Synthesis of Neocannabinoids Using Controlled Friedel-Crafts Reactions

Alexandra M. Millimaci, Richard V. Trilles, James McNeely, Lauren E. Brown, Aaron B. Beeler,* and John A. Porco, Jr.* Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States

*E-mail: <u>beelera@bu.edu; porco@bu.edu</u>

Table of Contents:

General Information	.S2
Experimental Procedures for Cyclic Allylic Alcohol Derivatives	.S3
Experimental Procedures for Neocannabinoid Isomers <i>via</i> Friedel-Crafts Reaction	.S7
Experimental Procedure for Abnormal H_2CBD Equilibration Reaction	.S9
Cross-over Experimental and Identification of Product Ratio	.S10 .S31
References	.S181
¹ H and ¹³ C, NMR Spectra of Reported Compounds	.S183

General Information:

A. Instrumentation and Methods

¹H NMR and ¹³C NMR spectra were recorded at ambient temperature on a Varian Agilent-500 MHz VNMRS (500 and 126 MHz, respectively), and are internally referenced to the residual protio solvent signal (CDCI₃: δ 7.26 and 77.0 ppm). Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (br s = broad singlet, s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, overlap = overlapping peaks) and coupling constants in Hz and data for ¹³C NMR are reported in terms of chemical shift. High resolution mass spectrometry data was obtained in the Boston University Chemical Instrumentation Center on a Waters Q-TOF (hybrid quadrupolar/time-of-flight) Premier system by electrospray (ESI) in the negative mode. Mass correction was done by an external reference using a Waters Lockspray accessory. Mobile phases were water and acetonitrile with 0.1% formic acid. The MS settings were capillary voltage = 3.2 or 3.0 kV, cone voltage = 10 or 35, source temperature = 120 °C and dissolvation temperature = 350 °C [cone voltage = 10 and dissolvation temperature = 120 °C if experiment was carried out in low T and low V]. Analytical LC-MS experiments were performed using a Waters Acquity UPLC (ultraperformance liquid chromatography) with a binary solvent manager, SQ mass spectrometer, Waters 2996 PDA (photodiode array) detector, and evaporative light scattering detector (ELSD). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. Chromatographic purification of products was accomplished by flash chromatography on Silicycle F60 silica gel. All reactions were carried out in well ventilated fume hoods. Reactions were monitored by thin-layer chromatography (TLC) using Silicycle 250 µm silica gel plates. Visualization of the developed chromatogram was performed by irradiation with a 254 nm Ultra-Violet (UV) light or treatment with iodine-silica chamber. Yields refer to purified compounds unless otherwise noted. Diastereoselectivity and regiochemical selectivity for reactions were determined by crude ¹H NMR analysis prior to purification.

B. Reagents and Solvents

Solvents methylene chloride, toluene, chloroform-d, and acetonitrile were purchased from Fischer Scientific. Commercial starting materials α -phellandrene, 4methylcyclohexanone, 4-t-butylcyclohexanone, 4,4-dimethylcyclohex-2-enone, cyclohept-2-en-1-one, orcinol, and methanesulfonic acid (MsOH) were purchased from Sigma Aldrich. β -pinene was purchased from Acros Organics. The commercial resorcinol reagents olivetol and divarinol were obtained from Shanghai Xishite Biosciences Co., Ltd. 5-(1,1-Dimethyl-heptyl)resorcinol was purchased from Oakwood Chemical.

Experimental Procedures for Cyclic Allylic Alcohol Derivatives:

Procedure A:

To a flame dried round-bottom flask was added lithium bromide (7.80 mmol, 1.5 equiv) under an Ar balloon and the reaction was cooled to 0 °C with an ice bath. After cooling, THF (12 mL) and cyclic allylic ketone (5.20 mmol, 1.0 equiv) is added and the reaction was stirred. Methyl lithium in diethyl ether (1.5 M, 5.20 mL, 7.80 mmol, 1.5 equiv) was added dropwise and the reaction was stirred at 0 °C for 3 h or until full consumption of starting material was observed by TLC analysis. The reaction was then quenched with saturated NH₄Cl solution at 0 °C and was allowed to warm to room temperature. The resulting mixture was extracted with diethyl ether, dried over Na₂SO₄, and evaporated to afford the crude cyclic allylic alcohol without further purification.

Procedure B:

To a flame dried round-bottom flask was added cyclic allylic ketone (3.22 mmol, 1.0 equiv) and dry diethyl ether (6.4 mL) under an Ar balloon. The solution was cooled to -40 °C and was then added dropwise a solution of methyl magnesium bromide in ether (3.0 M, 1.7 equiv, 1.83 mL). The reaction was stirred until full consumption of starting material (3 h to overnight) by TLC analysis. The reaction was quenched with a saturated NH₄Cl solution and extracted with diethyl ether, dried over Na₂SO₄, and evaporated to afford the crude cyclic allylic alcohol which was used without further purification.

Trans-4-isopropyl-1-methylcyclohex-2-en-1-ol (\pm -10) was prepared as outlined in **Procedure A** and was isolated as a colorless oil and as a 5:1 (*trans/cis*) diastereomeric mixture (706 mg, 5.20 mmol, 88%).^{S4, S5, S11} The physical and spectroscopic data of the mixture was consistent with the reported values.^{S4}

¹H NMR (400 MHz, CDCl₃): δ 5.61 (s, 2H), 1.92 – 1.97 (m, 1H), 1.83 – 1.89 (m, 1H), 1.70 – 1.76 (m, 1H), 1.56 – 1.66 (m, 2H), 1.37–1.42 (m, 1H), 1.27 (s, 3H), 0.89 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H) (*trans*). ¹³C NMR (100 MHz, CDCl₃): δ 134.7, 131.4, 69.7, 41.8, 38.2, 31.9, 28.6, 23.7, 19.9, 19.5 (*trans*).

1-Methylcyclohex-2-en-1-ol (±-10c) was prepared as outlined in **Procedure B** and was isolated as a colorless oil (220 mg, 3.22 mmol, 61%).^{S1} Physical and spectroscopic data were consistent with the reported values.^{S1}

¹H NMR (200 MHz, CDCl₃): δ 5.75 (td, *J* = 4.0, 10.0 Hz, 1H), 5.60 (dm, *J* = 10.0 Hz, 1H), 2.10 (m, 2H), 1.50-1.80 (m, 5H), 1.29 (s, 3H). ¹³C NMR (50 MHz, CDCl₃): δ 133.7, 129.1, 67.9, 37.9, 29.3, 25.1, 19.6.

Trans-1,4-dimethylcyclohex-2-en-1-ol (**±-10d**) was prepared as outlined in **Procedure A** and was isolated as a colorless oil and as a 3:1 (*trans/cis*) diastereomeric mixture (526 mg, 5.20 mmol, 80%).^{S10} The physical and spectroscopic data of the mixture was consistent with the reported values.^{S10}

¹H NMR (400 MHz, CDCl₃): δ 5.55 (s, 2H), 2.30-1.20 (m, 4H), 1.29 (s, 3H), 0.97 (d, J = 7.2 Hz, 3H) (*trans*). ¹³C NMR (100 MHz, CDCl₃): δ 134.3, 133.2, 68.9, 36.9, 28.9, 28.8, 27.9, 20.8 (*trans*).

