Supporting Information for

Original article

ADAR1 regulates vascular remodeling in hypoxic pulmonary hypertension through N1-methyladenosine modification of circCDK17

Junting Zhang^{a,†}; Yiying Li^{a,†}; Jianchao Zhang^a; Lu Liu^b; Yuan Chen^c; Xusheng Yang^c, Xueyi Liao^a; Muhua He^b; Zihui Jia^c; Jun Fan^d; Jin-Song Bian^{b,*}; Xiaowei Nie^{a,*}

^aShenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China

^bDepartment of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China

^cLung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China

^dDepartment of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China

Received 7 April 2023; received in revised form 13 June 2023; accepted 5 July 2023 *Corresponding authors.

E-mail addresses: <u>bianjs@sustech.edu.cn</u> (Jin-Song Bian), <u>niexw2021@mail.sustech.edu.cn</u> (Xiaowei Nie).

[†]These authors made equal contributions to this work.

Supplementary Figures

Figure S1. Effect of 8Aza on heart rate in different PH mouse models. n=6. NOR, normoxia; HYP, hypoxia; NC, negative control; 8Aza, 8-Azaadenosine; ns, no significance; Statistical analysis was performed with two-way ANOVA followed by Dunnett's test; All values are presented as mean \pm SEM.

Figure S2. Effect of ADAR1 on cell proliferation in PASMCs. (A) EdU assay showing that overexpression of ADAR1 (OE-ADAR1) increased cell proliferation in PASMCs. n=6. (B) Flow cytometry showing that the effect of OE-ADAR1 on cell cycle progression. n=6. (C) Representative Western blots and group data showing the concentration-dependent effect of 8Aza on protein expression of PCNA, cyclin A and CDK1 in the hypoxia situation. n=6. NOR, normoxia; HYP, hypoxia; NC, negative control; OE, ADAR1 overexpression plasmid; Statistical analysis was performed with two-way ANOVA followed by Dunnett's test or the Student's t-test; All values are presented as mean \pm SEM. *P<0.05, **P<0.01, ***P<0.001.

Figure S3. Functional enrichment and pathway enrichment analysis of circRNAs by bioinformatics analysis. (A) Gene ontology (GO) classification. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway classification.

Figure S4. Verification of the structure of cicCDK17 and its association with ADAR1. (A) qPCR analysis showing the expression of circCDK17 upon overexpression of ADAR1 (OE-ADAR1). n=6. (B) Correlation analysis between ADAR1 and circCDK17 in *vivo*. n=10. (C) Schematic illustration showing convergent and divergent primer design. (D) Agarose gel electrophoresis showing qPCR products of the opposite and back primers of circCDK17 cycling site. (E) RNase R experiment was performed to verify the ring structure of circCDK17. n=3. (F) RIP-qPCR experiment was performed to verify that ADAR1 binds to circCDK17. n=3. NC, negative control; OE, ADAR1 overexpression plasmid; ns, no significance; Statistical analysis was performed with the Student's t-test; All values are presented as mean \pm SEM. *P<0.05, **P<0.01, ***P<0.001.

Figure S5. Molecular modulation of circCDK17 expression with overexpression (OE) plasmid or siRNA. (A-B) Schematic illustration showing the construction of circCDK17 plasmid (A) and qPCR analysis (B) showing the efficiency of circCDK17 overexpressed plasmid. n=4. (C) RNA immunoprecipitation showing that circCDK17 was directly bound to PCNA. n=3. (D-E) Schematic illustration showing the construction of circCDK17 siRNA and primer of liner CDK17 (D) and qPCR analysis showing the efficiency of circCDK17 siRNA (E). n=3. (F) qPCR analysis showing the effect of circCDK17 siRNA on linear CDK17. n=3. NC, negative control; SI, siRNA of circCDK17; OE, circCDK17 overexpression plasmid; ns, no significance; Statistical analysis was performed with one-way ANOVA followed by Dunnett's test or the Student's t-test; All values are presented as mean \pm SEM. *P<0.05, **P<0.01.

Figure S6. Software analysis showing the m1A methylation modification sites in circCDK17 and its interaction with ADAR1. (A) Deeppromise (https://deeppromise.erc.monash.edu/) online software analysis of m1A methylation modification sites. **(B)** RNA immunoprecipitation showing the m1A modification level of circCDK17 in lung tissue of PH patients. n=9. **(C)** RNA pull-down combined mass spectrometry showing the presence of YTHDC1 specific peptide. **(D)** CatRAPID software analysis showing the interaction sites between ADAR1 and circCDK17 (http://service.tartaglialab.com/page/catrapid_group).

