

Fig. S12 shows the probability density function (PDF) of linear time over nonlinear time for
8Z; and 8Z;, with the linear and nonlinear time being estimated by the discretized terms

87% £
(Vao'V)6ZE (82F v)az*
while for 8Z;, the linear time is greater than the nonlinear time.

, respectively. For 8ZF, the linear time is less than the nonlinear time,
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Supplementary Fig. 1 Distributions of occurrence numbers and pixel-averaged < |§VZ| >%5 in
the o, — g, plane as well as variations of the intermittency-related scaling exponents with the
order moments of the structure function for the PSP data when the PSP was around its first
perihelion (upper panels) and for the numerical simulation data at time = 4.0 for the case with
an initial cross-helicity of 0.7 (lower panels).
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Supplementary Fig. 2 2D distributions of the discretized |V X V|, |V - V|, dp/dt, =V - Vp,
magnetic pressure Py,,g, and thermal pressure Py, at time = 4.0 for the case with an initial

cross-helicity of 0.7.
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Supplementary Fig. 3 Time evolution of the fluctuating kinetic energy (% p8V2Z, %pSVZ,

%p(SVZZ), the fluctuating magnetic energy (% 8B2, §8B§, %533), the fluctuating Elsésser variables
(8Z* and 8Z~) — all shown component by component, and the normalized cross-helicity o, for

the case with an initial cross-helicity of 0.7.
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Supplementary Fig. 4 Propagation of §Z;} and 8Z; along perpendicular directions for the case
with an initial cross-helicity of 0.7. (A, B, C and D) Time-distance diagrams of 8§Z; and 8Z; for
the time from 4.0 until 6.0 for the 1D cut along the x —direction (A and B) and for the 1D cut
along the y —direction (C and D). (E, F, G and H) Distributions of the auto-correlation function
(ACF) of 8Z;} and 8Z5 in the  (time lag) —I (spatial lag) plane for the 1D cut along the

x —direction (E and F) and for the 1D cut along the y —direction (G and H). The white dashed
lines are along [ = 0.
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Supplementary Fig. 5 Distributions of the auto-correlation function (ACF) of §Z; and 8Z; in
the T (time lag) —I (spatial lag in the z —direction) plane for the time from 0.0 until1.0 (A and B)
and from 4.0 until 6.0 (C and D) for the case with an initial cross-helicity of 0.0. The white
dashed lines show the expected propagation of Alfvén waves along the z —direction.
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Supplementary Fig. 6 Distributions of the terms in the governing equation of the
perpendicular fluctuating Elsisser variable 827 at time = 4.0 for the case with an initial
cross-helicity of 0.7. (A) the evolution term, (B) the linear term, (C) the nonlinear term,
(D) the generalized compressible term Tomp, (E) the term Ty;y, (F) the term Tyep,.
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Supplementary Fig. 7 Distributions of ACFs and the terms for 8Z; and 8Z; for the case
with a small perturbation of 6B,,s/By = 0.1 and an initial cross-helicity of 0.7.
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Supplementary Fig. 8 2D distributions of the discretized +(Vyq - V)8ZF, —(8Z7 -

+
V)S8Z%, Tcizrg, and their PSDs as functions of wavenumber £ at time = 4.0 for the case with an

initial cross-helicity of 0.0.
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Supplementary Fig. 9 2D distributions of the discretized %, +(Vpo - V)SZ5,

—(8Z$ . V)SZ;C—" term and time-distance (time—z) diagrams of 8Z; and 8Z; for our

imbalanced RMHD simulation.
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Supplementary Fig. 10 (A and B) Energy transfer rates from shell Q to shell K by mediation of
all P modes (A) and by mediation of P modes with P > 6 for §Z* (B). (C and D) Energy
transfer rates from shell Q to shell K by mediation of all P modes (C) and by mediation of P
modes with P < 6 for 8Z~ (D) at time = 4.0 for the case with an initial cross-helicity of 0.7.
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Supplementary Fig. 11 (A) Power spectra of the Elsasser variables 8Z* (green lines) and 6Z~
(blue lines). (B) Ratios of the energy transfers from the large-scale interactions (dashed lines)
and from the local interactions (solid lines) to the transfer due to all triadic interactions on a band
of K-shells for 8Z*(green lines) and §Z~ (blue lines) at time = 4.0 for the case with an initial
cross-helicity of 0.0.
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Supplementary Fig. 12 Probability density function (PDF) of linear time over nonlinear time for

8Z (left) and 8Z; (right) at time = 4.0 for the case with an initial cross-helicity of 0.7. Here,
875

the linear and nonlinear times are computed from the discretized terms | ———
(Vao'V)S8Zy

87
(82F-v)szk

, respectively.

and
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Supplementary Fig. 13 2D distributions of the discretized terms dp/dt (A), =V - Vp (B), —pV -

Vv (C), %ﬂVAO V)8Zy (D), —(8Z* - V)8Z; (E), and Teomp (F) at time = 1.0 for the case

with an initial cross-helicity of 0.7. The purple boxes in the top row highlight the region where
the Euler derivative of density with respect to time is predominantly controlled by the
compressible term related to the divergence of the velocity field. The black boxes in the bottom
row highlight the region where the "Lagrangian” derivative of 6Z; in the V,, frame of motion is
predominantly controlled by the corresponding compressible term.
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