1,4,4-Trimethylcyclohex-2-en-1-ol (**±-10e**) was prepared as outlined in **Procedure B** and was isolated as a colorless oil (360 mg, 3.22 mmol, 80%).^{S1} Physical and spectroscopic data were consistent with the reported values.^{S2}

¹H NMR (300 MHz, CDCl₃): δ 5.46 (m, 2H), 1.78-1.68 (m, 2H), 1.64-1.55 (m, 1H), 1.44 (s, 1H), 1.50-1.42 (m, 1H), 1.28 (s, 3H), 1.01 (s, 3H), 0.96 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 139.4, 131.3, 68.2, 35.2, 34.2, 32.0, 29.8, 29.3, 28.3.

(+/-)-10f trans-4-(tert-butyl)-1-methylcyclohex-2-en-1-ol Chemical Formula: C₁₁H₂₀O Exact Mass: 168.15

Trans-4-(*tert*-butyl)-1-methylcyclohex-2-en-1-ol (\pm -10f) was prepared as outlined in **Procedure B** and isolated as a colorless solid and as a 98:2 (*trans/cis*) diastereomeric mixture (355 mg, 3.22 mmol, 66%).^{S1} The physical and spectroscopic data of the mixture was consistent with the reported values.^{S3}

¹H NMR (100 MHz, CDCl₃): δ 5.59 (br s, 2H), 1.21 (s, 3H), 0.88 (s, 9H) (*trans*).

1-Methylcyclopent-2-en-1-ol (±-17) was prepared as outlined in **Procedure A** and isolated as a colorless oil (312 mg, 5.20 mmol, 61%).^{S8} Physical and spectroscopic data was consistent with literature reported values.^{S8, S9}

¹H NMR (400 MHz, CDCl₃): δ 5.83–5.81 (m, 1H), 5.70–5.69 (m, 1H), 2.51–2.45 (m,1H), 2.35–2.29 (m, 1H), 1.98–1.89 (m, 2H), 1.68 (br s, 1H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 132.7, 83.4, 39.7, 31.1, 27.4.

OH

(+/-)-20 1-methylcyclohept-2-en-1-ol Chemical Formula: C₈H₁₄O Exact Mass: 126.10

1-Methylcyclohept-2-en-1-ol (**±-20**) was prepared as outlined in **Procedure A** and isolated as a colorless oil (302 mg, 5.20 mmol, 46%).^{S6, S7} The physical and spectroscopic data of the mixture was consistent with the reported values.^{S7}

¹H NMR (250.1 MHz, CDCl₃): δ 5.64 (dm, J = 2.9 Hz, 2H), 2.00-2.40 (m, 3H), 1.50-1.90 (m, 6H), 1.32 (d, J = 2.9 Hz, 3H). ¹³C NMR (62.9 MHz, CDCl₃): δ 139.7, 129.1, 74.0, 40.8, 28.6, 27.5, 27.3, 24.3.

Experimental Procedures for Neocannabinoid Isomers *via* Friedel-Crafts Reaction:

Procedure A:

A scintillation vial was charged with resorcinol derivative (0.13 mmol, 1.0 equiv) and cyclic allylic alcohol (0.14 mmol, 1.1 equiv) along with a magnetic stir bar and the contents of the flask were dissolved in CH_2Cl_2 [0.1 M]. To the stirred solution was added MsOH (0.1 M solution in CH_2Cl_2 , 0.1 equiv) dropwise. The reaction was left to stir for 1 h and was then quenched with saturated NaHCO₃, extracted 3x with CH_2Cl_2 and dried over Na₂SO₄. The crude material was purified by silica gel column chromatography (10:1 up to 4:1 Hexanes/EtOAc) to provide the abnormal neocannabinoid derivative.

Procedure B:

A scintillation vial was charged with resorcinol (0.13 mmol, 1.0 equiv) and cyclic allylic alcohol (0.14 mmol, 1.1 equiv) with a magnetic stir bar and the mixture was dissolved in CH_2Cl_2 [0.1 M]. To the stirred solution was added MsOH (0.1 M solution in CH_2Cl_2 , 0.1 equiv) dropwise. The reaction was stirred 24 h and then quenched with saturated NaHCO₃, extracted 3 x with CH_2Cl_2 , and dried over Na₂SO₄. The material was purified by column chromatography (silica gel, 20:1 up to 10:1 Hexanes/EtOAc) to provide the normal neocannabinoid derivative.

Acid-screening table for general neocannabinoid reactions:

						Reaction	mixture	comp	ositio	n
entry	acid	acid amount	solvent	T (°C)	time (h)	conversion	3	6	11	12
1a	Eu(OTf)₃	excess	CH_2CI_2	0	0.5	50%	5	2	1	
1b				rt	1	70%	3	1	1	
1c				40	3	71%	3	1	1	
2a	La(OTf)₃	excess	CH_2CI_2	0	0.5	60%	6	3	1	
2b				rt	1	70%	3	1	1	
2c				40	3	75%	3	1	1	
3a	La(OTf)₃	20 mol%	CH_2CI_2	rt	0.5	25%	2.5	1		
3b					20	80%	12.5	1	5	
4a	Sc(OTf) ₃	excess	CH_2CI_2	0	0.5	70%	3	1	1	
4b				rt	1	75%	3	1	1	
5a	Yb(OTf)₃	excess	CH_2CI_2	0	0.5	70%	3	2	1	
5b				rt	1	60%	3	1	1	
5c				40	3	71%	3	1	1	
6a	Yb(OTf)₃	20 mol%	CH_2CI_2	rt	0.25	20%	2.5	1		
6b					0.5	25%	2.5	1		
6c					20	75%	5	1	2	
7	Yb(OTf) ₃	30 mol%	CH_2CI_2	rt	0.5	50%	12	5	1	
8	Ce(OTf) ₃	excess	CH_2CI_2	rt	1	95%				1
9	ln(OTf)₃	excess	CH_2CI_2	rt	1	95%				1
10	MsOH	10 mol%	CH_2CI_2	rt	16	50%	1	0	0	
11	MsOH	10 mol%	CH_2CI_2	rt	16	95%				1
	+	+ 20 mol%								
	Yb(OTf)₃									
12	MsOH	10 mol%	CH_2CI_2	rt	16	95%				1
	+	+ 20 mol%								
	La(OTf) ₃									
13a	Schreiner's	10 mol%	CH_2CI_2	rt	16	65%	5	7	1	
	catalyst									
13b		20 mol%			16	68%	4	6	1	

Experimental Procedure for Equilibration of Abnormal 8,9dihydrocannabidiol:

A scintillation vial with magnetic stir bar was charged with **6** (5 mg, 0.016 mmol, 1.0 equiv) and the contents of the flask was dissolved in CH₂Cl₂ [0.026 M]. To the stirred solution was added MsOH (0.1 M solution in CH₂Cl₂, 16 μ L, 0.0016 mmol, 0.1 equiv) dropwise. After 2 h, the reaction was quenched with saturated NaHCO₃, extracted 3 x with CH₂Cl₂, and dried over Na₂SO₄. Product regioselectivity was determined by crude ¹H NMR analysis.

