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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript describes a novel method (DeepAssembly) for assembling multiple domains by 

minimizing the atomic coordinate deviation predicted by the AffineNet. In addition, the authors expand 

the DeepAssembly to the complex structure prediction of heterodimers. Overall, DeepAssembly is an 

interesting study. The manuscript is written well. However, there still are some questions needed to 

be addressed. 

 

1.DeepAssembly uses the proposed PAthreader to search for the remote template of a target 

sequence and its multi-domain. What is the detailed criteria of screening? Are the templates with a 

high sequence identity excluded? For the heterodimer, how to generate the template features between 

two domains belonging to different chains? 

 

2.Why does DeepAssembly use different numbers and criteria for training and inference on single-

domain? 

 

3.In the case of MSA with a large number of sequences, the template information seems to have little 

impact on the AlphaFold2. Can the authors investigate the performance of DeepAssembly with single-

domains generated by PAthreader and AlphaFold2 in that situation? 

 

4.There are some domains that are spatially adjacent but disconnected in sequence. How does 

DeepAssembly predict the single-domain structures with disconnected sequences? 

 

5.DeepAssembly uses four residues near the domain boundaries to generate the initial full-length 

structure and optimizes it. Is this too small to handle the full-length structure which is made up of two 

domains with a long loop? 

 

6.Can the authors analyze the influence of the number of iterations on the final structure? 

 

7.DeepAssembly uses the Euler angle and spherical coordinate system to represent the rotation matrix 

and translation vector, and divides the angles to several bins. Would it be better to predict the angle 

in terms of sines and cosines? 

 

8.DeepAssembly obtains an average TM-score of 0.602 on the targets predicted by AlphaFold2 with a 

TM-score less than 0.5, compared with 0.414 of AlphaFold2. The improvement of 45.4% is not 

consistent with the value shown in the Supplementary Figure 1b. 

 

9.Can DeepAssembly be compared with AlphaFold-linker or AlphaFold-gap on the heterodimers? In 

addition, how about the performance of DeepAssembly on hetero-complexes with more than 2 chains? 

 

10.It is a bit surprising that DeepAssembly obtains a better average TM-score (0.916) with single-

domains predicted by PAthreader than that with experimental single-domains (0.855). Can the 

authors explain it? 

 

11.DeepAssembly is compared with other methods according to the predicted inter-domain distance. 

Did the authors directly use the distance predicted by the AffineNet or use the structure selected by 

the evolutional algorithm? If the latter is used, did the authors use the structure refined by FastRelax? 

 

12.Does the AffineNet use the cross-entropy losses on both intra- and inter-domain? If so, how about 

the performance of AffineNet in the intra-domain distance and orientation? 

 

 



 

Reviewer #2 (Remarks to the Author): 

 

Xia et al presented a new tool to predict Domain-based multi-domain protein and complex structure. 

It is an interesting work. However, there are already several similar tools were already published 

before. So, it would be interesting to make comparison between this new tool and others, including 

the algorithm difference, merits and demerits, applicable system. 

 

The benchemark is mainly focusing on water soluble proteins. It would be interesting to see how it 

perform well for membrane proteins as well. 

 

Moreover, I don't see too much about the sidechain conformation details. It would be necessary to 

present this information as well. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The study presented by Zhang and colleagues seeks to demonstrate that a new algorithm, 

DeepAssembly, is a significant advance over other multidomain/multiprotein structure prediction 

algorithms, Alphafold2, AlphafoldMultimer and RosettaFold2, but also previous algorithms from the lap 

DEMO and SADA. 

 

Despite the limitations pointed out in the concluding summary/perspective, DeepAssembly does a 

considerably better job than the others at all levels. However, the devil is in the details. Specifically, 

this reviewer is not convinced that a commonly agreed-on multidomain or complexed protein data 

base is used. Rather, results are reported by 219 and then 165 proteins but is is not clear how these 

are selected. It would be more convincing to apply DeepAssembly to Casp14 and 15 targets first. 

 

For a more general and biological audience of communications biology, the interest in this topic would 

be marginal in absence of a clear prediction how cell signaling or transmembrane proteins (or their 

mechanism of activation) can be predicted. The paper seems more suitable for an expert journal 

whose readers appreciate the details of the algorithms and findings. As presented at the moment, 

there is too little information to introduce readers to some of the parameters, e.g. TMscore, DockQ 

score and cut-offs etc. The figures need a lot more explanation, e.g. what does n refer to in Fig.2. 

 

Finally, we tried to use the DeepAssembly server but did not receive any feedback/results within a 

week - no information on queue status etc. was given. So the server might not be working yet. 



Gui-Jun Zhang 

College of Information Engineering 

Zhejiang University of Technology 

Hangzhou 310023, China 

zgj@zjut.edu.cn 

August 29, 2023 

 

 

 

Dear Reviewers, 

Thank you for reviewing our manuscript entitled “Domain-based multi-domain protein and complex 

structure prediction using inter-domain interactions from deep learning” (COMMSBIO-23-1703) and 

for proposing valuable suggestions. The comments helped us improve our manuscript and served as 

important guidance to our research. We have carefully considered the comments and have revised the 

manuscript accordingly. All modified parts are highlighted in the manuscript. 

Thank you again for reviewing our manuscript. We hope you find that the changes are satisfactory. 

Sincerely, 

Yuhao Xia, Kailong Zhao, Dong Liu, Xiaogen Zhou, and Guijun Zhang 

 

  

zgj@zjut.edu.cn


Response to Reviewer #1 

We very much appreciate for your comments and suggestions, which help to significantly improve the 

quality and description of our manuscript. In the following, we include point-by-point response to the 

comments, where all changes have been highlighted in the manuscript. 

 

This manuscript describes a novel method (DeepAssembly) for assembling multiple domains by 

minimizing the atomic coordinate deviation predicted by the AffineNet. In addition, the authors expand 

the DeepAssembly to the complex structure prediction of heterodimers. Overall, DeepAssembly is an 

interesting study. The manuscript is written well. However, there still are some questions needed to be 

addressed. 

Response: We appreciate your positive comments on this work. The point-by-point response to the 

comments are shown below. 

 

1.DeepAssembly uses the proposed PAthreader to search for the remote template of a target sequence 

and its multi-domain. What is the detailed criteria of screening? Are the templates with a high sequence 

identity excluded? For the heterodimer, how to generate the template features between two domains 

belonging to different chains? 

Response: Thank you for raising these important questions. We apologize for not providing a detailed 

explanation of these aspects. We respond to these questions as follows:  

(1) What is the detailed criteria of screening? 

PAthreader finds an optimal alignment between the query sequence and template sequence by a three-

track alignment algorithm [R1]. The templates are eventually ranked by “rankScore”. We use different 

numbers and screening criteria of templates for training and inference. During training, in order to 

enhance the generalization ability of the network model and avoid overfitting, we restrict the available 

templates to up to 10 with the highest “rankScore” to increase the diversity of the template features used 

for training. At inference time, considering the influence of the template quality on the final structure, 

we provide at most the top 5 templates with the highest “rankScore” to the trained model according to 

the following criteria: (i) the template with “rankScore” >0.6; (ii) “rankScore” difference between the 

previous selected <0.03; (iii) the length of template more than 30% of the query sequence. 

We have added corresponding descriptions in the manuscript. 

 



(2) Are the templates with a high sequence identity excluded? 

This is twofold, with DeepAssembly using templates with different sequence identity cutoffs in different 

experiments for fair comparison with other methods. 

(a) On the one hand, in order to thoroughly evaluate DeepAssembly's ability in real-world scenarios, we 

used single-domains predicted by PAthreader to assemble multi-domain proteins. In this experiment, we 

maximized the performance of DeepAssembly, and compared it with the current state-of-art end-to-end 

method AlphaFold2. In the inference process of AlphaFold2, the templates with a high sequence identity 

are not excluded. Therefore, for a fair comparison, we also did not exclude templates according to 

sequence identity in this experiment. 

(b) On the other hand, in order to rigorously test the model performance of DeepAssembly, we assembled 

multi-domain proteins with experimental domains to exclude the influence of single-domains on the 

final structure. In this experiment, DeepAssembly was compared with SADA, DEMO and AIDA. In 

SADA and DEMO, structural templates with a sequence identity >30% to the query are excluded [R2, 

R3], so for a fair comparison, templates with sequence identity >30% of the query are also excluded in 

DeepAssembly. 

We apologize for not providing detailed experimental settings, and we have added corresponding 

descriptions in the manuscript. 

 

(3) For the heterodimer, how to generate the template features between two domains belonging to 

different chains? 

For the heterodimer, we connect its two chains before search for its templates as a single chain through 

PAthreader. Although PAthreader is designed for single-chain proteins, it can also be used to recognize 

templates of protein complexes [R1]. Subsequently, we extract the template features of the connected 

single chain from the searched templates by calculating the distance and orientation between residues in 

the templates. Therefore, the extracted template features of the connected single chain contain the 

template features between two domains belonging to different chains. 

We have added corresponding descriptions in the manuscript. 

 

 



2.Why does DeepAssembly use different numbers and criteria for training and inference on single-

domain? 

Response: Thank you for raising this important point. We apologize for the unclear descriptions. 

