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Targeting the TCA cycle through cuproptosis

confers synthetic lethality on ARID1A-deficient

hepatocellular carcinoma

Tao Xing, Li Li, Yiran Chen, Gaoda Ju, Guilan Li, Xiaoyun Zhu, Yubo Ren, Jing
Zhao, Zhilei Cheng, Yan Li, Da Xu, and Jun Liang



Hep3B
ARID1A-sg1

ARID1A-WT
ARID1A-sg2

HepG2
ARID1A-sg1

ARID1A-WT
ARID1A-sg2

A

** ** *
*

ARID1A-WT

ARID1A-WT

ARID1A-sg1

ARID1A-sg2

Hep3B

ARID1A-WT

ARID1A-WT

ARID1A-sg1

ARID1A-sg2

HepG2B

Supplementary Figure S1. ARID1A deficiency enhanced tumorigenicity in HCC, related to Figure 1 
(A) Growth curves measured by IncuCyte® Live-Cell Analysis Imaging System in ARID1A knockout and control cells (mean ±SD; 
n=3 independent experiments). 
(B) Colony formation and quantification in parental and ARID1A knockout cells cultivated for a duration of 10 to 15 days (mean ±SD; 
n=3 independent experiments).
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Supplementary Figure S2. ARID1A deficiency engendered a reliance on genes associated with the TCA cycle, related to 
Figure 2
(A) ARID1A expression was significantly correlated with an increase in the expression of TCA cycle genes across multiple cancer 
types. 
(B) Kaplan–Meier curves demonstrating that low ARID1A and ACO2 or FH mRNA expression levels were correlated with better 
prognosis in HCC patients in the TCGA cohort.
(C) Alterations in SWI/SNF subunit and TCA-related genes in HCC within the TCGA dataset.
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Supplementary Figure S3. ARID1A loss in HCC cells results in impaired glycolysis and increased dependence on mitochon-
drial respiration, related to Figure 3
(A-B) Seahorse glycolysis stress test and mito stress test in indicated cell lines (mean ±SD; n=6 independent experiments).
(C) Quantification of mitochondrial area in parental and ARID1A-KO (sg1) Hep3B cells (mean ±SD; n=3 independent experi-
ments).
(D) JC-1 staining was conducted to evaluate the mitochondrial membrane potential in parental and ARID1A-KO (sg1) Hep3B cells 
(mean ±SD; n=6 independent experiments).
(E) Colony formation assay of parental and ARID1A knockout cells treated with IACS-010759 for 10–15 days (mean ±SD; n=3 
independent experiments).
(F) Fractional labelling of TCA cycle intermediates (mean ±SD; n=3 independent experiments).
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Supplementary Figure S4. ARID1A deficiency suppressed PKM transcription, related to Figure 4
(A) GSEA revealed that the oxidative phosphorylation pathway-associated genes were significantly upregulated in HepG2 
ARID1A-knockdown cells. 
(B) Expression of glycolysis-related genes in control and ARID1A knockdown HepG2 cells, as determined by RNA-seq analysis (n=3 
independent experiments). 
(C) The mRNA level of PKM exhibited a positive correlation with that of ARID1A in the TCGA lung adenocarcinoma dataset,
(D) Parental and ARID1A knockdown NCI-H1975 lung cancer cells were examined for the expression of PKM by immunoblotting
(E) Heatmap displaying the ARID1A Cut&Run reads distribution at the transcription start sites (TSS) in Hep3B cells.
(F) Cut&Run-qPCR analysis of recruitment of ARID1A at the promoters of PKM. (mean ±SD; n=3 independent experiments).
(G) Heatmap of ATAC-seq reads distribution.
(H) Heatmap presents the clustering of ATAC-seq. 
(I) Signal intensity plot demonstrating genome-wide comparison of chromatin accessibility.
(J) Heatmap showing the Cut&Run reads distribution at the transcription start sites (TSS) of HIF-1α under varying growth conditions. 
(K) Heatmap displaying clustering of Cut&Run binding peaks of HIF-1α under different growth conditions.
(L) Cut&Run-qPCR analysis of HIF-1α recruitment to the promoter of PKM under different growth conditions in parental and 
ARID1A-KO cells (mean ±SD; n=3 independent experiments).
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Supplementary Figure S5. ARID1A deficiency sensitized cells to cuproptosis in vitro, related to Figure 5 
(A) The reduction in elesclomol (with 1 μM CuCl2 in media) IC50 values could be mitigated through the restoration of ARID1A in 
ARID1A-KO (sg1) Hep3B or SNU449 cells (mean ±SD; n=6 independent experiments). 
(B) Colony formation assay of Hep3B cells treated with different concentrations of elesclomol and CuCl2 for 10–15 days (mean ±SD; 
n=3 independent experiments). 
(C) Parental and ARID1A-KO (sg1) Hep3B cells were treated with 25 nM elesclomol (with 1 μM CuCl2 in media) together with or 
without inhibitors (Z-VAD-FMK, 10 μM; Necrostatin-1, 10 μM; Ferrostatin-1, 10 μM; Tetrathiomolybdate, 10μM) for 48h, cell viabili-
ty was subsequently evaluated (mean ±SD; n=3 independent experiments). 
(D) Analysis of the TCGA database revealed the negative correlation between ARID1A and FDX1 mRNA expression across multiple 
cancer types. 
(E) Dot plot showing noteworthy synthetic lethality observed between FDX1, FDXR, and FDX1L with ARID1A.
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Supplementary Figure S6. Elesclomol suppressed the growth of ARID1A-deficient HCC tumours in vivo, related to Figure 6
(A)Staining and quantification of ARID1A, PKM, and the cell proliferation marker Ki67 in xenograft tumours harvested from CDX 
model mice (mean ±SD; n=3 independent experiments) ,Scale bar = 100 µm. ARID1A Enlarged, 25 µm.
(B)Alterations in mouse body weights following treatment with elesclomol in CDX model (mean ±SD; n=6 independent experiments).
(C) The expression of ARID1A in dissociated tumor derived from the PDX model was assessed.
(D)Alterations in mouse body weights following treatment with elesclomol in PDX model (mean ±SD; n=6 independent experiments).
(E) Representative images of H&E staining of heart, lung, liver, spleen, and kidney samples from vehicle or elesclomol treated PDX 
model mice, Scale bar = 100 µm.



Supplementary Tables S1. List of primer sequences used in this study, related to STAR methods

Primers used for RT-PCR Forward Reverse

β-actin GAGAAAATCTGGCACCACACC GGATAGCACAGCCTGGATAGCAA

PKM CTGAAGGCAGTGATGTGGCC ACCCGGAGGTCCACGTCCTC

Primers used for Cut&Run-qPCR Forward Reverse

PKM TGCTGGCATGAGGAAAGAGG TGTGCTTGTCTGCACGTAGG

siRNA sequences Forward Reverse

SDHA#1 GGCAGGGUUUAAUACAGCATT UGCUGUAUUAAACCCUGCCTT

SDHA#2 CACACCUUAUAUGGAAGGUTT ACCUUCCAUAUAAGGUGUGTT

ACO2#1 CAGGUGCAAUCGUGGAAUATT UAUUCCACGAUUGCACCUGTT

ACO2#2 GGGAGAAGAACACAAUCGUTT ACGAUUGUGUUCUUCUCCCTT

ARID1A GCAGGAGCUAUCUCAAGAUTT AUCUUGAGAUAGCUCCUGCTT