Crossover Experiment and Identification of Product Composition and Ratio:

$H_{a} C_{5}H_{11}$	С ₃ Н ₇ НО ОН		ОН НОССАНТ	Product	Allylic-benzylic	c and vinylic signals
	(±)- 13 (1.0 equiv)	(±)-3	(±)-14		Ha	Hb
Но	MsOH (0.1 equiv)	crossover products		6	3.44 ppm	5.48 ppm
(±)- 6 (1.0 equiv)	01201272411	он с	Ц он	3	3.83 ppm	5.52 ppm
				13	3.60 ppm	5.57 ppm
		HO C ₅ H ₁₁		14	3.90 ppm	5.64 ppm
		(±)-15	(±)-16			

Using a combination of *in situ* ¹H NMR and LC/MS analyses, we monitored the ratios of the pure abnormal cannabinoids **6/13**, their corresponding normal isomers **3/14**, and crossover products **15/16**. Normal and abnormal cannabinoids can be distinguished by ¹H NMR analysis by examining the chemical shift of the H₂CBD allylic-benzylic methine H_a ¹H NMR signal, which appears further downfield in the normal vs. abnormal isomer; this trend of normal vs. abnormal cannabinoid derivatives was found to be consistent for other derivatives (*vide infra*). We therefore used these signature ¹H NMR chemical shifts to measure changes from abnormal to normal forms, and HPLC/MS to determine the existence of crossover products, as they differ in molecular weight from the starting structures **3** and **14**. By ¹H NMR analysis, we observed products **3** and **14** after 1 h with starting materials **6** and **13** still present; after 24 h we observe only trace amounts of **6** and **13**, and by LC/MS we obtained 26% of crossover products. *It should be noted that the crossover products NMR signals overlap with the other cannabinoids and HPLC/MS confirmed the molecular weight of all products observed.*

(±)-3 Chemical Formula: C₂₁H₃₂O₂ Exact Mass: 316.24

Synthesis of (±)-3 from olivetol and (±)-10: **Reaction Time:** 24 h **TLC:** R_{f} = 0.53 in 10:1 Hex/EtOAc, Stain= iodine **Physical State:** yellowish oil % Yield: 88% (36.0 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.35 – 5.93 (m, 3H), 5.52 (s, 1H), 4.78 (br s, 1H), 3.82 (dtd, J = 9.0, 4.6, 2.4 Hz, 1H), 2.52 – 2.34 (m, 2H), 2.23 – 2.01 (m, 2H), 1.84 – 1.74 (m, 4H),

J = 9.0, 4.0, 2.4 Hz, 1H), 2.52 - 2.54 (H, 2H), 2.23 - 2.01 (H, 2H), 1.64 - 1.74 (H, 4H), 1.66 - 1.51 (m, 4H), 1.44 - 1.36 (m, 1H), 1.35 - 1.26 (m, 4H), 0.88 (dt, J = 14.0, 6.7 Hz, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.1, 140.2, 124.9, 114.1, 43.8, 35.6, 35.6, 31.7, 30.8, 30.8, 27.9, 23.8, 22.7, 22.2, 21.9, 16.5, 14.2.

HRMS-ESI (m/z): Calc. for C₂₁H₃₂O₂: [M-H]⁺ = 315.2324 ; found: 315.2318

Chemical Formula: C₂₁H₃₂O₂ **Exact Mass:** 316.24

Synthesis of (±)-6 from olivetol and (±)-10: Reaction Time: 1 h

TLC: Rf= 0.33 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 41% (17.0 mg)

¹**H NMR (500 MHz, CDCI**₃) δ 6.24 (d, J = 2.7 Hz, 1H), 6.21 (d, J = 2.7 Hz, 1H), 6.07 (s, 1H), 5.47 (d, J = 2.0 Hz, 1H), 4.81 (br s, 1H), 3.69 – 3.27 (m, 1H), 2.66 (ddd, J = 13.8, 9.4, 6.1 Hz, 1H), 2.34 (ddd, J = 13.8, 9.5, 6.8 Hz, 1H), 2.22 – 2.05 (m, 2H), 1.82 – 1.78 (m, 1H), 1.80 – 1.74 (m, 3H), 1.73 (ddt, J = 12.7, 10.4, 2.3 Hz, 1H), 1.56 – 1.46 (m, 3H), 1.40 – 1.35 (m, 1H), 1.34 – 1.29 (m, 4H), 0.94 – 0.87 (m, 3H), 0.83 (dd, J = 7.9, 6.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 156.7, 154.7, 144.2, 140.1, 125.3, 120.4, 108.7, 102.6, 43.1, 38.4, 34.4, 32.0, 31.4, 30.7, 27.4, 23.8, 22.7, 22.3, 22.1, 16.9, 14.2. HRMS-ESI (m/z): Calc. for C₂₁H₃₂O₂: [M-H]⁺ = 315.2324 ; found: 315.2328

Experimental Procedure for *Bis*-Addition and Stereochemistry Determination:

Procedure A:

A scintillation vial was charged with olivetol **7** (1.0 equiv) and (1.1 equiv) (R)- α -phellandrene (\geq 95.0% sum of enantiomers, GC) with a magnetic stir bar and the flask contents were dissolved in CH₂Cl₂ [0.1 M]. To the stirred solution was added *p*-MsOH (0.1 M solution in CH₂Cl₂, 0.1 equiv) dropwise. The reaction was stirred for 1 h and was then quenched with saturated NaHCO₃, extracted 3 x with CH₂Cl₂, and dried over Na₂SO₄. The material was purified by silica column chromatography (silica gel, 10:1 Hexanes/EtOAc) to provide *bis*-addition product **11a** as a single diastereomer.

Procedure B:

A scintillation vial was charged with olivetol **7** (1.0 equiv) and cyclic allylic alcohol **10** (1.1 equiv) and a magnetic stir bar and the contents of the flask was dissolved in CH₂Cl₂ [0.1 M]. To the stirred solution was added MsOH (0.1 M solution in CH₂Cl₂, 0.1 equiv) dropwise. The reaction was stirred for 1 h then quenched with saturated NaHCO₃, extracted 3 x with CH₂Cl₂, and dried over Na₂SO₄. The material was purified by column chromatography (silica gel, 10:1 Hexanes/EtOAc) to provide a mixture of diastereomeric *bis*-addition products **11a** and **11b**. The products were separated by prep-TLC (Silicycle 250 µm silica gel plates, 10:1 Hexanes/Et₂O) to determine each diastereomers stereochemistry. The first diastereomer was determined to be **11a** (*cf.* **Procedure A**) as its spectroscopic properties, ¹H, ¹³C, and 1D NOESY matched the product obtained from the control reaction with (*R*)- α -phellandrene.

