Supporting Information for Original article

Non-canonical STING–PERK pathway dependent epigenetic regulation of vascular endothelial dysfunction *via* integrating IRF3 and NF- κ B in inflammatory response

Xuesong Li^{a,†}, Xiang Chen^{a,†}, Longbin Zheng^{a,b,†}, Minghong Chen^a, Yunjia Zhang^a, Ruigong Zhu^a, Jiajing Chen^c, Jiaming Gu^a, Quanwen Yin^a, Hong Jiang^a, Xuan Wu^a, Xian Ji^a, Xin Tang^a, Mengdie Dong^a, Qingguo Li^{d,*}, Yuanqing Gao^{a,*}, Hongshan Chen^{a,d,e,f,*}

^aKey Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China

^bDepartment of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China ^cDepartment of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China

^dDepartment of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China

^eKey Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China

^fDepartment of Cardiology, Huai'an First People's Hospital affiliated with Nanjing Medical University, Huai'an 223399, China

Received 10 May 2023; received in revised form 6 July 2023; accepted 2 August 2023

*Corresponding authors. Tel.: +86 25 86868467.

E-mail addresses: hongshanchen@njmu.edu.cn (Hongshan Chen), yuanqinggao@njmu.edu.cn (Yuanqing Gao), lqg0235062@163.com (Qingguo Li).

[†]These authors made equal contributions to this work.

1. Supporting tables

Table S1 PCR primers used in this study.

Factor or PTM	Forward	Reverse		
	Human			
ISG15	CACCTGAAGCAGCAAGTGAG	ATTTCCGGCCCTTGATCCTG		
ISG20	CTCTACGCCATCACTGGGTC	CTCTTCGTCTGATCCGTCCT		
MX2	TCTGGGGAAAGCTAGGGGAA	TCTGGGGAAAGCTAGGGGAA		
IL-6	CCTCCAGAACAGATTTGAGAGTAGT	GGGTCAGGGGTGGTTATTGC		
IL-1β	TTGCCAGCCAGTGACACAAT	GAGAAGGTGGTTGTCTGGGAAT		
CCL2	GATCTCAGTGCAGAGGCTCG	TCTGGGGAAAGCTAGGGGAA		
ICAM-1	AGGTTGAACCCCACAGTCAC	TCTGAGACCTCTGGCTTCGT		
VCAM-1	CACTGAATGGGAAGGTGACG	ACACTTGACTGTGATCGGCTT		
SELE	AAGCTGTGAGATGCGATGCT	GATCTTTCCCGGAACTGCCA		
MT-ND1	CTCTTCGTCTGATCCGTCCT	TGAGGTTGCGGTCTGTTAGT		
MT-ND2	GTAGACAGTCCCACCCTCAC	TTGATCCCGTTTCGTGCAAG		
L1ORF1	AGAACGCCACAAAGATACTCCTCG	CTCTCTTCTGGCTTGTAGGGTTTCTG		
L1ORF2	AAACTGAACAACCTGCTCCTGAATG	CTACACACTGCTTTGAATGCGTCC		
RNA18S	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG		
	Mice			
<i>Il-6</i>	TGATGGATGCTACCAAACTGGA	GGAGAGCATTGGAAATTGGGG		
<i>Il-1β</i>	TAATGCTTGAGCCCACCCTG	GGGGGAGGCTTCTCTACTGA		
Ccl2	GGCTCAGCCAGATGCAGTTA	TCATTTGGTTCCGATCCAGGTT		
Icam-1	AAACCAGACCCTGGAACTGC	CCCATGGGAGCTAAAGGCAT		
Vcam-1	TATGTCAACGTTGCCCCCAA	AAATGCCGGAATCGTCCCTT		
Sele	ATGGAAGCCTGAACTGCTCC	TGTCGTGTTCCATGGGTAGC		
mt-Nd1	CAAACACTTATTACAACCCAAGAACA	TCATATTATGGCTATGGGTCAGG		
mt-Nd2	CCATCAACTCAATCTCACTTCTATG	GAATCCTGTTAGTGGTGGAAGG		
L1 gDNA	TAGGAAATTAGTTT	TCCAGAAGCTGTCAGGTTCTCTGGC		
5	GAATAGGTGAGAGGGT			
Sting	TCGCACGAACTTGGACTACTG	CCAACTGAGGTATATGTCAGCAG		

Table S2 Clinical characteristics of the patients recruited are shown.