(1) During the training process, in order to enhance the generalization ability of the network model and 

avoid overfitting, we used the top 10 templates with the highest “rankScore” searched by PAthreader to 

increase the diversity of the template features used for training. While for the inference, considering the 

influence of the template quality on the final structure, we therefore used different numbers of 

PAthreader templates with stricter screening criteria compared with the training process, to obtain high-

precision predicted inter-domain interactions and single-domain structures. 

(2) In addition, we used predicted and experimental single-domains in domain assembly, respectively, 

depending on the experimental scenarios. First, considering that in real-world scenarios, most proteins 

do not have experimentally solved domains, we therefore used single-domains predicted by PAthreader 

to assemble multi-domain proteins to evaluate DeepAssembly's performance in real-world scenarios. 

Meanwhile, we added the controlled experiment to assemble multi-domain with single-domains by 

AlphaFold2 to investigate the factors that contribute to the performance of DeepAssembly. Second, we 

used experimental domains to assemble multi-domain proteins, which is to exclude the influence of 

single-domains on the final structure to rigorously test the model performance of DeepAssembly. 

We have added corresponding descriptions in the manuscript. 

 

 

 

 

 



3.In the case of MSA with a large number of sequences, the template information seems to have little 

impact on the AlphaFold2. Can the authors investigate the performance of DeepAssembly with single-

domains generated by PAthreader and AlphaFold2 in that situation? 

Response: Thank you for your valuable suggestion. Based on your suggestion, we investigated the 

performance of DeepAssembly with single-domains generated by PAthreader and AlphaFold2 in the 

case of MSA with a large number of sequences. Figure R1 is the scatterplot of the TM-score of models 

predicted by DeepAssembly and DeepAssembly (AF2 domain) versus the number of effective sequences 

(Neff) in MSAs. “DeepAssembly” and “DeepAssembly (AF2 domain)” represent DeepAssembly with 

single-domains generated by PAthreader and AlphaFold2, respectively. The fitting curves in Figure R1 

show that the TM-score increases as Neff increases until it largely saturates when Neff is higher than 

100. In addition, as Neff increases, the curves representing DeepAssembly and DeepAssembly (AF2 

domain) gradually tend to coincide. This indicates that when the MSA is shallow, the template 

information can greatly improve the performance, while when the MSA is deep enough, the co-

evolutionary information plays a major role. This is as the reviewer pointed out, in the case of large MSA 

depth, the template information has relatively little impact compared to the co-evolutionary information. 

Table R1 shows the performance of DeepAssembly and DeepAssembly (AF2 domain) on the targets 

with MSA Neff in the ranges of (100,1000) and (1000,10000). Specifically, when Neff scores between 

100 and 1000, the average TM-score of DeepAssembly and DeepAssembly (AF2 domain) are 0.923 and 

0.922, respectively. For the targets with Neff greater than 1000, the average TM-score of DeepAssembly 

and DeepAssembly (AF2 domain) are 0.932 and 0.924, respectively. The results show that in the case 

of MSA with a large number of sequences, the performance of DeepAssembly with PAthreader single-

domains is superior to that with AlphaFold2 domains, although the improvement is not very significant 

compared to the case with less Neff in MSAs. 

 

Figure R1. Scatterplot of the TM-score of models predicted by DeepAssembly and DeepAssembly (AF2 

domain) versus the number of effective sequences (Neff) in MSAs. The orange and blue curves are 

obtained by fitting the orange and blue dots with ExpDec1 function in Origin. The shaded area is the 

95% confidence interval. 



Table R1. The performance of DeepAssembly and DeepAssembly (AF2 domain) on the targets with 

MSA Neff in the ranges of (100,1000) and (1000,10000). 

Method 
100 < Neff < 1000 1000 < Neff < 10000 

RMSD (Å) TM-score RMSD (Å) TM-score 

DeepAssembly 2.91 0.923 2.20 0.932 

DeepAssembly 

(AF2 domain) 
3.02 0.922 2.61 0.924 

 

We have added corresponding descriptions in the manuscript and Supplementary Information. 

 

 

 



4.There are some domains that are spatially adjacent but disconnected in sequence. How does 

DeepAssembly predict the single-domain structures with disconnected sequences? 

Response: Thank you for raising the important question. We apologize for not providing too much 

details on this. For single-domain with disconnected sequence, we first concatenate its disconnected 

sequences into a continuous sequence, and then input this sequence into the PAthreader model to 

generate the single-domain structure (Figure R2). 

 

Figure R2. Diagram of the process for predicting the single-domain structure with disconnected 

sequences. Two single-domain structures are colored by blue and red, respectively. 

 

We have added corresponding descriptions in the manuscript and Supplementary Information. 

 



 

 

5.DeepAssembly uses four residues near the domain boundaries to generate the initial full-length 

structure and optimizes it. Is this too small to handle the full-length structure which is made up of two 

domains with a long loop? 

Response: Thank you for pointing out this important issue. Based on your valuable suggestion, we 

increased the number of movable residues near the domain boundaries, which helped to further 

improve the performance of our method. In order to investigate the influence of the number of 

movable residues near the domain boundaries on the final structure, we added the experiment by 

increasing the number of movable residues to 8, and reassembling the full-length structure using 

PAthreader single-domains on the test set. Table R2 summarizes the performance of DeepAssembly for 

assembling the full-length structure using 4 and 8 residues near the domain boundaries, respectively. 

The results show that the average TM-score is improved from 0.916 to 0.922 by using 8 residues near 

the domain boundaries. In addition, the number of models with TM-score >0.9 also increased from 173 

to 178. This suggests that more movable residues near the domain boundaries may increase the flexibility 

of the linker during optimization, making it easier to sample the correct inter-domain orientation, thereby 

improving the prediction accuracy. 

 

Table R2. The performance of DeepAssembly for assembling the full-length structure using 4 and 8 

residues near the domain boundaries, respectively. 

Method RMSD (Å) TM-score #TM-score>0.9 

DeepAssembly (4 residues) 3.12 0.916 173 

DeepAssembly (8 residues) 2.91 0.922 178 



We show a case of three-domain protein (PDB ID: 1GRI_A) which is made up of three domains with 

two long loops. In Figure R3, experimental structure is colored in gray, and the predicted models of 

DeepAssembly using 4 and 8 residues near the domain boundaries are colored in green and blue, 

respectively. The two long loops connecting the three domains in the experimental structure are colored 

in red. It can be seen from Figure R3 that the DeepAssembly model by using 8 movable residues in the 

linker is more accurate than using 4 residues (the TM-score improved from 0.752 to 0.958). In Figure 

R3a, the linker in the predicted structure is broken and there is a large deviation compared with the 

experimental structure (shown in the yellow boxes). However, by increasing the number of movable 

residues in linker, the inter-domain orientation of the predicted structure is not only improved, but the 

linker's shape is also closer to the experimental structure (Figure R3b). 

It means that originally set 4 residues are too few to handle the full-length structure which is made up 

of two domains with a long loop, as pointed out by the reviewer. Therefore, we set the number of 

movable residues near the domain boundaries to 8 in the domain assembly module of 

DeepAssembly. We re-performed the experiments assembling full-length structures and updated 

the corresponding experimental data and result analysis in the manuscript and Supplementary 

Information. 

 

Figure R3. The case of a three-domain protein (PDB ID: 1GRI_A) which is made up of three domains 

with two long loops. Experimental structure is colored in gray, and the predicted models of 

DeepAssembly using 4 and 8 residues near the domain boundaries are colored in green (a) and blue (b), 

respectively. The two long loops connecting the three domains in the experimental structure are colored 

in red. 

 

Thank you again for your valuable suggestion, which helped to further improve the performance of our 

method. We have added corresponding descriptions and updated the experimental data in the manuscript. 



 

 

 



 

 

 

 

6.Can the authors analyze the influence of the number of iterations on the final structure? 

Response: Thank you for your valuable suggestion. Based on your suggestion, we supplemented 

experiments to analyze the influence of the number of iterations on the final structure. We set the number 

of iterations to 100, 300, 500, 700 and 900, respectively, and then performed experiments to generate 

the final structures on the test set. Figure R4 shows the average TM-score and RMSD of the final 

structures at different iteration numbers. When the number of iterations is small (e.g., the number of 

iterations = 100), since the conformational sampling is not sufficient at this time, the global minimum 

in the conformational space has not been explored, so the accuracy of the final structure is relatively low, 

especially for those proteins with more domains. The accuracy of the final structure increases as the 

number of iterations increases until it largely saturates when the number of iterations is greater than 500, 

at which point the optimization process gradually converges. Therefore, considering both the accuracy 

of the final structure and the sampling efficiency, we set the number of iterations to 500 during the 

optimization process of DeepAssembly. 



 

Figure R4. The average TM-score and RMSD of the final structures at different iteration numbers. 

 

The following are the revisions we have made in the manuscript and Supplementary Information. 

 

 



7.DeepAssembly uses the Euler angle and spherical coordinate system to represent the rotation matrix 

and translation vector, and divides the angles to several bins. Would it be better to predict the angle in 

terms of sines and cosines? 