(±)-11a Chemical Formula: C₃₁H₄₈O₂ Exact Mass: 452.37

Compound (±)-11a from olivetol and (±)-10:

Reaction Time: 1 h

TLC: R_f= 0.88 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: orange/yellow oil

% Yield: 6% (3.5 mg) by-product

¹H NMR (500 MHz, CDCI₃) δ 6.24 (s, 1H), 6.00 (s, 1H), 5.93 (s, 1H), 5.60 – 5.53 (m, 1H), 5.51 (s, 1H), 3.99 – 3.56 (m, 1H), 3.43 (d, *J* = 10.4 Hz, 1H), 2.63 (ddd, *J* = 14.7, 9.4, 6.0 Hz, 1H), 2.32 (ddd, *J* = 13.9, 9.5, 6.9 Hz, 1H), 2.19 – 2.03 (m, 4H), 1.76 (dd, *J* = 10.0, 2.3 Hz, 8H), 1.57 – 1.42 (m, 6H), 1.39 – 1.30 (m, 6H), 0.92 – 0.86 (m, 3H), 0.81 (dd, *J* = 14.5, 6.9 Hz, 9H), 0.75 (d, *J* = 6.9 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.4, 154.3, 141.4, 140.1, 139.6, 125.4, 119.2, 115.8, 109.7, 44.0, 42.7, 39.0, 35.6, 34.3, 32.1, 31.5, 31.1, 31.0, 28.1, 27.5, 23.8, 23.8, 22.7, 22.6, 22.5, 22.0, 21.7, 16.9, 16.8, 14.2.

HRMS-ESI (m/z): Calc. for C₃₁H₄₈O₂: [M-H]⁺ = 451.3576 ; found: 451.3697

(±)-11b Chemical Formula: C₃₁H₄₈O₂ Exact Mass: 452.37

Synthesis of (±)-11b from olivetol and (±)-10: **Reaction Time:** 1 h **TLC:** $R_f= 0.80$ in 10:1 Hex/EtOAc, Stain= iodine **Physical State:** orange/yellow oil % Yield: 6% (3.5 mg) by-product ¹H NMR (500 MHz, CDCl₃) δ 6.24 (s, 1H), 6.03 (s, 1H), 5.95 (s, 1H), 5.54 (s, 1H), 5.42 (s, 1H), 3.86 (d, J = 10.1 Hz, 1H), 3.44 (d, J = 10.2 Hz, 1H), 2.68 – 2.53 (m, 1H), 2.46 – 2.26 (m, 1H), 2.21 – 2.01 (m, 4H), 1.79 – 1.72 (m, 8H), 1.62 – 1.54 (m, 3H), 1.54 – 1.46 (m, 3H), 1.39 – 1.29 (m, 6H), 0.91 – 0.87 (m, 3H), 0.85 – 0.77 (m, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.4, 154.2, 141.3, 140.2, 139.4, 125.7, 125.6, 119.5, 116.1, 109.6, 43.8, 42.6, 38.8, 35.6, 34.2, 32.2, 31.2, 30.9, 30.8, 28.0, 27.5, 23.7, 23.6, 22.7, 22.4, 22.1, 21.8, 16.9, 16.6, 14.2.

HRMS-ESI (m/z): Calc. for C₃₁H₄₈O₂: [M-H]⁺ = 451.3576 ; found: 451.3700

(±)-12 Chemical Formula: C₂₁H₃₂O₂ Exact Mass: 316.24

Synthesis of (±)-12 from olivetol and (±)-10:

TLC: R_f= 0.52 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

¹**H NMR (500 MHz, CDCI**₃) δ 6.29 (d, *J* = 1.5 Hz, 1H), 6.12 (d, *J* = 1.5 Hz, 1H), 4.73 (s, 1H), 3.35 (q, *J* = 3.0 Hz, 1H), 2.45 (dd, *J* = 8.9, 6.7 Hz, 2H), 1.90 (dd, *J* = 13.3, 2.6 Hz, 1H), 1.83 (dp, *J* = 10.5, 6.6 Hz, 1H), 1.74 (dq, *J* = 13.3, 3.2 Hz, 1H), 1.62 – 1.54 (m, 4H), 1.53 – 1.49 (m, 2H), 1.35 (s, 3H), 1.34 – 1.26 (m, 5H), 1.10 (d, *J* = 6.6 Hz, 3H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 157.5, 152.2, 142.5, 111.9, 107.9, 106.3, 74.7, 44.4, 35.8, 35.1, 31.7, 30.9, 30.7, 29.5, 27.9, 26.4, 22.7, 22.2, 21.2, 20.6, 14.2.

HRMS-ESI (m/z): Calc. for $C_{21}H_{32}O_2$: [M-H]⁺ = 315.2324 ; found: 315.2309

Synthesis of **13** (abnormal isomer) from divarinol and (±)-10c:

Reaction Time: 1h

TLC: R_f= R_f= 0.24 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/brown oil

% Yield: 43% (14.0 mg)

¹**H NMR (500 MHz, CDCI**₃) δ 6.24 (d, J = 2.7 Hz, 1H), 6.22 (d, J = 2.7 Hz, 1H), 6.17 (s, 1H), 5.58 (s, 1H), 4.82 (s, 1H), 3.66 – 3.50 (m, 1H), 2.54 (dt, J = 13.8, 7.8 Hz, 1H), 2.44 (dt, J = 13.7, 7.9 Hz, 1H), 2.19 – 2.08 (m, 1H), 2.05 – 1.98 (m, 1H), 1.95 – 1.82 (m, 2H), 1.78 (dt, J = 2.6, 1.2 Hz, 3H), 1.68 – 1.62 (m, 2H), 1.55 (q, J = 7.6 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 156.8, 154.7, 142.6, 141.0, 124.4, 121.0, 109.0, 102.2, 36.2, 35.4, 29.9, 28.5, 24.9, 24.2, 23.0, 14.3. HRMS-ESI (m/z): Calc. for C₁₆H₂₂O₂: [M-H]⁺ = 245.1542 ; found: 245.1540

(±)-14 Chemical Formula: C₁₆H₂₂O₂ Exact Mass: 246.16

Synthesis of (±)-14 from divarinol and (±)-10c:

Reaction Time: 24 h

TLC: Rf= Rf= 0.36 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/brown oil

% Yield: 36% (11.5 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.22 (s, 2H), 5.71 – 5.51 (m, 1H), 3.90 (ddt, *J* = 8.9, 6.0, 3.0 Hz, 1H), 2.43 (dd, *J* = 8.6, 6.8 Hz, 2H), 2.18 – 2.09 (m, 1H), 2.06 – 1.99 (m, 1H), 1.98 – 1.92 (m, 1H), 1.88 (dtt, *J* = 13.4, 5.3, 2.9 Hz, 1H), 1.81 – 1.77 (m, 3H), 1.71 – 1.64 (m, 1H), 1.62 – 1.56 (m, 3H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 142.8, 141.2, 123.8, 114.6, 108.7, 37.7, 32.3, 30.1, 28.4, 24.3, 24.2, 22.5, 14.0.