Туре	Patient	Sex	Age	Approach	Size (mm)	Location	Calcification
Atherosclerotic aortic specimens	1	Female	65	Endarterectomy specimens	6 × 10	Carotid intima	No
-	2	Male	57	Endarterectomy specimens	8 × 20	Carotid intima	No
	3	Male	60	Endarterectomy specimens	5 × 14	Carotid intima	No
Non-atherosclerotic aortic specimens	1	Male	53	Coronary artery bypass surgery	20 × 10	Left internal thoracic artery	No
-	2	Female	48	Heart transplantation	45 × 10	Aortic arch	No
	3	Male	64	Coronary artery bypass surgery	5 × 10	Left internal thoracic artery	No

Factor or PTM	Vendor	Cat Number	
p-STING	Cell Signaling Technology	50907S	
p-STING	Cell Signaling Technology	72971	
STING	Cell Signaling Technology	13647	
STING	Invitrogen	PA5-20782	
p-TBK1	Cell Signaling Technology	5483T	
TBK1	Cell Signaling Technology	38066	
p-IRF3	Cell Signaling Technology	29047	
IRF3	Invitrogen	712217	
IRF3	Proteintech	11312-1-AP	
Actin	Bioworld	AP0060	
IgG	Cell Signaling Technology	3900	
cGAS	Santa	sc-515777	
<i>p-p65</i>	Cell Signaling Technology	3033	
p65	Cell Signaling Technology	8242	
BRD2	Cell Signaling Technology	5848S	
BRD3	Invitrogen	PA5-30263	
BRD4	Abcam	ab243862	
H3K27ac	Abcam	ab177178	
H3K4me1	Abcam	ab176844	
H3K27me3	Abcam	ab6002	
Н3	Abcam	ab1791	
ICAM-1	Santa	sc-8439	
VCAM-1	Abcam	ab134047	
dsDNA	Abcam	ab27156	
dsDNA	Abcam	ab273137	
Tomm20	Abcam	ab-78547	
Tomm20	Proteintech	11802-1-AP	
VDACI	Abcam	ab14734	
CD31	Abcam	ab24590	
HRP-conjugated goa	tJackson Labs	111035003	
anti-rabbit secondar	у		
antibody			
HRP-conjugated goa	tJackson Labs	115036003	
anti-mouse secondary			
antibody			

Table S3 Antibodies used in this study.

 Table S4 ChIP primers used in this study.

Primer set name	Forward sequence	Reverse sequence	
	Human		
ICAM-1 (-1 kb)	GTGGATGTCGAGTCTTGGGG	CAACTCGAACCCAGGCTCAT	
ICAM-1 (p)	GGGGCTAGAGACAGCGATT	CTTGTTGGGTTGGCACAGAG	
ICAM-1 (+1 kb)	CGTGTCCTGTGTGAGTGGG	TTTTCTGGCCACGTCCAGTT	
VCAM-1 (-1 kb)	AACTTGGCTGGGTGTCTGTT	TCTTGTTGCAGAGGCGGAG	
VCAM-1 (p)	GCTCAGATTGGTGACTCCGT	GCTCTCTCTCATGTTGGCCTT	
$VCAM-1 (+1 \ kb)$	GGCGCCTATACCATCCGAAA	ACCACAGCTCCATTTTGCCA	
IL-6 (-1 kb)	CCTTAGAGCCTGGTGTCTGC	TCTGGGGGTTGGAGATGGAT	
IL-6 (p)	ATAGCCCAGAGCATCCCTCC	GCTACATTTGCCGAAGAGCC	
IL-6 (+1 kb)	CTATCCGGCCCAAGCTTTCT	TGGCCCATTTGGGTTTCTCA	
IL-1β (-1 kb)	GGCTAGGGTAACAGCACCTG	CTGGGGCAGAGAACATACGG	
IL-1 β (p)	CCAGCTCTCCTAGCCAATAC	TGAGTGACTTCCCCATGACG	
IL-1 β (+1 kb)	TGTACCTGTCCTGCGTGTTG	CCAGCTTTTCCTAGGGATGGG	
CCL2 (-1 kb)	CCCGGGGTAACTGAGGATTC	TAGGCTCTGGCACAAACCTG	
CCL2 (p)	AGCATGAAAGTCTCTGCCGC	GAGAAGAAGAGGGGGGCCTTAC	
CCL2 (+1 kb)	TGGGAAAACTGAGGCACCAAG	CCATTCTGCACCAAAGGGCT	
SELE (-1 kb)	TGAACACAGAAAGACCAGTGCT	ACTGTCAGCAGACCTGAACG	
SELE (p)	GGTAGCACCATCTCACGTCC	ATGACACCATCTGCACCAGG	
SELE (+1 kb)	AGCCATGCTTGTGCTCTGAT	CCCTGCTCCCTCCCTAAGAT	
	Mice		
Icam-1 (-1 kb)	CTAGTGCCAAGTGGGTGGAG	TTAACCCACCAGACATGCCC	
Icam-1 (p)	TAACGGGAAGTGGGATTGGA	ACCCATGGAGTGATGCTACG	
Icam-1 (+1 kb)	TCTGTCTCTACCACACAGACCA	CATCACGAGGCCCACAATGA	