Response: Thank you for your valuable suggestion. Based on your suggestion, we retrained a 

network model to predict the angle in terms of sines and cosines. During the training process, the 

same training set and model parameters are used as before. Subsequently, we converted the predicted 

sines and cosines of angles into the energy potential to guide the generation of the final full-length 

structure, and compared it with the original way of predicting the angles directly. Here, the full-length 

structures are all assembled by single-domain predicted by PAthreader, and all used 8 movable residues 

near the domain boundaries. Table R3 summarizes the performance of DeepAssembly for assembling 

the full-length structure by predicting the angles directly and predicting the angle in terms of sines and 

cosines, respectively. “*” indicates predicting the angle in terms of sines and cosines. The results show 

that it seems to have no obvious difference in the accuracy of the final structure by predicting the angle 

in terms of sines and cosines. However, this is a novel and interesting idea that converts the angle into 

sines and cosines, and provides an important line of thought for our subsequent research. 

 

Table R3. The performance of DeepAssembly for assembling the full-length structure by predicting the 

angles directly and predicting the angle in terms of sines and cosines, respectively. “*” indicates 

predicting the angle in terms of sines and cosines. 

Method RMSD (Å) TM-score #TM-score>0.9 

DeepAssembly 2.91 0.922 178 

DeepAssembly* 3.37 0.914 173 

 

 

8.DeepAssembly obtains an average TM-score of 0.602 on the targets predicted by AlphaFold2 with a 

TM-score less than 0.5, compared with 0.414 of AlphaFold2. The improvement of 45.4% is not 

consistent with the value shown in the Supplementary Figure 1b. 

Response: Thank you for raising this important point. We apologize for the ambiguous description. In 

fact, the value corresponding to the 0.5 cutoff in the Supplementary Figure 1b is calculated 

differently from the 45.4% improvement mentioned in the text. Supplementary Figure 1b shows the 

average TM-score improvement rate for targets improved by DeepAssembly at each cutoff. Specifically, 

there are 7 targets predicted by AlphaFold2 with a TM-score <0.5. The average TM-score of 

DeepAssembly and AlphaFold2 is 0.602 and 0.414, respectively, with a 45.4% (= (0.602 - 0.414) / 0.414 

* 100%) improvement. In addition, there are 71.4% (5 of 7) are improved by DeepAssembly on these 7 

targets predicted by AlphaFold2 with a TM-score < 0.5. For these targets improved by DeepAssembly, 

the average TM-score improvement rate is 73.5% (= (78.3% + 35.4% + 15.8% + 188.7% + 49.1%) / 5), 

as shown in the Supplementary Figure 1b. Table R4 shows the TM-scores and the TM-score 

improvement rates for these 7 targets. 

 



Table R4. TM-scores and the TM-score improvement rates for targets predicted by AlphaFold2 with a 

TM-score less than 0.5. 

PDB ID 
TM-score TM-score 

improvement rate (%) DeepAssembly AlphaFold2 

1mkfA 0.708 0.397 78.3 

2hjqA 0.635 0.469 35.4 

2jz4A 0.462 0.471 \ 

2yrqA 0.484 0.418 15.8 

3uitD 0.477 0.484 \ 

4lziA 0.967 0.335 188.7 

3hjlA 0.483 0.324 49.1 

Average 0.602 0.414 73.5 

 

We thank you again for pointing this out. In order to avoid misunderstandings, we have clarified the 

corresponding descriptions in the manuscript. 

(Note: The above data has been updated in the revised manuscript because we re-performed the 

experiments according to the Comment 5, and the original Supplementary Fig. 1 was updated to 

Supplementary Fig. 2.) 

 

 

9.Can DeepAssembly be compared with AlphaFold-linker or AlphaFold-gap on the heterodimers? In 

addition, how about the performance of DeepAssembly on hetero-complexes with more than 2 chains? 

Response: Thank you for your valuable suggestion.  

(1) Can DeepAssembly be compared with AlphaFold-linker or AlphaFold-gap on the heterodimers? 

Based on your valuable suggestion, we compared the performance of DeepAssembly and AlphaFold-

linker on the heterodimers. For AlphaFold-linker, we obtained predicted models by adding a 21-residue 



repeated Glycine-Glycine-Serine linker between each chain and then running it as a single chain through 

the AlphaFold2 model [R4]. 

Table R5 summarizes the performance of DeepAssembly and AlphaFold-linker on the 247 heterodimers. 

The success rate of DeepAssembly and AlphaFold-linker are 32.4% and 40.9%, respectively. AlphaFold-

linker obtained more acceptable models (0.23 ≤ DockQ < 0.49). However, for the medium model (0.49 

≤ DockQ < 0.80), the number of which generated by DeepAssembly is close to AlphaFold-linker (48 vs. 

51). In addition, DeepAssembly achieved a higher DockQ score than AlphaFold-linker on 36% of the 

test cases. 

The results show that our method can almost achieve the performance of AlphaFold-linker with less 

computational resource requirements by treating domains as assembly units, especially it is superior to 

AlphaFold-linker on several proteins. This further validates the effectiveness of our method that is based 

on domain assembly. 

 

Table R5. The performance of DeepAssembly and AlphaFold-linker on the heterodimers. Acceptable: 

0.23 ≤ DockQ < 0.49, Medium: 0.49 ≤ DockQ < 0.80, High: DockQ ≥ 0.80. 

Method 
Success rate 

 (SR) (%) 

Acceptable 

Count 

Medium 

Count 

High 

Count 

DeepAssembly 32.4 21 48 11 

AlphaFold-linker 40.9 31 51 19 

 

We have added the corresponding description in the manuscript, and the following are the revisions we 

have made in the manuscript. 

 



 

 

(2) In addition, how about the performance of DeepAssembly on hetero-complexes with more than 2 

chains? 

Based on your valuable suggestion, we tested the performance of DeepAssembly on hetero-complexes 

with more than two chains. We applied it to generate models of the heterotrimer Survivin-Borealin-

INCENP core complex (PDB ID: 2QFA) and the heterotetramer NuA4 core complex (PDB ID: 5J9T). 

As illustrated in Figure R5a, DeepAssembly generated a highly-quality model with a DockQ score of 

0.828 for three-chain hetero-complex 2QFA. In addition, for the four-chain hetero-complex 5J9T, the 

complex model built by DeepAssembly also achieved a DockQ score of 0.760 (Figure R5b), showing 

the potential that DeepAssembly could also be applied to hetero-complexes with more than two chains. 

 

Figure R5. Structures generated by DeepAssembly for hetero-complexes with more than two chains. 

The reference PDB structures are colored in gray, and the different chains of the predicted models are 

colored by blue, green, orange, and purple. (a) Survivin-Borealin-INCENP core complex (PDB ID: 

2QFA). (b) NuA4 core complex (PDB ID: 5J9T). 

 

We have added the corresponding description in the manuscript, and the following are the revisions we 

have made in the manuscript and Supplementary Information. 



 

 

 

10.It is a bit surprising that DeepAssembly obtains a better average TM-score (0.916) with single-

domains predicted by PAthreader than that with experimental single-domains (0.855). Can the authors 

explain it? 

Response: Thank you for raising this important point. This is because DeepAssembly uses templates 

with different sequence identity cutoffs for fair comparison with other methods in the two experiments. 

(1) On the one hand, in order to thoroughly evaluate DeepAssembly's ability in real-world scenarios, we 

used single-domains predicted by PAthreader to assemble multi-domain proteins. In this experiment, we 

maximized the performance of DeepAssembly, and compared it with the current state-of-art end-to-end 

method AlphaFold2. In the inference process of AlphaFold2, the templates with a high sequence identity 

are not excluded. Therefore, for a fair comparison, we also did not exclude templates according to 

sequence identity in this experiment. 

(2) On the other hand, in order to rigorously test the model performance of DeepAssembly, we assembled 

multi-domain proteins with experimental domains to exclude the influence of single-domains on the 

final structure. In this experiment, DeepAssembly was compared with SADA, DEMO and AIDA. In 

SADA and DEMO, structural templates with a sequence identity >30% to the query are excluded [R2, 

R3], so for a fair comparison, templates with sequence identity >30% of the query are also excluded in 

DeepAssembly. This appropriately reduces the TM-score of DeepAssembly compared to that in the 



previous experiment. 

Therefore, DeepAssembly has a better average TM-score with single-domains predicted by PAthreader 

than that with experimental single-domains. 

We apologize for not providing detailed experimental settings, and we have added corresponding 

descriptions in the manuscript. 

 

 

11.DeepAssembly is compared with other methods according to the predicted inter-domain distance. 

Did the authors directly use the distance predicted by the AffineNet or use the structure selected by the 

evolutional algorithm? If the latter is used, did the authors use the structure refined by FastRelax? 

Response: We apologize for not describing it clearly. In the section “Inter-domain interactions 

prediction”, we compare DeepAssembly with other methods by directly using the inter-domain 

distance predicted by the AffineNet. The inter-domain distances of AlphaFold2 and RoseTTAFold are 

extracted from their output pkl and npz files, respectively. Then we define the inter-domain distance 

error, 𝑒𝑟𝑟dist, to evaluate the predicted inter-domain distance precision, which is calculated as the errors 

(Å) between the predicted inter-domain distance and the true inter-domain distance extracted from 

experimental structure, with smaller value indicating higher predicted distance precision. 