Abbreviations

- PH Pulmonary hypertension
- ADAR1 RNA adenosine deaminase 1
- PCNA Proliferating cell nuclear antigen
- PASMCs Pulmonary artery smooth muscle cells
- PAECs Pulmonary artery endothelial cells
- CircRNA Circular RNA
- AAV9 serotype 9 adenovirus-associated virus
- HE Hematoxylin and eosin
- SiRNA Small interfering RNA
- **OE** Overexpression
- RIP RNA Binding Protein Immunoprecipitation
- FISH Fluorescent in situ hybridization
- DAPI 4',6-Diamidino-2-phenylindole
- PBS Phosphate-buffered saline
- HBSS Hank's Balanced Salt Solution
- SMA Smooth muscle actin

qPCR	Forward	Reverse
primer		
ADAR1	CATCCATTTCAAGGCTATGAGC	GTACTGGAGGCAAGTAGTACTG
β-actin	CTCGCCTTTGCCGATCC	TCTCCATGTCGTCCCAGTTG
circCDK17	AGCTTCCTTAGATTTTTCAAGCCAC	AGGCCTGCCATTCTTCACAA
circCDC14B	CGGGCCTTGAAAAGCAGAAG	CCATTGCCAGATTGAGTGGT
circTBCD	CAGTGACAAGGCCCGAGATG	AACAGGCTCTACATCGGCAA
circAPBB2	ATGCAGCCACTGTTAACCCG	GGCGGCAAATCTGGATCAGT
CDK17	ATTTTGGACTAGCCCGAGCC	TCCGAGGAACCAAGAAGCAC

Table S1Related primer sequences.

Name	Sequences			
circCDK17 biotin probe	5'-3' TGTGGC+TTGAAAAA+TCTAAGGAAGC+TVTACG			
circCDK17 fish probe	5'-3' TGAATGTGGCT+TGAAAAATC+TAAGGAAGC+TCTACGAGA			
SIRNA NC	sense (5'-3') UUCUCCGAACGUGUCACGUTT			
	antisense (5'-3') ACGUGACACGUUCGGAGAATT			
ADAR1 siRNA 1	sense (5'-3') CGGAUACUACACCCAUCCAUUTT			
	antisense (5'-3') AAUGGAUGGGUGUAGUAUCCGTT			
ADAR1 siRNA 2	sense(5'-3')GCAGGGUAUGUUGACUUUGAATT			
	antisense (5'-3') UUCAAAGUCAACAUACCCUGCTT			
ADAR1 siRNA 3	sense(5'-3')GCAUGGGUUUCACAGAGGUAATT			
	antisense (5'-3') UUACCUCUGUGAAACCCAUGCTT			
YTHDC1 siRNA	sense(5'-3')UGGAUUUGCAGGCGUGAAUUATT			
	antisense (5'-3') UAAUUCACGCCUGCAAAUCCATT			
circCDK17 siRNA 1	sense (5'-3') GAGCUUCCUUAGAUUUUUCAATT			
	antisense (5'-3') UUGAAAAAUCUAAGGAAGCUCTT			
circCDK17 siRNA 2	sense(5'-3')UUCCUUAGAUUUUUCAAGCCATT			
	antisense (5'-3') UGGCUUGAAAAAUCUAAGGAATT			
circCDK17 siRNA 3	sense (5'-3') CCUUAGAUUUUUCAAGCCACATT			
	antisense (5'-3') UGUGGCUUGAAAAUCUAAGGTT			