Table S5 siR	NA sequences	used in this	study.
--------------	--------------	--------------	--------

Factor or PTM	Forward sequence	Reverse sequence
STING-1	GCAGCUGGGACUGCUGUUAAA	UAACAGCAGUCCCAGCUGCAG
STING-2	GCAGAGCUAUUUCCUUCCACA	UGGAAGGAAAUAGCUCUGCUG
STING-3	GCAUUACAACAACCUGCUACG	UAGCAGGUUGUUGUAAUGCUG
IRF3-1	GGCUGGUGUCGCAGCUGGACC	UCCAGCUGCGACACCAGCCAG
IRF3-2	GGAGCAAGGACCCUCACGACC	UCGUGAGGGUCCUUGCUCCGG
IRF3-3	GCCUCGAGUUUGAGAGCUACC	UAGCUCUCAAACUCGAGGCUG
p65-1	AGCGCAUCCAGACCAACAACA	UUGUUGGUCUGGAUGCGCUGA
<i>p65-2</i>	UGGAUUCAUUACAGCUUAAUC	UUAAGCUGUAAUGAAUCCAUG
p65-3	GCUGCAGUUUGAUGAUGAAGA	UUCAUCAUCAAACUGCAGCUG
BRD4-1	AGCCCAAGAGGCAGACCAACC	UUGGUCUGCCUCUUGGGCUUG
BRD4-2	GAAGAAACCGAGAUCAUGAUA	UCAUGAUCUCGGUUUCUUCUG
BRD4-3	GAUGUAAGAUACAAGUAUAUA	UAUACUUGUAUCUUACAUCUU

2. Supporting figures

Figure S1 Activation of the non-canonical STING–PERK pathway in ox-LDL induced endothelial injury. (A) Western blot analysis of interference efficiency targeting STING in HCAECs. (B) Quantification of western blot data of Fig. 1F. (C) Quantification of western blot data from Fig. 1G. (D) Western blot analysis of interference efficiency targeting PERK in HCAECs. (E) Quantification of western blot data from Fig. 1H (p-IRF3/IRF3). (F) Quantification of western blot data from Fig. 1J. (G) Quantification of western blot data from Fig. 1K. Data are shown as mean \pm SEM, n = 3; *P < 0.05, **P < 0.01, ***P < 0.001; ND, not detected.

Figure S2 DNase I could effectively ameliorate the oxidized LDL-induced endothelial injury *via* inhibiting the non-canonical STING–PERK pathway activation. (A) Immunofluorescence staining of IRF3 (Scale bar = 20 μ m). (B) qPCR analysis of mtDNA deletion efficiency by EtBr. (C) The qPCR analysis of the cytoplasmic mtDNA content of ox-LDL-treated HCAECs combined with DNase I (1 μ g/mL). (D)–(F) Western blot analysis of the non-canonical STING–PERK pathway (D), co-immunoprecipitation analysis of STING-PERK binding (E), and adhesions molecules and chemokines mRNA expression (F) in ox-LDLtreated HCAECs combined with DNase I. Data are shown as mean \pm SEM, n = 3; ***P < 0.001; ND, not detected.