𝑒𝑟𝑟dist =
1

𝑁pair
∑ |𝑑(𝑖,𝑗)

pre
− 𝑑(𝑖,𝑗)

true|

(𝑖,𝑗)

,   ∀(𝑖, 𝑗) ∈ 𝒮inter domain,   𝑖 < 𝑗 

where 𝑑(𝑖,𝑗)
pre

 and 𝑑(𝑖,𝑗)
true are the predicted distance and the true distance of inter-domain residue pair (i,j), 

respectively. 𝒮inter domain represents the set of inter-domain residue pairs, and 𝑁pair is the number of 

inter-domain residue pairs. 

We have added the corresponding description in the manuscript and Supplementary Information. 

 



 

 

12.Does the AffineNet use the cross-entropy losses on both intra- and inter-domain? If so, how about 

the performance of AffineNet in the intra-domain distance and orientation? 

Response: As the reviewer pointed out, the AffineNet uses the cross-entropy losses on both intra- 

and inter-domain. Based on your valuable suggestion, we investigated the performance of AffineNet 

in the intra-domain distance and orientation. We present in Table R6 the errors of intra- and inter-domain 

distance and orientation predicted by AffineNet. On average, the intra- and inter-domain distance errors 

are 0.453 Å and 0.560 Å, respectively. The intra- and inter-domain errors of angles (𝛼, 𝛽, 𝛾, 𝜃, 𝜙) 

representing the orientation are 0.306 vs 0.394, 0.180 vs 0.255, 0.261 vs 0.352, 0.148 vs 0.206, 0.204 vs 

0.261, respectively. The results show that AffineNet has higher prediction accuracy in the intra-domain 

than inter-domain, which may be due to the flexibility of inter-domain orientation that makes the inter-

domain interaction more difficult to be accurately captured than that of intra-domain. This also reflects 

that the inter-domain distance and orientation prediction is more challenging than intra-domain. 

 

Table R6. Average errors of intra-/inter-domain distance and orientation predicted by AffineNet. 𝛼, 𝛽, 

𝛾, 𝜃, 𝜙 are angles representing the inter-residue orientations. 

 Distance error 

(Å) 

Orientation error (rad) 

𝛼 𝛽 𝛾 𝜃 𝜙 

Inter-domain 0.560 0.394 0.255 0.352 0.206 0.261 

Intra-domain 0.453 0.306 0.180 0.261 0.148 0.204 

 

We have added the analysis of this aspect in the manuscript and supplemented the experimental data in 

the Supplementary Information. 



 

 

 

 

Reference: 

[R1] Zhao, K. L., et al. Protein structure and folding pathway prediction based on remote homologs 

recognition using PAthreader. Communications Biology 6, 243 (2023). 

[R2] Peng, C. X., et al. Structural analogue-based protein structure domain assembly assisted by deep 

learning. Bioinformatics 38, 4513-4521 (2022). 

[R3] Zhou, X. G., et al. Assembling multidomain protein structures through analogous global structural 

alignments. Proc. Natl Acad. Sci. USA 116, 15930-15938 (2019). 

[R4] Evans, R., et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv (2021). 

  



Response to Reviewer #2 

We very much appreciate for your comments and suggestions, which help to significantly improve the 

quality and description of our manuscript. In the following, we include point-by-point response to the 

comments, where all changes have been highlighted in the manuscript. 

 

Xia et al presented a new tool to predict Domain-based multi-domain protein and complex structure. It 

is an interesting work. However, there are already several similar tools were already published before. 

So, it would be interesting to make comparison between this new tool and others, including the algorithm 

difference, merits and demerits, applicable system. 

Response: We appreciate your positive comments on this work. As the reviewer points out, there are 

already several similar tools were already published before, such as DEMO and SADA. Based on your 

valuable suggestion, we compared our tool with others in terms of algorithm difference, merits and 

demerits, applicable system. 

(1) algorithm difference 

The previously proposed DEMO and SADA are essentially a template-based method that guides domain 

assembly by detecting available templates [R1, R2]. DEMO constructs multi-domain protein structures 

by docking-based domain assembly simulations, in which inter-domain orientations are determined by 

the distance profiles from analogous templates as detected through domain-level structure alignments 

[R1]. In SADA, a multi-domain protein structure database is constructed for the full-chain analogue 

detection using individual domain models. Starting from the initial model constructed from the analogue, 

the domain assembly simulation is performed to generate the full-chain model through a two-stage 

differential evolution algorithm [R2]. Different from DEMO and SADA, this new tool we proposed, 

DeepAssembly, is a data-driven deep learning approach for multi-domain protein and complex 

modeling, which does not require the time-consuming structural template alignment process. We 

develop a deep learning network model trained on multi-domain proteins to directly predict the inter-

domain interactions through the input co-evolutionary, template and inter-domain features, and finally 

perform the population-based optimization to assemble multi-domain protein or complex driven by an 

affine transformation-based energy potential transformed from predicted inter-domain interactions. 

(2) merits and demerits 

merits: (a) firstly, DEMO and SADA, as template-based approaches, both rely on structural template 

alignment, which is limited by the number of multi-domain proteins in PDB, and the difficulty of 

capturing the orientation between domains from the template may increase as the number of domains 

increases. However, DeepAssembly predicts the inter-domain interactions by using a deep learning 

model, avoids the time-consuming template alignment process, and does not depend on templates 

entirely, because the network model can also capture the accurate inter-domain interactions from co-

evolutionary information in the absence of templates. (b) secondly, the deep learning model in 

DeepAssembly is trained on multi-domain proteins, which pay more attention to the capture of 

inter-domain interactions, improving the prediction accuracy of inter-domain orientations. It may 

be more urgent and important, given the fact that it is currently relatively easy to obtain high-precision 

single domain structures. In addition, the network model integrates co-evolutionary information and 

template features through the self-attention mechanism, which further improves the prediction 



performance. (c) thirdly, AlphaFold2’s inaccurate prediction for multi-domain protein structures is 

mainly due to the incorrect inter-domain orientation. For cases where the AlphaFold2-predicted structure 

is not accurate, DeepAssembly tends to perform more satisfactorily by correcting their inter-

domain orientations with large errors, providing an important solution for the update of the low 

confidence multi-domain structures in AlphaFold database. (d) finally, DeepAssembly can also be 

applied to complex structure prediction, which provides a lightweight way to assemble protein 

structures by treating domains as assembly units, reducing the requirements for computational 

resources. Especially for scenarios without co-evolutionary signals, our method can identify the correct 

inter-chain interface through the inter-domain interactions learned from the remote templates, it could 

reduce the dependence on MSA to a certain extent. 

demerits: (a) in the absence of sufficient co-evolutionary signals and appropriate templates, our method 

still has room for improvement in performance. In this case, the introduction of physical and chemical 

features, e.g., protein-protein interface preferences are also crucial. (b) the domain-domain interaction 

can be further extended, including the interaction between two domains belonging to different chains. 

(3) applicable system 

DEMO, SADA and DeepAssembly can all be executed in the 64-bit Linux operating system, and the 

deep learning model of DeepAssembly is available in Python with Tensorflow1.14. 

 

Thank you again for your valuable suggestion. We have further explained the merits and demerits of our 

method and the differences from other methods in the manuscript. 

 

 

 



The benchemark is mainly focusing on water soluble proteins. It would be interesting to see how it 

perform well for membrane proteins as well. 

Response: Thank you for your valuable suggestion. It is an interesting exploration. Based on your 

suggestion, we applied our method to transmembrane proteins. 

Figure R1 displays several examples of the transmembrane protein models predicted by DeepAssembly. 

The first example is Monocarboxylate transporter 1 (MCT1) (PDB ID: 7CKR_A), which is a multi-

domain protein that catalyzes the movement of many monocarboxylates across the plasma membrane 

through an ordered mechanism [R3]. The model built by DeepAssembly had the correct inter-domain 

orientation, yielded a TM-score of 0.882 (Figure R1a). In addition, the target T1024 in CASP14 (PDB 

ID: 6T1Z_A) is also a monomeric transmembrane protein, which consists of two domains. In this case, 

DeepAssembly generated a more accurate model with a TM-score of 0.957, compared to AlphaFold2's 

0.797 (Figure R2). 

DeepAssembly can also be applied to transmembrane protein complexes. Figure R1b and c show the 

results of DeepAssembly on two homo-oligomeric proteins with C2-symmetry type. DeepAssembly 

succeeded in building a high-quality model for CDP-alcohol phosphotransferase (PDB ID: 4O6M) 

(DockQ = 0.881), especially for the transmembrane region, achieving a higher DockQ score of 0.930 

(Figure R1b). Similarly, DeepAssembly successfully predicted the inter-chain interface for magnesium 

transporter (PDB ID: 2ZY9) (DockQ = 0.796), and the transmembrane region achieved a DockQ score 

of 0.855 (Figure R1c). 