Patient ID	Assay	Age,	Sex	Race/Ethni	Diagnosis/Cause of Death	mPAP
		У		city		(mmHg)
HPH-01	qPCR (Lung Plasma)	68	М	Asian	IPF associated PH	63
HPH-02	qPCR (Lung Plasma)	57	F	Asian	Pulmonary fibrosis associated	77
					PH	
HPH-03	qPCR (Lung Plasma)	65	F	Asian	Pulmonary fibrosis associated	42
					PH	
HPH-04	qPCR (Lung Plasma)	56	F	Asian	Pulmonary fibrosis associated	40
					PH	
HPH-05	qPCR (Lung Plasma)	75	М	Asian	Pulmonary fibrosis associated	38
					PH	
HPH-06	qPCR (Lung Plasma)	55	М	Asian	Pulmonary fibrosis associated	112
					PH	
HPH-07	qPCR (Lung Plasma)	54	М	Asian	Pulmonary fibrosis associated	55
					PH	
HPH-08	qPCR (Lung Plasma)	58	М	Asian	Pulmonary fibrosis associated	54
					PH	
HPH-09	qPCR (Lung Plasma)	48	М	Asian	Pulmonary fibrosis associated	50
					PH	
HPH-10	qPCR (Lung Plasma)	58	М	Asian	Pulmonary fibrosis associated	44
					PH	
HPH-11	IF, IHC, WB, qPCR	53	М	Asian	Bronchiectasis PH	71
	(Lung tissue)					
HPH-12	IF, IHC, WB, qPCR	43	М	Asian	Silicosis PH	97
	(Lung tissue)					
HPH-13	IF, IHC, WB, qPCR	60	F	Asian	Pulmonary fibrosis associated	43
	(Lung tissue)				PH	
HPH-14	IF, IHC, WB, qPCR	13	F	Asian	Castleman's disease	59
	(Lung tissue)				associated PH	
HPH-15	IF, IHC, WB, qPCR	32	F	Asian	PVOD associated PH	112
	(Lung tissue)					
HPH-16	IF, IHC, WB, qPCR	74	М	Asian	Pulmonary fibrosis associated	69
	(Lung tissue)				PH	
Control-01	qPCR (Lung Plasma)	54	F	Asian	Minimally invasive	N/A
					adenocarcinoma	
Control-02	qPCR (Lung Plasma)	74	F	Asian	Minimally invasive	N/A
		ļ			adenocarcinoma	
Control-03	qPCR (Lung Plasma)	55	М	Asian	Minimally invasive	N/A
					adenocarcinoma	
Control-04	qPCR (Lung Plasma)	75	М	Asian	Minimally invasive	N/A
					adenocarcinoma	
Control-05	qPCR (Lung Plasma)	64	F	Asian	N/A	N/A

Table S2Clinical data of PH patients and controls.

Control-06	qPCR (Lung Plasma)	66	F	Asian	Benign biopsy	N/A
Control-07	qPCR (Lung Plasma)		F	Asian	N/A	N/A
Control-08	08 qPCR (Lung Plasma)		F	Asian	N/A	N/A
Control-09	qPCR (Lung Plasma)	41	F	Asian	Anoxia of brain	N/A
Control-10	qPCR (Lung Plasma)	18	F	Asian	Pneumatocele	N/A
Control-11	qPCR (Lung Plasma)	52	М	Asian	Pulmonary inflammatory	N/A
					pseudotumor	
Control-12	qPCR (Lung Plasma)	44	F	Asian	Cystic teratoma	N/A
Control-13	qPCR (Lung Plasma)	66	F	Asian	Sclerosing hernangioma	N/A
Control-14	qPCR (Lung Plasma)	34	F	Asian	Pulmonary Atypical	N/A
					Adenomatous Hyperplasia	
Control-15	qPCR (Lung Plasma)	50	F	Asian	N/A	N/A
Control-16	IF, IHC, WB, qPCR	М	64	Asian	Anoxia of brain	N/A
	(Lung tissue)					
Control-17	IF, IHC, WB, qPCR	F	56	Asian	Adjacent normal tissues	N/A
	(Lung tissue)					
Control-18	IF, IHC, WB, qPCR	F	47	Asian	Adjacent normal tissues	N/A
	(Lung tissue)					
Control-19	IF, IHC, WB, qPCR	М	42	Asian	Anoxia of brain	N/A
	(Lung tissue)					
Control-20	IF, IHC, WB, qPCR	F	71	Asian	Anoxia of brain	N/A
	(Lung tissue)					
Control-21	IF, IHC, WB, qPCR	F	56	Asian	Adjacent normal tissues	N/A
	(Lung tissue)					

Definition of abbreviations: HPH, hypoxic pulmonary hypertension; F, female; M, male; PH, pulmonary hypertension; IPF, idiopathic pulmonary fibrosis; PVOD, pulmonary venoocclusive disease; mPAP, mean pulmonary artery pressure (mmHg); N/A, data not available.