HRMS-ESI (m/z): Calc. for C₁₆H₂₂O₂: [M-H]⁺ = 245.1542 ; found: 245.1537

(±)-3ac Chemical Formula: C₁₄H₁₈O₂ Exact Mass: 218.13

Synthesis of (±)-3ac from orcinol and (±)-10c:

Reaction Time: 24 h

TLC: R_f= 0.35 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 9% (2.5 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.22 (s, 2H), 5.64 (dq, J = 2.9, 1.4 Hz, 1H), 3.91 (ddq, J = 8.9, 5.8, 2.8 Hz, 1H), 2.21 (s, 3H), 2.18 – 2.09 (m, 1H), 2.06 – 1.99 (m, 1H), 1.98 – 1.92 (m, 1H), 1.88 (dtt, J = 13.6, 5.4, 2.9 Hz, 1H), 1.83 – 1.73 (m, 3H), 1.68 (tddd, J = 12.7, 10.1, 5.4, 2.5 Hz, 1H), 1.57 (tdd, J = 12.2, 9.6, 2.6 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.2, 137.9, 123.8, 114.4, 109.3, 32.3, 30.1, 28.4, 24.3, 22.5, 21.2.

HRMS-ESI (m/z): Calc. for C₁₄H₁₈O₂: [M-H]⁺ = 217.1229 ; found: 217.1206

(±)-6ac Chemical Formula: C₁₄H₁₈O₂ Exact Mass: 218.13

Synthesis of (±)-6ac from orcinol and (±)-10c:

Reaction Time: 1 h

TLC: R_f= 0.33 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 35% (10.0 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.28 (s, 1H), 6.27 – 6.22 (m, 1H), 6.22 (t, *J* = 1.9 Hz, 1H), 5.62 (s, 1H), 4.97 (s, 1H), 3.60 (s, 1H), 2.24 (s, 3H), 2.18 – 2.08 (m, 1H), 2.02 (dt, *J* = 17.9, 3.5 Hz, 1H), 1.94 – 1.84 (m, 2H), 1.79 (s, 3H), 1.70 – 1.61 (m, 1H), 1.60 – 1.50 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 156.7, 154.6, 141.1, 138.0, 124.1, 121.2, 109.7, 102.1, 35.6, 30.0, 28.1, 24.2, 22.8, 20.4.

HRMS-ESI (m/z): Calc. for C₁₄H₁₈O₂: [M-H]⁺ = 217.1229 ; found: 217.1239

(±)-3ad Chemical Formula: C₁₅H₂₀O₂ Exact Mass: 232.15

Synthesis of (±)-3ad from orcinol and (±)-10d:

Reaction Time: 24 h

TLC: R_f= 0.40 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 37% (11.3 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.34 – 6.14 (m, 2H), 6.10 – 5.95 (m, 1H), 5.50 (dt, *J* = 2.9, 1.6 Hz, 1H), 4.77 (s, 1H), 3.52 (ddq, *J* = 9.0, 4.6, 2.4 Hz, 1H), 2.25 – 2.16 (m, 4H), 2.08 – 2.00 (m, 1H), 1.84 (ddt, *J* = 13.0, 5.4, 2.6 Hz, 1H), 1.79 – 1.73 (m, 4H), 1.45 (dtd, *J* = 14.1, 11.7, 5.4 Hz, 1H), 0.92 (d, *J* = 6.5 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 140.5, 138.0, 124.1, 113.7, 39.4, 33.6, 31.5, 30.6, 23.9, 21.2, 20.3.

HRMS-ESI (m/z): Calc. for C₁₅H₂₀O₂: [M-H]⁺ = 231.1385 ; found: 231.1412

Synthesis of (±)-6ad from orcinol and (±)-10d: **Reaction Time:** 1 h **TLC:** $R_{f=} 0.36$ in 5:1 Hex/EtOAc, Stain= iodine **Physical State:** orange/brown oil % Yield: 50% (15.2 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.28 – 6.19 (m, 2H), 6.05 (s, 1H), 5.49 (s, 1H), 4.96 (broad s, 1H), 3.29 – 3.18 (m, 1H), 2.23 (s, 3H), 2.21 – 2.16 (m, 1H), 2.09 – 1.99 (m, 1H), 1.88 – 1.81 (m, 2H), 1.77 (s, 3H), 1.48 – 1.40 (m, 1H), 0.87 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.5, 154.7, 140.3, 138.9, 124.4, 120.6, 109.7, 102.4, 42.6, 33.5, 31.6, 30.5, 23.8, 21.3, 20.4. HRMS-ESI (m/z): Calc. for C₁₅H₂₀O₂: [M-H]⁺ = 231.1385 ; found: 231.1003

(±)-3ae Chemical Formula: C₁₆H₂₂O₂ Exact Mass: 246.16

Synthesis of (±)-3ae from orcinol and (±)-10e: Reaction Time: 24 h TLC: R_f= 0.42 in 10:1 Hex/EtOAc, Stain= iodine Physical State: yellow/orange oil % Yield: 16% (5.2 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.32 (s, 1H), 6.26 (s, 1H), 6.15 (s, 1H), 5.57 (s, 1H), 4.63 (s, 1H), 3.70-3.69 (apparent triplet, 1H), 2.21 (s, 3H), 2.20 – 2.12 (m, 1H), 2.12 – 2.00 (m, 1H), 1.80 (s, 3H), 1.68 – 1.57 (m, 1H), 1.56 – 1.46 (m, 1H), 1.00 (s, 3H), 0.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 154.3, 139.4, 138.0, 123.3, 111.1, 110.4, 108.0, 41.7, 35.7, 34.0, 29.1, 27.9, 23.8, 23.7, 21.0.

HRMS-ESI (m/z): Calc. for C₁₆H₂₂O₂: [M-H]⁺ = 245.1542 ; found: 245.1532

Synthesis of (±)-6ae from orcinol and (±)-10e: Reaction Time: 1 h TLC: $R_{f}= 0.47$ in 5:1 Hex/EtOAc, Stain= iodine Physical State: yellow/orange oil % Yield: 33% (10.7 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.35 (s, 1H), 6.26 (s, 1H), 6.19 (s, 1H), 5.56 (s, 1H), 4.78 (s, 1H), 3.44 (s, 1H), 2.27 (s, 3H), 2.19 – 2.14 (m, 1H), 2.12 – 2.03 (m, 1H), 1.80 (s, 3H), 1.72 – 1.65 (m, 1H), 1.57 – 1.47 (m, 1H), 0.99 (s, 3H), 0.78 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.7, 154.6, 139.8, 139.4, 123.7, 118.2, 110.0, 102.1, 44.7, 36.1, 34.4, 29.8, 27.9, 24.6, 23.8, 22.0. HRMS-ESI (m/z): Calc. for C₁₆H₂₂O₂: [M-H]⁺ = 245.1542 ; found: 245.1536

(±)-3a Chemical Formula: C₁₇H₂₄O₂ Exact Mass: 260.18

Synthesis of (±)-3a from orcinol and (±)-10:

Reaction Time: 24 h

TLC: R_f= 0.44 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 47% (16.0 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.34 - 5.92 (m, 2H), 5.51 (s, 1H), 4.68 (br s, 1H), 3.81 (apparent dt, J = 8.1, 2.1 Hz, 1H), 2.21 (s, 3H), 2.19 - 2.05 (m, 2H), 1.84 - 1.77 (m, 1H), 1.77 (s, 3H), 1.67 - 1.56 (m, 2H), 1.45 - 1.33 (m, 1H), 0.86 (apparent td, J = 6.0, 5.6, 1.0 Hz, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 140.2, 137.9, 124.9, 113.9, 110.7, 108.3, 43.8, 35.6, 30.8, 28.0, 23.8, 22.2, 21.9, 21.2, 16.5.