Furthermore, for the acid-sensing ion channel (PDB ID: 2QTS) with three chains, the trimer model 

predicted by DeepAssembly yielded a DockQ score of 0.402 (Figure R1d). However, there is still room 

for improvement on the transmembrane region. Compared with the extracellular region, the predicted 

model has deviation with PDB structure in the transmembrane region. This may be due to the highly 

flexible structures within the transmembrane region, with each subunit in the PDB structure of the 

chalice-shaped homotrimer having a different orientation between its transmembrane helices and 

extracellular region, even though they share the same amino acid sequence. Figure R1e shows a 

comparison between the DeepAssembly model and the PDB structure on OmpU, an outer membrane 

protein of Vibrio cholerae (PDB ID: 6EHB). OmpU forms three channels for the diffusional uptake of 

small molecules, and each consisting of a 16-stranded β barrel [R4]. DeepAssembly correctly predicted 

the structures of its channels (average TM-score = 0.985), as well as their interfaces with a DockQ score 

of 0.591. 

The last example is a tetrameric potassium channel KcsA (PDB ID: 2QTO), which is an ion channel that 

is capable of selecting potassium ions. The tetramer model for KcsA built by DeepAssembly achieved a 

DockQ score of 0.756 (Figure R1f). In addition, the DeepAssembly model gave the correct overall 

shape of the pore used to filter out potassium ions (shown as sphere in Figure R1f). These examples 

demonstrate the potential of DeepAssembly on transmembrane proteins, which may help to understand 

the function of transmembrane proteins, and provide insights into their molecular interaction mechanism. 



 

Figure R1. Examples of the transmembrane protein structures predicted by DeepAssembly. The 

reference PDB structures are colored in gray, and the different domains or chains of the predicted models 

are colored by blue, green, orange, and purple. (a) Monocarboxylate transporter 1 (MCT1) (PDB ID: 

7CKR_A). (b) CDP-alcohol phosphotransferase (PDB ID: 4O6M). (c) magnesium transporter (PDB ID: 

2ZY9). (d) acid-sensing ion channel (PDB ID: 2QTS). (e) OmpU, an outer membrane protein of Vibrio 

cholerae (PDB ID: 6EHB). (f) potassium channel KcsA (PDB ID: 2QTO). The potassium ion in the ion 

channel is shown as sphere. 

 

 

Figure R2. Structures predicted by AlphaFold2 and DeepAssembly for target T1024 from CASP14. The 

reference PDB structures are colored in gray, and the different domains of the predicted models are 

colored by blue and green. 



We have added this section to the manuscript, and the following are the revisions we have made in the 

manuscript. 

 

 

 



 

 

 

Moreover, I don't see too much about the sidechain conformation details. It would be necessary to present 

this information as well. 

Response: Thank you for raising the important question. We apologize for not providing too much 

details on this. Based on your valuable suggestion, we have added the descriptions about the sidechain 

conformation in the manuscript.  

We assemble the full-length protein model in the domain assembly module. To speed up the assembly, 

initial full-length models are represented as coarse-grained (centroid) models in Rosetta. The centroid 

model is a reduced representation of protein structure, in which the backbone remains fully atomic but 

each side chain is represented by a single artificial atom (centroid). In the iterative annealing stage, series 

of rotation angle sampling, new structure generation, and structure pool selection steps are repeated 

iteratively with coarse-grained representation. When the number of iterations reaches the maximum, the 



top 10 centroid models (ranked by energy) are selected to be converted to full-atomic models by 

generating side chains in Rosetta, followed by full-atom refinement by FastRelax protocol with ref2015 

energy function in Rosetta [R5]. 

The following are the revisions we have made in the manuscript. 

 

 

 

 

 

Reference: 

[R1] Zhou, X. G., et al. Assembling multidomain protein structures through analogous global structural 

alignments. Proc. Natl Acad. Sci. USA 116, 15930-15938 (2019). 

[R2] Peng, C. X., et al. Structural analogue-based protein structure domain assembly assisted by deep 

learning. Bioinformatics 38, 4513-4521 (2022). 

[R3] Garcia, C. K., et al. Molecular characterization of a membrane transporter for lactate, pyruvate, and 

other monocarboxylates: Implications for the Cori cycle. Cell 76, 865-873 (1994). 

[R4] Pathania, M., et al. Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio 

cholerae. Structure 26, 708-721 (2018). 

[R5] Rohl, C. A., et al. Protein structure prediction using rosetta. Methods Enzymol. 383, 66-93 (2004). 

  



Response to Reviewer #3 

We very much appreciate for your comments and suggestions, which help to significantly improve the 

quality and description of our manuscript. In the following, we include point-by-point response to the 

comments, where all changes have been highlighted in the manuscript. 

 

The study presented by Zhang and colleagues seeks to demonstrate that a new algorithm, DeepAssembly, 

is a significant advance over other multidomain/multiprotein structure prediction algorithms, 

Alphafold2, AlphafoldMultimer and RosettaFold2, but also previous algorithms from the lap DEMO 

and SADA. 

Response: Thank you for your comments. As the reviewer points out, there are previous algorithms we 

proposed, such as DEMO and SADA. Here, we explained the merits of our method, and compared with 

other methods in terms of algorithm difference, merits and demerits, applicable system. 

(1) algorithm difference 

The previously proposed DEMO and SADA are essentially a template-based method that guides domain 

assembly by detecting available templates [R1, R2]. DEMO constructs multi-domain protein structures 

by docking-based domain assembly simulations, in which inter-domain orientations are determined by 

the distance profiles from analogous templates as detected through domain-level structure alignments 

[R1]. In SADA, a multi-domain protein structure database is constructed for the full-chain analogue 

detection using individual domain models. Starting from the initial model constructed from the analogue, 

the domain assembly simulation is performed to generate the full-chain model through a two-stage 

differential evolution algorithm [R2]. Different from DEMO and SADA, this new tool we proposed, 

DeepAssembly, is a data-driven deep learning approach for multi-domain protein and complex 

modeling, which does not require the time-consuming structural template alignment process. We 

develop a deep learning network model trained on multi-domain proteins to directly predict the inter-

domain interactions through the input co-evolutionary, template and inter-domain features, and finally 

perform the population-based optimization to assemble multi-domain protein or complex driven by an 

affine transformation-based energy potential transformed from predicted inter-domain interactions. 

(2) merits and demerits 

merits: (a) firstly, DEMO and SADA, as template-based approaches, both rely on structural template 

alignment, which is limited by the number of multi-domain proteins in PDB, and the difficulty of 

capturing the orientation between domains from the template may increase as the number of domains 

increases. However, DeepAssembly predicts the inter-domain interactions by using a deep learning 

model, avoids the time-consuming template alignment process, and does not depend on templates 

entirely, because the network model can also capture the accurate inter-domain interactions from co-

evolutionary information in the absence of templates. (b) secondly, the deep learning model in 

DeepAssembly is trained on multi-domain proteins, which pay more attention to the capture of 

inter-domain interactions, improving the prediction accuracy of inter-domain orientations. It may 

be more urgent and important, given the fact that it is currently relatively easy to obtain high-precision 

single domain structures. In addition, the network model integrates co-evolutionary information and 

template features through the self-attention mechanism, which further improves the prediction 

performance. (c) thirdly, AlphaFold2’s inaccurate prediction for multi-domain protein structures is 



mainly due to the incorrect inter-domain orientation. For cases where the AlphaFold2-predicted structure 

is not accurate, DeepAssembly tends to perform more satisfactorily by correcting their inter-

domain orientations with large errors, providing an important solution for the update of the low 

confidence multi-domain structures in AlphaFold database. (d) finally, DeepAssembly can also be 

applied to complex structure prediction, which provides a lightweight way to assemble protein 

structures by treating domains as assembly units, reducing the requirements for computational 

resources. Especially for scenarios without co-evolutionary signals, our method can identify the correct 

inter-chain interface through the inter-domain interactions learned from the remote templates, it could 

reduce the dependence on MSA to a certain extent. 

demerits: (a) in the absence of sufficient co-evolutionary signals and appropriate templates, our method 

still has room for improvement in performance. In this case, the introduction of physical and chemical 

features, e.g., protein-protein interface preferences are also crucial. (b) the domain-domain interaction 

can be further extended, including the interaction between two domains belonging to different chains. 

(3) applicable system 

DEMO, SADA and DeepAssembly can all be executed in the 64-bit Linux operating system, and the 

deep learning model of DeepAssembly is available in Python with Tensorflow1.14. 

 

Despite the limitations pointed out in the concluding summary/perspective, DeepAssembly does a 

considerably better job than the others at all levels. However, the devil is in the details. Specifically, this 

reviewer is not convinced that a commonly agreed-on multidomain or complexed protein data base is 

used. Rather, results are reported by 219 and then 165 proteins but is is not clear how these are selected. 

It would be more convincing to apply DeepAssembly to Casp14 and 15 targets first. 

Response: Thank you for pointing out this important issue. In this work, we trained the deep learning 

model on 10,593 multi-domain proteins that were collected from our previously developed multi-domain 

protein structure database (MPDB) (http://zhanglab-bioinf.com/SADA/) (until September, 2021, with 

48,225 entries). We apologize for the unclear description and have further explained how the test proteins 

are selected. In addition, we tested the performance of DeepAssembly on the CASP14 and CASP15 

targets based on your valuable suggestion. 