Figure S3 The interference efficiency of proteins. (A) Quantification of western blot data of Fig. 4B. (B) Western blot analysis of interference efficiency targeting IRF3, p65 and BRD4 in HCAECs. (C) Quantification of western blot data of Fig. 4C. (D) H3 was pulled down as the ChIP control for the tested proteins (Fig. 4D). Data are shown as mean \pm SEM, n = 3; *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S4 Western blot analysis of interference efficiency and overexpression efficiency targeting STING in HCAECs. Data are shown as mean \pm SEM, n = 3; *P < 0.05, ***P < 0.001.

Figure S5 Endothelial deletion of STING could reverse the enhanced atherosclerotic lesions in *Apoe^{KO}Sting^{WT}* mice. (A) Study design. (B) The quantification of atherosclerotic plaque area of female and male *Apoe^{KO}* mice in each group treated as the Fig. 6A. (C) Quantification of oil red O, HE, Masson and Sirius red in Fig. 6B. (D) Quantification of necrotic core area of HE staining of aortic root of Fig. 6B. (E) The qRT-PCR analysis for the leukocyte marker CD11b on aortic arches of mice treated as Fig. 6B. (F)–(G) Ach-mediated endothelium-dependent relaxation (F), mRNA levels of inflammatory genes (G), in arteries from *Apoe^{KO}Sting^{WT}* and *Apoe^{KO}Sting^{EC-KO}* mice fed with NC or HFD. (H) The quantification of ICAM-1 in

endothelium from $Apoe^{KO}Sting^{WT}$ and $Apoe^{KO}Sting^{EC-KO}$ mice fed with NC or HFD in Fig. 6C. (I) The plasma content of total cholesterol, low density lipoprotein cholesterol, triglycerides and high density lipoprotein cholesterol from $Apoe^{KO}Sting^{WT}$ and $Apoe^{KO}Sting^{EC-KO}$ mice fed with NC or HFD. (J)–(K) The cytoplasmic dsDNA concentration (J), the cytoplasmic expression of mtDNA, nuclear LINE1 elements and RNA 18S by qPCR (K) in the arteries from $Apoe^{KO}Sting^{WT}$ mice fed with NC or HFD combined with VBIT-4. (L) Colocalization of mitochondria marker TOMM20 with dsDNA in Fig. 6H, measured using the Pearson's correlation coefficient. (M) The protein levels of total and phosphorylated STING in MAECs derived from $Apoe^{KO}Sting^{WT}$ mouse thoracic aorta treated with ox-LDL and VBIT-4. (N) Quantification of western blot data of Fig. 6L. (O) Western blot analysis of overexpression efficiency targeting STING in MAECs from $Apoe^{KO}Sting^{EC-KO}$ mice. Data are shown as mean \pm SEM, n = 6; *P < 0.05, **P < 0.01, ***P < 0.001; ND, not detected; ns, no significance.

Figure S6 STING in endothelial cells plays a more important role than macrophages in promoting artery inflammation. (A) The *Sting* expression in endothelium and bone marrow derived macrophage of $Apoe^{KO}Sting^{WT}$ and $Apoe^{KO}Sting^{EC-KO}$ mice involved in bone marrow transplantation by qRT-PCR. (B) Relative mRNA levels of inflammatory genes of aortas from $Apoe^{KO}$ mice treated as in (Fig. 6O). Data are shown as mean \pm SEM, n = 6; *P < 0.05, **P < 0.01, ***P < 0.001; ND, not detected.

Figure S7 Endothelium overexpression of STING by AAV^{endo} could eliminate the deceased atherosclerotic lesions in $Apoe^{KO}Brd4^{EC-KO}$ mice. (A) Relative Brd4 mRNA level in the endothelium of $Apoe^{KO}Brd4^{WT}$ and $Apoe^{KO}Brd4^{EC-KO}$ mice. (B) Relative *Sting* mRNA level in the endothelium of $Apoe^{KO}Brd4^{WT}$ and $Apoe^{KO}Brd4^{EC-KO}$ mice transfected with AAV^{endo}-*Sting*-Vector and AAV^{endo}-*Sting*-WT. (C) Representative images of en face aortas stained with oil red O from $Apoe^{KO}Brd4^{WT}$ and $Apoe^{KO}Brd4^{EC-KO}$ mice fed with HFD transfected with AAV^{endo}-*Sting*-WT. (D) The mRNA levels of inflammatory genes of aortas from $Apoe^{KO}$ mice treated as in Supporting Information Fig. S7C. Data are shown as mean \pm SEM, n = 6; ***P < 0.001; ND, not detected; ns, no significance.