HRMS-ESI (m/z): Calc. for C₁₇H₂₄O₂: [M-H]⁺ = 259.1698 ; found: 259.1687

OH ĤΟ (±)-6a Chemical Formula: C17H24O2 Exact Mass: 260.18

Synthesis of (±)-6a from orcinol and (±)-10: Reaction Time: 1 h TLC: R_f= 0.31 in 5:1 Hex/EtOAc, Stain= iodine Physical State: yellow/brown oil % Yield: 40% (13.5 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.25 – 6.16 (m, 2H), 6.07 (s, 1H), 5.48 (s, 1H), 4.58 (s, 1H), 3.46 (d, J = 10.4 Hz, 1H), 2.23 (s, 3H), 2.18 – 2.05 (m, 2H), 1.84 – 1.77 (m, 1H), 1.76 (s, 3H), 1.76 – 1.66 (m, 1H), 1.52 (tt, J = 8.0, 4.0 Hz, 1H), 1.35 (qd, J = 12.3, 5.5 Hz, 1H), 0.84 (dd, J = 6.9, 4.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 156.5, 154.7, 140.0, 139.0, 125.1, 120.8, 109.8, 102.6, 43.2, 38.8, 30.7, 27.5, 23.7, 22.3, 22.0, 21.2, 16.8.

HRMS-ESI (m/z): Calc. for C₁₇H₂₄O₂: [M-H]⁺ = 259.1698 ; found: 259.1705

(±)-3af Chemical Formula: C₁₈H₂₆O₂ Exact Mass: 274.19

Synthesis of (±)-3af from orcinol and (±)-10f: Reaction Time: 24 h

TLC: R_f= 0.44 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/brown oil

% Yield: 51% (18.3 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.20 (brd, J = 66.0 Hz, 2H), 5.79 (br s, 1H), 5.34 (s, 1H), 4.86 (br s, 1H), 3.95 – 3.88 (m, 1H), 2.20 (s, 3H), 2.16 – 2.10 (m, 1H), 2.08 (d, J = 3.2 Hz, 1H), 2.08 – 1.97 (m, 01), 1.77 (ddd, J = 11.9, 9.1, 2.8 Hz, 1H), 1.73 (s, 3H), 1.46 (dtd, J = 12.5, 10.9, 4.9 Hz, 1H), 0.83 (apparent s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.3, 153.1, 138.2, 137.8, 125.9, 116.8, 111.0, 108.8, 46.5, 34.1, 34.0, 30.8, 28.6, 25.1, 23.4, 21.1.

HRMS-ESI (m/z): Calc. for C₁₈H₂₆O₂: [M-H]⁺ = 273.1855 ; found: 273.1842

Synthesis of (±)-19a from orcinol and (±)-17: **Reaction Time:** 24 h **TLC:** $R_f = 0.24$ in 10:1 Hex/EtOAc, Stain= iodine **Physical State:** yellow/orange oil % Yield: 9% (2.4 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.22 (s, 2H), 5.61 (s, 2H), 5.57 (s, 1H), 4.43 (ddq, *J* = 8.6, 6.1, 2.8 Hz, 1H), 2.56 – 2.40 (m, 3H), 2.20 (s, 3H), 1.88 – 1.85 (m, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.2, 147.3, 137.9, 126.7, 113.8, 109.3, 40.9, 37.5, 31.5, 21.1, 17.1. HPMS ESI (m/z): Colo. for Curl is One for Curl is 0.21 (M H)t = 202, 1072 : found: 202, 0864

HRMS-ESI (m/z): Calc. for C₁₃H₁₆O₂: [M-H]⁺ = 203.1072 ; found: 203.0864

Synthesis of (±)-18a from orcinol and (±)-17: Reaction Time: 1 h TLC: $R_f = 0.33$ in 5:1 Hex/EtOAc, Stain= iodine Physical State: yellow/orange oil % Yield: 9% (2.5 mg) ¹H NMR (400 MHz, CDCI₃) δ 6.30 (s, 1H), 6.25 – 6.19 (m, 2H), 5.58 (s, 1H), 4.16 (qt, J = 6.0, 2.7 Hz, 1H), 2.55 – 2.37 (m, 3H), 2.25 (s, 3H), 1.86 (s, 3H), 1.83 – 1.78 (m, 1H). ¹³C NMR (101 MHz, CDCI₃) δ 157.1, 154.7, 147.3, 137.9, 127.1, 120.4, 109.5, 102.0, 44.5, 37.5, 31.2, 20.7, 17.1. HRMS-ESI (m/z): Calc. for C₁₃H₁₆O₂: [M-H]⁺ = 203.1072 ; found: 203.0865

Chemical Formula: C₁₅H₂₀O₂ Exact Mass: 232.15

Synthesis of (±)-22a from orcinol and (±)-20: Reaction Time: 24 h TLC: R_f= 0.28 in 10:1 Hex/EtOAc, Stain= iodine Physical State: yellow/brown oil % Yield: 17% (5.2 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.24 (s, 2H), 5.55 (s, 1H), 5.41 (s, 1H), 4.03 (d, J = 8.5 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.25 – 2.21 (m, 1H), 2.20 (s, 3H), 1.97 – 1.89 (m, 2H), 1.88 – 1.82 (m, 1H), 1.80 (s, 3H), 1.78 – 1.74 (m, 1H), 1.69 – 1.61 (m, 1H), 1.60 – 1.50 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 154.2, 143.6, 137.6, 127.7, 116.9, 109.4, 36.0, 33.9, 32.9, 29.2, 27.6, 26.6, 21.1.

HRMS-ESI (m/z): Calc. for C₁₅H₂₀O₂: [M-H]⁺ = 231.1385 ; found: 231.1381

Synthesis of (±)-21a from orcinol and (±)-20:

Reaction Time: 1 h

TLC: R_f= 0.21 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 30% (9.1 mg)

¹**H NMR (500 MHz, CDCI₃)** δ 6.25 (s, 2H), 5.75 (s, 1H), 5.53 (s, 1H), 5.33 (s, 1H), 3.72 (d, J = 11.3 Hz, 1H), 2.31 (dd, J = 16.1, 8.1 Hz, 1H), 2.24 (s, 3H), 2.21 – 2.15 (m, 1H), 1.98 – 1.90 (m, 2H), 1.89 – 1.82 (m, 1H), 1.80 (s, 3H), 1.73 – 1.65 (m, 1H), 1.63 – 1.49 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.6, 154.3, 143.4, 137.0, 128.0, 124.0, 109.9, 102.0, 39.2, 34.1, 33.0, 29.6, 27.6, 26.6, 20.7.