(1) Test protein collection 

In order to evaluate the performance of DeepAssembly on multi-domain proteins, we constructed two 

multi-domain protein test sets, the detailed process is as follows: 

(a) Benchmark set of 219 multi-domain proteins 

Firstly, we use multi-domain proteins with known structures from the comprehensive dataset in previous 

study DEMO [R1] to test the developed pipeline. These proteins share <30% sequence identity, are 

collected by separately clustering the proteins with different domain types and structures from the 

template library [R1]. Here, all the proteins in the initial DEMO dataset that have >30% sequence 

identity with any protein in the training set and validation set are excluded, resulting in a total of 219 

structures as the final test set. 

(b) Test set of 164 proteins from AlphaFold DB 

http://zhanglab-bioinf.com/SADA/


Secondly, to evaluate the performance of DeepAssembly in improving the inter-domain orientation, we 

further construct an independent test set of 164 multi-domain proteins. All entries come from 23,391 H. 

sapiens protein structures deposited in AlphaFold database (https://alphafold.ebi.ac.uk/), the PDB 

structure for each entry is directly downloaded from the PDB at https://www.rcsb.org/. Of these 23,391 

proteins, the protein that has any of the following features is removed: (i) without experimental structure 

in the PDB; (ii) is confirmed as containing only one domain by DomainParser or corresponding entries 

in CATH and SCOPe database; (iii) having redundancy between each other for the UniProt primary 

accession; (iv) with a TM-score > 0.8 for the corresponding structure in AlphaFold database; (v) with 

less than 85% of solved residues for the experimental structure in the PDB, leading to a final set of 164 

multi-domain proteins. 

The following are the revisions we have made in the manuscript. 

 

 

(2) Performance on the CASP14 and 15 targets 

Based on your valuable suggestion, we applied DeepAssembly to CASP14 and CASP15 targets to 

further evaluate its performance. We selected a total of 30 multi-domain targets from CASP14 and 15 as 

test proteins according to the “Domain Definition” on the CASP official website, of which 17 are from 

CASP14 and 13 are from CASP15. These targets all have known PDB structures that been released. We 

assembled full-length models by DeepAssembly on these CASP targets with single-domains generated 

by PAthreader, and compared with AlphaFold2. The results of AlphaFold2 were obtained by running the 

https://alphafold.ebi.ac.uk/
https://www.rcsb.org/


standalone package locally with the default settings. 

Table R1 summarizes the results of targets from CASP14 and CASP15 predicted by AlphaFold2 and 

DeepAssembly. On the CASP14 targets, the average TM-score of DeepAssembly is 0.850, which is 

higher than 0.832 for AlphaFold2. DeepAssembly also achieved a better performance than AlphaFold2 

on most of the test targets (Figure R1a). Especially for the target T1024, a membrane protein that 

consists of two domains, DeepAssembly correctly predicted its inter-domain orientation with a full-

length TM-score of 0.957, which is a significant improvement over 0.797 by AlphaFold2 (Figure R2a). 

For the targets from CASP15, the models predicted by DeepAssembly achieved an average TM-score 

of 0.584, which is slightly higher than 0.567 for AlphaFold2. Specifically, DeepAssembly obtained 

models with a higher TM-score than AlphaFold2 on 62% of the targets (Figure R1b). Figure R2b shows 

an example of target T1121, that DeepAssembly predicted a more accurate inter-domain orientation than 

AlphaFold2. For the target T1121, AlphaFold2 accurately predicted its two individual domains (T1121-

D1 and T1121-D2) with TM-scores of 0.944 and 0.953, respectively. However, the full-length models 

directly predicted by AlphaFold2 obtained a significantly lower TM-score (0.743) due to the incorrect 

inter-domain orientation. In this case, DeepAssembly generated a highly accurate model with a TM-

score of 0.925 (Figure R2b), demonstrating its ability to improve the accuracy of multi-domain protein 

structure prediction by capturing the correct inter-domain orientation. 

Furthermore, in order to analyze the effect of the single-domain structures used on the final full-length 

model accuracy, we further assembled the model through DeepAssembly with the experimental domain 

structures. The results show that the average TM-score on the CASP14 and CASP15 targets by using 

the experimental domain structures achieved 0.903 and 0.778, respectively, which is a significant 

improvement compared to using the predicted single-domains. The example, T1137s1, is a challenging 

target as its second domain (T1137s1-D2) is relatively difficult to predict. As illustrated in Figure R2c, 

the TM-score of AlphaFold2 model is 0.446. In this target, the two predicted single-domain structures 

used by DeepAssembly have TM-scores of 0.870 and 0.503, respectively, where the lower accuracy of 

the second domain affects the quality of full-length model, resulting in a TM-score of 0.474. However, 

by using experimental single-domain structures, DeepAssembly generated a highly accurate model with 

a TM-score of 0.949 (Figure R2c). This indicates that predicted accuracy of the assembled full-length 

model could be further improved if the high-quality single-domain models are obtained. Meanwhile, the 

quality of single-domain model is also an important factor in the accurate multi-domain protein structure 

prediction in addition to inter-domain orientation. 

 

Table R1. Results of AlphaFold2 and DeepAssembly on CASP14 and CASP15 targets. 

Method 
CASP14 CASP15 

RMSD (Å) TM-score RMSD (Å) TM-score 

AlphaFold2 7.45 0.832 20.58 0.567 

DeepAssembly 6.68 0.850 15.94 0.584 

 



 

Figure R1. Head-to-head TM-score comparison of DeepAssembly with AlphaFold2. (a) Head-to-head 

comparison on each CASP14 target. (b) Head-to-head comparison on each CASP15 target. 

 

 

Figure R2. Examples of the CASP14 and 15 targets predicted by AlphaFold2 and DeepAssembly. The 

reference PDB structures are colored in gray, and the different domains of the predicted models are 

colored by blue and green. (a) T1024 (PDB ID: 6T1Z). (b) T1121 (PDB ID: 7TIL). (c) T1137s1 (PDB 

ID: 8FEF). 

 



We have added this section to the manuscript, and the following are the revisions we have made in the 

manuscript. 

 

 

 



 

 

 



 

 

For a more general and biological audience of communications biology, the interest in this topic would 

be marginal in absence of a clear prediction how cell signaling or transmembrane proteins (or their 

mechanism of activation) can be predicted. The paper seems more suitable for an expert journal whose 

readers appreciate the details of the algorithms and findings. As presented at the moment, there is too 

little information to introduce readers to some of the parameters, e.g. TMscore, DockQ score and cut-

offs etc. The figures need a lot more explanation, e.g. what does n refer to in Fig.2. 

Response: Thank you for your valuable suggestion. From the perspective of methodology, our method 

is important for revealing new biological mechanisms and understanding biological functions, especially 

for the application scenarios, e.g., cell signaling and transmembrane proteins mentioned by the reviewer. 

According to the valuable suggestion of the reviewer, we further applied our method to transmembrane 

proteins. The results show the potential of DeepAssembly on transmembrane proteins, which may help 

to understand their function, and provide insights into their molecular interaction mechanism. In addition, 

we apologize for unclear parts of the manuscript. We have supplemented some necessary information in 

the manuscript and Supplementary Information, e.g., parameter description, some details about the 

method, and further explanations to figures and tables. 



Figure R3 displays several examples of the transmembrane protein models predicted by DeepAssembly. 

The first example is Monocarboxylate transporter 1 (MCT1) (PDB ID: 7CKR_A), which is a multi-

domain protein that catalyzes the movement of many monocarboxylates across the plasma membrane 

through an ordered mechanism [R3]. The model built by DeepAssembly had the correct inter-domain 

orientation, yielded a TM-score of 0.882 (Figure R3a). In addition, the target T1024 in CASP14 (PDB 

ID: 6T1Z_A) is also a monomeric transmembrane protein, which consists of two domains. In this case, 

DeepAssembly generated a more accurate model with a TM-score of 0.957, compared to AlphaFold2's 

0.797 (Figure R4). 

DeepAssembly can also be applied to transmembrane protein complexes. Figure R3b and c show the 

results of DeepAssembly on two homo-oligomeric proteins with C2-symmetry type. DeepAssembly 

succeeded in building a high-quality model for CDP-alcohol phosphotransferase (PDB ID: 4O6M) 

(DockQ = 0.881), especially for the transmembrane region, achieving a higher DockQ score of 0.930 

(Figure R3b). Similarly, DeepAssembly successfully predicted the inter-chain interface for magnesium 

transporter (PDB ID: 2ZY9) (DockQ = 0.796), and the transmembrane region achieved a DockQ score 

of 0.855 (Figure R3c). 

Furthermore, for the acid-sensing ion channel (PDB ID: 2QTS) with three chains, the trimer model 

predicted by DeepAssembly yielded a DockQ score of 0.402 (Figure R3d). However, there is still room 

for improvement on the transmembrane region. Compared with the extracellular region, the predicted 

model has deviation with PDB structure in the transmembrane region. This may be due to the highly 

flexible structures within the transmembrane region, with each subunit in the PDB structure of the 

chalice-shaped homotrimer having a different orientation between its transmembrane helices and 

extracellular region, even though they share the same amino acid sequence. Figure R3e shows a 

comparison between the DeepAssembly model and the PDB structure on OmpU, an outer membrane 

protein of Vibrio cholerae (PDB ID: 6EHB). OmpU forms three channels for the diffusional uptake of 

small molecules, and each consisting of a 16-stranded β barrel [R4]. DeepAssembly correctly predicted 

the structures of its channels (average TM-score = 0.985), as well as their interfaces with a DockQ score 

of 0.591. 

The last example is a tetrameric potassium channel KcsA (PDB ID: 2QTO), which is an ion channel that 

is capable of selecting potassium ions. The tetramer model for KcsA built by DeepAssembly achieved a 

DockQ score of 0.756 (Figure R3f). In addition, the DeepAssembly model gave the correct overall 

shape of the pore used to filter out potassium ions (shown as sphere in Figure R3f). These examples 

demonstrate the potential of DeepAssembly on transmembrane proteins, which may help to understand 

the function of transmembrane proteins, and provide insights into their molecular interaction mechanism. 



 

Figure R3. Examples of the transmembrane protein structures predicted by DeepAssembly. The 

reference PDB structures are colored in gray, and the different domains or chains of the predicted models 

are colored by blue, green, orange, and purple. (a) Monocarboxylate transporter 1 (MCT1) (PDB ID: 

7CKR_A). (b) CDP-alcohol phosphotransferase (PDB ID: 4O6M). (c) magnesium transporter (PDB ID: 

2ZY9). (d) acid-sensing ion channel (PDB ID: 2QTS). (e) OmpU, an outer membrane protein of Vibrio 

cholerae (PDB ID: 6EHB). (f) potassium channel KcsA (PDB ID: 2QTO). The potassium ion in the ion 

channel is shown as sphere. 

 

 

Figure R4. Structures predicted by AlphaFold2 and DeepAssembly for target T1024 from CASP14. The 

reference PDB structures are colored in gray, and the different domains of the predicted models are 

colored by blue and green. 



We have added this section to the manuscript, and the following are the revisions we have made in the 

manuscript. 

 

 



 

 

 

In addition, we have supplemented some necessary information in the manuscript and Supplementary 

Information, e.g., parameter description, some details about the method, and further explanations to 

figures and tables. 

(1) Parameter description 

In this work, we used RMSD, TM-score and DockQ score to evaluate the quality of the multi-domain 

protein and complex model built by DeepAssembly. We also reported the inter-domain distance error to 

evaluate the predicted inter-domain distance precision. The detailed descriptions of these metrics follow: 

(a) RMSD 

Root-mean-square deviation (RMSD) (= √
1

𝑁
∑ 𝑑𝑖

2𝑁
𝑖=1 ) is calculated as an average of distance error (𝑑𝑖) 



with equal weight over all residue pairs. The lower value indicates closer structural similarity. 

(b) TM-score 

Template modeling score (TM-score) [R5] is a metric for evaluating the topological similarity between 

protein structures, which can be calculated by 

TM-score = max

[
 
 
 

1

𝑁res
∑

1

1 + (
𝑑𝑖

𝑑0(𝑁res)
)
2

𝑁aligned

𝑖=1
]
 
 
 

 

where 𝑁res is the amino acid sequence length of the target protein, 𝑁aligned is the length of the aligned 

residues to the reference (native) structure, 𝑑𝑖 is the distance between the i-th pair of aligned residues, 

𝑑0(𝑁res) = 1.24√𝑁res − 153 − 1.8 is a scale to normalize the match difference, and ‘max’ refers to the 

optimized value selected from various rotation and translation matrices for structure superposition. The 

value of TM-score ranges in (0,1], where a higher value indicates closer structural similarity. Stringent 

statistics showed that TM-score > 0.5 corresponds to a similarity with two structures having the same 

fold and/or domain orientations [R6]. 

(c) DockQ score 

DockQ [R7] is a score in the range [0,1] that can be used to measure the quality of the interface. Interface 

with score greater than 0.23 is considered as successfully predicting the interface, greater than 0.49 and 

less than 0.8 is considered as medium quality, and greater than 0.8 is considered as high quality. DockQ 

score is calculated as: 

𝐷𝑜𝑐𝑘𝑄(𝐹nat, 𝐿𝑅𝑀𝑆, 𝑖𝑅𝑀𝑆, 𝑑1, 𝑑2) = (𝐹nat + 𝑅𝑀𝑆scaled(𝐿𝑅𝑀𝑆, 𝑑1) + 𝑅𝑀𝑆scaled(𝑖𝑅𝑀𝑆, 𝑑2))/3 

where 𝐹nat  is the fraction of native interfacial contacts preserved in the interface of the predicted 

complex. LRMS is the Ligand Root Mean Square deviation calculated for the backbone of the shorter 

chain (ligand) of the model after superposition of the longer chain (receptor) [R8]. iRMS, the receptor-

ligand interface in the target (native) is redefined at a relatively relaxed atomic contact cutoff of 10Å 

which is twice the value used to define inter-residue ‘interface’ contacts in case of 𝐹nat. The backbone 

atoms of these ‘interface’ residues are then superposed on their equivalents in the predicted complex 

(model) to compute the iRMS [R8]. 𝑅𝑀𝑆scaled(𝑅𝑀𝑆, 𝑑𝑖) is defined as: 

𝑅𝑀𝑆scaled(𝑅𝑀𝑆, 𝑑𝑖) =
1

1 + (
𝑅𝑀𝑆
𝑑𝑖

)
2 

which represents the scaled RMS deviations corresponding to any of the two terms, LRMS or iRMS 

(RMS) and 𝑑𝑖 is a scaling factor, 𝑑1 for LRMS and 𝑑2 for iRMS, optimized to 𝑑1 = 8.5Å and 𝑑2 

= 1.5Å. 

(d) Inter-domain distance error 

We define the inter-domain distance error, 𝑒𝑟𝑟dist , to evaluate the predicted inter-domain distance 

precision, which is calculated as the errors (Å) between the predicted inter-domain distance and the true 

inter-domain distance extracted from experimental structure, with smaller value indicating higher 

predicted distance precision. 



𝑒𝑟𝑟dist =
1

𝑁pair
∑ |𝑑(𝑖,𝑗)

pre
− 𝑑(𝑖,𝑗)

true|

(𝑖,𝑗)

,   ∀(𝑖, 𝑗) ∈ 𝒮inter domain,   𝑖 < 𝑗 

where 𝑑(𝑖,𝑗)
pre

 and 𝑑(𝑖,𝑗)
true are the predicted distance and the true distance of inter-domain residue pair (i,j), 

respectively. 𝒮inter domain represents the set of inter-domain residue pairs, and 𝑁pair is the number of 

inter-domain residue pairs. 

 

We have supplemented the detailed descriptions of above metrics in the manuscript and Supplementary 

Information. 

 

 

 

 



 

 

 

(2) Explanations to figures and tables 

(a) In Fig. 2b, the “n” refers to the number of points on either side of the diagonal, which reflects the 

performance of the two methods in terms of generating more models with higher accuracy. For example, 

the “n = 144” represents that DeepAssembly achieves a higher TM-score than AlphaFold2 on 144 test 



cases. Similarly, the “n” in Fig. 4c also represents the number of points on either side of the diagonal. 

We have supplemented the corresponding description in the figures. 

 

 

(b) In Fig. 2, the “cutoff” refers to a TM-score value on the x-axis, which reflects a TM-score interval, 

for example, “cutoff = 0.8”, representing a TM-score interval from 0 to 0.8. Similarly, the “cutoff” in 

Fig. 5 refers to a DockQ score value, which reflects a DockQ score interval from this value to 1. The 

“cutoff” in Fig. 8 refers to a TM-score value, which reflects a TM-score interval from this value to 1. 

We have supplemented the corresponding description in the figures. 

 

(c) In Supplementary Table 1, “#TM-score>0.9” represents the number of models with TM-score greater 

than 0.9. 

We have supplemented the corresponding description in the tables. 

 

(d) In Supplementary Tables 4, 5 and 6, “2dom”, “3dom”, and “m4dom” represent the classification of 

proteins with two, three, and more than four domains, respectively. 



We have supplemented the corresponding description in the tables. 

 

 

 

 

Finally, we tried to use the DeepAssembly server but did not receive any feedback/results within a week 

- no information on queue status etc. was given. So the server might not be working yet. 

Response: We apologize for the inconvenience caused by this situation. This happened because our 

server was deployed on a public cluster of the college, however, the cluster was undergoing maintenance 

upgrades during the previous period, which caused our server to be suspended and the submitted tasks 

were not running properly. After noticing this situation, we dealt with it timely and now our server is 

working properly (http://zhanglab-bioinf.com/DeepAssembly/). We look forward to your valuable 

suggestions. 

http://zhanglab-bioinf.com/DeepAssembly/


The following is the task submission page for our server: 

 

Task queue page: 

 

 

 

 



Result page: 
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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have properly addressed my concerns. I have no more comments. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript at the moment improved to certain extent. 

 

However, when we looked carefully for the results from Figure 2b &8b I am afraid that there is almost 

no any correlations between TM-score and RMSD values on each test case between DeepAssembly and 

AlphaFold2. I am quit concern for this point. It would be necessary to clarify this issue. 

 

Moreover, for the prediction results in Figure 7, in my opinion there is a huge different between 

experimental structures and predicted models. There are quit noticeable shift even in TM regions. 