HRMS-ESI (m/z): Calc. for C₁₅H₂₀O₂: [M-H]⁺ = 231.1385 ; found: 231.1376

(±)-3c Chemical Formula: C₁₈H₂₆O₂ Exact Mass: 274.19

Synthesis of (±)-3c from olivetol and (±)-10c:

Reaction Time: 24 h

TLC: R_f= 0.45 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 43% (15.5 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.22 (s, 2H), 5.64 (s, 1H), 3.90 (ddt, J = 8.8, 5.9, 2.9 Hz, 1H), 2.44 (dd, J = 8.9, 6.8 Hz, 2H), 2.18 – 2.07 (m, 1H), 2.06 – 1.98 (m, 1H), 1.99 – 1.91 (m, 1H), 1.93 – 1.84 (m, 1H), 1.79 (s, 3H), 1.73 – 1.61 (m, 1H), 1.63 – 1.50 (m, 3H), 1.37 – 1.26 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.1, 141.2, 123.8, 114.6, 108.6, 35.6, 32.3, 31.7, 30.9, 30.1, 28.4, 24.3, 22.7, 22.5, 14.2.

HRMS-ESI (m/z): Calc. for C₁₈H₂₆O₂: [M-H]⁺ = 273.1855 ; found: 273.1842

(±)-6c Chemical Formula: C₁₈H₂₆O₂ Exact Mass: 274.19

Synthesis of (±)-6c from olivetol and (±)-10c:

Reaction Time: 1 h

TLC: R_f= 0.39 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 50% (18.0 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.26 – 6.21 (m, 2H), 6.19 (s, 1H), 5.58 (br s, 1H), 5.11 (s, 1H), 3.60 (s, 1H), 2.55 (dt, *J* = 13.7, 7.8 Hz, 1H), 2.46 (dt, *J* = 14.4, 8.0 Hz, 1H), 2.21 – 2.09 (m, 1H), 2.05 – 1.98 (m, 1H), 1.97 – 1.83 (m, 2H), 1.78 (s, 3H), 1.68 – 1.60 (m, 2H), 1.52 (p, *J* = 7.4 Hz, 2H), 1.37 – 1.27 (m, 4H), 0.96 – 0.83 (m, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 156.8, 154.7, 142.9, 140.9, 124.3, 120.9, 109.0, 102.2, 35.3, 34.1, 32.0, 31.5, 29.9, 28.6, 24.2, 23.0, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₁₈H₂₆O₂: [M-H]⁺ = 273.1855 ; found: 273.1859

(±)-3d Chemical Formula: C₁₉H₂₈O₂ Exact Mass: 288.21

Synthesis of (±)-3d from olivetol and (±)-10d: Reaction Time: 24 h **TLC:** R_f= 0.52 in 10:1 Hex/EtOAc, Stain= iodine **Physical State:** yellow/brown oil **% Yield:** 56% (21.0 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.37 – 5.91 (m, 3H), 5.52 (s, 1H), 4.75 (br s, 1H), 3.52 (ddq, J = 9.1, 4.6, 2.4 Hz, 1H), 2.45 (dd, J = 8.8, 6.8 Hz, 2H), 2.27 – 2.15 (m, 1H), 2.11 – 1.97 (m, 1H), 1.84 (ddt, J = 13.0, 5.4, 2.5 Hz, 1H), 1.80 – 1.74 (m, overlap, 4H), 1.62 – 1.52 (m, 2H), 1.45 (qd, J = 11.9, 5.3 Hz, 1H), 1.37 – 1.27 (m, 4H), 0.92 (d, J = 6.5 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.1, 140.4, 124.1, 113.9, 39.5, 35.6, 33.6, 31.7, 31.5, 30.8, 30.6, 23.8, 22.7, 20.4, 14.2.

HRMS-ESI (m/z): Calc. for C₁₉H₂₈O₂: [M-H]⁺ = 287.2011 ; found: 287.2002

(±)-6d Chemical Formula: C₁₉H₂₈O₂ Exact Mass: 288.21

Synthesis of (±)-6d from olivetol and (±)-10d:

Reaction Time: 1 h

TLC: R_f= 0.36 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 37% (14.0 mg)

¹**H NMR (500 MHz, CDCI**₃) δ 6.24 (d, J = 2.7 Hz, 1H), 6.21 (d, J = 2.7 Hz, 1H), 6.00 (s, 1H), 5.47 (s, 1H), 3.23 (ddq, J = 9.2, 4.7, 2.5 Hz, 1H), 2.69 (ddd, J = 13.9, 8.9, 6.5 Hz, 1H), 2.43 – 2.27 (m, 1H), 2.27 – 2.16 (m, 1H), 2.09 – 2.01 (m, 1H), 1.89 – 1.81 (m, 2H), 1.77 (s, 3H), 1.52 – 1.46 (m, 2H), 1.43 (dd, J = 12.6, 5.4 Hz, 1H), 1.34 – 1.30 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 156.7, 154.7, 144.0, 140.3, 124.5, 120.0, 108.7, 102.4, 42.3, 34.4, 33.2, 32.0, 31.7, 31.3, 30.6, 23.8, 22.7, 20.5, 14.2.

HRMS-ESI (m/z): Calc. for C₁₉H₂₈O₂: [M-H]⁺ = 287.2011 ; found: 287.2890

(±)-3e Chemical Formula: C₂₀H₃₀O₂ Exact Mass: 302.22

Synthesis of (±)-3e from olivetol and (±)-10e: Reaction Time: 24 h **TLC:** R_f= 0.50 in 10:1 Hex/EtOAc, Stain= iodine **Physical State:** yellow/brown oil **% Yield:** 18% (7.2 mg) ¹**H NMR (500 MHz, CDCI₃)** δ 6.33 (s, 1H), 6.27 (s, 1H), 6.15 (s, 1H), 5.62 – 5.51 (m, 1H),

4.65 (s, 1H), 3.71 - 3.66 (m, 1H), 2.45 (t, J = 7.8 Hz, 2H), 2.23 - 2.11 (m, 1H), 2.11 - 1.95 (m, 1H), 1.80 (s, 3H), 1.64 (dt, J = 12.2, 6.0 Hz, 2H), 1.52 (dt, J = 13.4, 6.7 Hz, 2H), 1.34 - 1.28 (m, 4H), 1.00 (s, 3H), 0.89 (t, J = 6.7 Hz, 3H), 0.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.5, 154.4, 143.3, 139.5, 123.5, 111.4, 109.8, 107.5, 41.9, 35.8, 35.6, 34.1, 31.7, 30.8, 29.2, 28.1, 24.0, 23.8, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₂₀H₃₀O₂: [M-H]⁺ = 301.2168 ; found: 301.2160

(±)-6e Chemical Formula: C₂₀H₃₀O₂ Exact Mass: 302.22

Synthesis of (±)-6e from olivetol and (±)-10e:

Reaction Time: 1 h

TLC: R_f= 0.48 in 5:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 24% (9.5 mg)