There are 190K experimental structures were resolved in PDB, of which only 3-4% were membrane 

proteins. I could imagine that the training sets of the AI model is so limited. How reliable will the 

results of membrane protein predictions is really a big questionable mark. This critical questions 

should be addressed and discussed in details. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have gone to great lengths, it seems to answer all the reviewers queries. My concerns 

have been adequately alleviated. However, it is a little hard to follow the paper as there are many 

sections, tests with different protein sets and it would be good to have a "bottom-line" message..."this 

program is (on average) best for x, y and z kind of system". In addition, it would be helpful to 

understand the limitations, also in an upfront manner. Specifically in running a protein on the authors 

web-server, which now works, we noticed that sequence analysis can group several sub-domains 

together and only one alphafold prediction seems to be used for this group and then docked. Is there 

a way to manually define domain limits or have a more a sensitive domain analysis, so that the 

subdomains are also be introduced as docking partners? 
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Dear Reviewers, 

Thank you for reviewing our manuscript entitled “Domain-based multi-domain protein and complex 

structure prediction using inter-domain interactions from deep learning” (COMMSBIO-23-1703A) and 

for proposing valuable suggestions. The comments helped us improve our manuscript and served as 

important guidance to our research. We have carefully considered the comments and have revised the 

manuscript accordingly. All modified parts are highlighted in the manuscript. 

Thank you again for reviewing our manuscript. We hope you find that the changes are satisfactory. 

Sincerely, 

Yuhao Xia, Kailong Zhao, Dong Liu, Xiaogen Zhou, and Guijun Zhang 

 

  

zgj@zjut.edu.cn


Response to Reviewer #1 

 

The authors have properly addressed my concerns. I have no more comments. 

Response: We appreciate for your comments on this work. The comments helped us improve our 

manuscript and served as important guidance to our research. 

 

  



Response to Reviewer #2 

We very much appreciate for your comments and suggestions, which help to significantly improve the 

quality and description of our manuscript. In the following, we include point-by-point response to the 

comments, where all changes have been highlighted in the manuscript. 

 

The manuscript at the moment improved to certain extent. 

Response: We greatly appreciate your comments, which helped us improve our manuscript and served 

as important guidance to our research. 

 

However, when we looked carefully for the results from Figure 2b &8b I am afraid that there is almost 

no any correlations between TM-score and RMSD values on each test case between DeepAssembly and 

AlphaFold2. I am quit concern for this point. It would be necessary to clarify this issue. 

Response: Thank you for raising this important point. We apologize for the unclear description in the 

manuscript. 

(1) We present Figure 2b to show the accuracy comparison between DeepAssembly and AlphaFold2 on 

219 multi-domain targets. Specifically, the left panel in Figure 2b shows a head-to-head comparison of 

the TM-scores on each test case between DeepAssembly and AlphaFold2, and the right panel shows a 

head-to-head comparison of the RMSDs on each case between DeepAssembly and AlphaFold2. The 

results show that DeepAssembly achieves a higher TM-score than AlphaFold2 on 66% of the test cases, 

and a lower RMSD on 67% cases. 

(2) Similarly, Figure 8c shows a head-to-head comparison between DeepAssembly and other methods 

(SADA, DEMO and AIDA) based on TM-score of the predicted models for 219 multi-domain targets. 

Figure 8b shows the comparison between DeepAssembly, SADA, DEMO and AIDA on 219 multi-

domain proteins based on the fraction of proteins with TM-score higher than each TM-score cutoff. 

We found that there are some ambiguous descriptions in the manuscript, so we revised the corresponding 

descriptions in the manuscript to avoid misunderstandings. 

 

 



Moreover, for the prediction results in Figure 7, in my opinion there is a huge different between 

experimental structures and predicted models. There are quit noticeable shift even in TM regions. There 

are 190K experimental structures were resolved in PDB, of which only 3-4% were membrane proteins. 

I could imagine that the training sets of the AI model is so limited. How reliable will the results of 

membrane protein predictions is really a big questionable mark. This critical questions should be 

addressed and discussed in details. 

Response: Thank you for raising the important question. Based on your valuable suggestions, we added 

the discussion about limits on membrane protein prediction and promising directions to address these 

challenges in the manuscript. 

Membrane proteins play crucial roles in living cells, yet accurate prediction of their three-dimensional 

structures remains a challenge. Although we have made some explorations and attempts in structural 

modeling of membrane proteins, there is still room for further improvement. Since our deep learning 

model is only trained on the data set of mainly soluble multi-domain proteins, which are different from 

the structural characteristics of membrane proteins, our method still has some limitations for the 

assembly of some membrane proteins that are large or flexible across transmembrane regions. For 

example, for the target shown in Figure 7f, there is a deviation between experimental structure (gray) 

and predicted model (colored), especially in the transmembrane region. 

Moreover, as the reviewer points out, the number of membrane proteins is rather limited compared with 

a great deal of soluble protein structures resolved in PDB, as their experimental determination is subject 

to the complicated membrane environment. This poses a major obstacle to training AI model directly on 

such a small dataset of membrane proteins [R1]. To address the challenge, some statistical and transfer 

learning-based methods may be promising, such as DeepTMP [R1], which predicts the transmembrane 

protein inter-chain contact by transferring the knowledge learned from the initial model trained on a 

large dataset of soluble protein complexes. This approach alleviates the limitation of training deep 

learning model directly on few membrane proteins, and simultaneously provides new insights into how 

we further improve the complex structure prediction by leveraging multi-domain protein data. 

The following are the revisions we have made in the manuscript. 

 



 

 

 

 

Reference: 

[R1] Lin, P., Yan, Y., Tao, H. et al. Deep transfer learning for inter-chain contact predictions of 

transmembrane protein complexes. Nat Commun 14, 4935 (2023). https://doi.org/10.1038/s41467-023-

40426-3 
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Response to Reviewer #3 

We very much appreciate for your comments and suggestions, which help to significantly improve the 

quality and description of our manuscript. In the following, we include point-by-point response to the 

comments, where all changes have been highlighted in the manuscript. 

 

The authors have gone to great lengths, it seems to answer all the reviewers queries. My concerns have 

been adequately alleviated. 

Response: We very much appreciate for your comments on this work. The comments helped us improve 

our manuscript and served as important guidance to our research. 

 

However, it is a little hard to follow the paper as there are many sections, tests with different protein sets 

and it would be good to have a "bottom-line" message..."this program is (on average) best for x, y and z 

kind of system". In addition, it would be helpful to understand the limitations, also in an upfront manner. 

Response: Thank you for pointing out this important issue. We deeply apologize for the lack of clarity 

in the manuscript. Based on your valuable suggestions, we summarized the performance of our method 

on different test sets in the conclusion section, including its advantages and limitations. 

In general, our method performs best on the test set of multi-domain proteins because this deep learning 

model is trained specifically on multi-domain proteins to accurately capture domain-domain interactions. 

In addition, the method exhibits more excellent performance for assembling multi-domain proteins with 

experimental domain structures. Moreover, we demonstrate that our method can be applied to protein 

complex structure prediction by using inter-domain interactions learned on monomeric multi-domain 

proteins. However, for targets without sufficient inter-chain co-evolutionary signals or suitable templates, 

our method still has a lot of room for improvement, because the inter-domain interactions learned only 

from monomeric multi-domain proteins are relatively limited after all. Finally, we apply our method to 

several transmembrane protein complex cases, and the results show that we could correctly predict the 

interface of some homo-oligomeric membrane protein complexes, but the performance for targets that 

are large or flexible across transmembrane regions is still not satisfactory. This is because the number of 

membrane proteins is rather limited and they have different structural characteristics, making it difficult 

for the model trained on mainly soluble proteins to effectively capture their inter-chain interactions. 

The following are the revisions we have made in the manuscript. 

 



 

 

Specifically in running a protein on the authors web-server, which now works, we noticed that sequence 

analysis can group several sub-domains together and only one alphafold prediction seems to be used for 

this group and then docked. Is there a way to manually define domain limits or have a more a sensitive 

domain analysis, so that the subdomains are also be introduced as docking partners? 

Response: Thank you very much, this is a great suggestion. This contributes to the wider impact of our 

web server. In DeepAssembly, the input sequence is first split into single-domain sequences through a 

domain segmentation tool, then the structure for each domain is generated by a single-domain structure 

predictor, PAthreader, and finally these single-domain structures are assembled into full-length structure 

model. Based on your valuable suggestions, we optimized our web server and added an option to 

manually define domain boundaries. If the user provides domain definition information, the web server 

will divide the input sequence according to the provided domain definition, and then assemble the 

corresponding predicted domain structures into full-length proteins. 

The option for providing domain definition: 



 

 

Example: 

(1) Input the multi-domain protein full-chain sequence in FASTA format. 

 

(2) Input your own domain definition in the following format. 

 

(3) Input the Email for receiving results. 

 

(4) Submit and confirm. 



 

 

Results: 

 



REVIEWERS' COMMENTS: 

 

Reviewer #2 (Remarks to the Author): 

 

My concerns were address. I have no more comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The reviewer's concerns have been adequately addressed in this revision. 


	TPRCoverLetter.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf

	Title: Bacteria exposed to antiviral drugs develop antibiotic Multi-domain and complex protein structure prediction using inter-domain interactions from deep learning