¹**H NMR (500 MHz, CDCI₃)** δ 6.41 (s, 1H), 6.26 (d, J = 2.7 Hz, 1H), 6.18 (d, J = 2.7 Hz, 1H), 5.63 – 5.36 (m, 1H), 4.93 (s, 1H), 3.43 (t, J = 2.9 Hz, 1H), 2.75 (dt, J = 13.9, 7.7 Hz, 1H), 2.37 (dt, J = 13.8, 8.1 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.13 – 2.08 (m, 1H), 1.81 – 1.79 (m, 3H), 1.70 (dt, J = 13.1, 6.4 Hz, 1H), 1.53 – 1.44 (m, 3H), 1.32 (qd, J = 6.3, 3.6 Hz, 4H), 1.00 (s, 3H), 0.93 – 0.86 (m, 3H), 0.75 (s, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 157.7, 154.8, 145.0, 139.5, 123.8, 117.3, 109.0, 102.0, 44.1, 35.9, 34.8, 34.0, 32.0, 31.5, 29.7, 27.9, 25.1, 23.8, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₂₀H₃₀O₂: [M-H]⁺ = 301.2168 ; found: 301.2152

(±)-3f Chemical Formula: C₂₂H₃₄O₂ Exact Mass: 330.26

Synthesis of (±)-3f from olivetol and (±)-10f: Reaction Time: 24 h TLC: R_f= 0.52 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: orange/brown oil

% Yield: 75% (32.3 mg)

¹**H NMR (500 MHz, CDCI₃)** δ 6.32 – 6.06 (m, 2H), 5.82 (br s, 1H), 5.37 (d, *J* = 1.4 Hz, 1H), 4.90 (br s, 1H), 3.92 (dt, *J* = 8.8, 2.8 Hz, 1H), 2.43 (t, *J* = 7.8 Hz, 2H), 2.15 – 2.06 (m, 1H), 2.07 – 1.97 (m, 1H), 1.77 (td, *J* = 9.0, 4.6 Hz, 1H), 1.73 (s, 3H), 1.55 (p, *J* = 7.5 Hz, 2H), 1.51 – 1.41 (m, 1H), 1.34 – 1.24 (m, 5H), 0.92 – 0.85 (m, 3H), 0.83 (d, *J* = 1.1 Hz, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.2, 153.1, 142.9, 138.2, 125.9, 116.9, 110.2, 108.1, 46.5, 35.5, 34.1, 34.0, 31.6, 30.8, 30.8, 28.5, 25.1, 23.4, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₂₂H₃₄O₂: [M-H]⁺ = 329.2481 ; found: 329.2478

OH HO

(±)-19 Chemical Formula: C₁₇H₂₄O₂ Exact Mass: 260.18

Synthesis of (±)-19 from olivetol and (±)-17: Reaction Time: 24 h

TLC: R_f= 0.35 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow oil

% Yield: 21% (7.0 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.22 (s, 2H), 5.61 – 5.54 (m, 1H), 5.50 (s, 2H), 4.42 (dtq, J = 8.7, 5.5, 2.7 Hz, 1H), 2.53 – 2.40 (m, 5H), 1.89 – 1.84 (m, 4H), 1.56 (p, J = 7.5 Hz, 2H), 1.34 – 1.28 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.1, 147.3, 143.1, 126.8, 113.9, 108.5, 40.9, 37.5, 35.6, 31.7, 31.4, 30.9, 22.7, 17.1, 14.2.

HRMS-ESI (m/z): Calc. for C₁₇H₂₄O₂: [M-H]⁺ = 259.1698 ; found: 259.0579

(±)-18 Chemical Formula: C₁₇H₂₄O₂ Exact Mass: 260.18

Synthesis of (±)-18 from olivetol and (±)-17: Reaction Time: 1 h TLC: $R_f= 0.42$ in 5:1 Hex/EtOAc, Stain= iodine Physical State: yellow/orange oil % Yield: 14% (4.8 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.25 (s, 1H), 6.21 (s, 2H), 5.54 (s, 1H), 4.63 (s, 1H), 4.24 – 4.08 (m, 1H), 2.53 (s, 3H), 2.47 – 2.33 (m, 2H), 1.92 – 1.88 (m, 4H), 1.86 (s, 3H), 1.52 (t, J = 7.7 Hz, 2H), 1.37 – 1.30 (m, 4H), 1.26 (s, 1H), 0.92 – 0.85 (m, 3H).

¹³C NMR (126 MHz, CDCI₃) δ 157.5, 154.7, 147.1, 142.9, 127.6, 120.0, 108.7, 102.1, 44.1, 37.5, 34.4, 32.0, 31.7, 31.6, 22.7, 17.1, 14.2.

HRMS-ESI (m/z): Calc. for C₁₇H₂₄O₂: [M-H]⁺ = 259.1698 ; found: 259.1139

Chemical Formula: C₁₉H₂₈O₂ Exact Mass: 288.21

Synthesis of (±)-22 from olivetol and (±)-20:

Reaction Time: 1 h

TLC: R_f= 0.33 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow oil

% Yield: 40% (15.0 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.23 (s, 2H), 5.59 – 5.51 (m, 1H), 5.17 (s, 2H), 4.06 – 3.87 (m, 1H), 2.55 – 2.36 (m, 2H), 2.36 – 2.28 (m, 1H), 2.21 (dd, *J* = 16.2, 9.5 Hz, 1H), 1.95 – 1.88 (m, 2H), 1.88 – 1.83 (m, 1H), 1.80 (d, *J* = 1.9 Hz, 3H), 1.78 – 1.73 (m, 1H), 1.68 – 1.62 (m, 1H), 1.59 – 1.51 (m, 3H), 1.35 – 1.27 (m, 4H), 0.91 – 0.78 (m, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.7, 142.8, 127.7, 117.0, 108.7, 36.1, 35.6, 34.0, 32.9, 31.7, 30.9, 29.2, 27.6, 26.6, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₁₉H₂₈O₂: [M-H]⁺ = 287.2011 ; found: 287.2003

(±)-21 Chemical Formula: C₁₉H₂₈O₂ Exact Mass: 288.21

Synthesis of (±)-21 from olivetol and (±)-20: **Reaction Time:** 1 h **TLC:** $R_f= 0.33$ in 5:1 Hex/EtOAc, Stain= iodine **Physical State:** yellow/orange oil % Yield: 32% (12.0 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.29 – 6.11 (m, 2H), 5.64 (s, 1H), 5.59 – 5.47 (m, 1H), 5.11 (s, 1H), 3.84 – 3.52 (m, 1H), 2.57 – 2.45 (m, 2H), 2.36 – 2.24 (m, 1H), 2.24 – 2.13 (m, 1H), 2.01 – 1.92 (m, 2H), 1.91 – 1.83 (m, 1H), 1.79 (t, J = 1.9 Hz, 3H), 1.71 – 1.64 (m, 1H), 1.64 – 1.59 (m, 1H), 1.53 – 1.46 (m, 3H), 1.36 – 1.30 (m, 4H), 0.92 – 0.85 (m, 3H). ¹³**C** NMR (126 MHz, CDCI₃) δ 155.9, 154.4, 143.6, 141.8, 128.3, 123.9, 109.1, 102.2, 38.8, 34.4, 34.1, 33.5, 31.9, 31.2, 29.7, 27.5, 26.5, 22.6, 14.2.

HRMS-ESI (m/z): Calc. for C₁₉H₂₈O₂: [M-H]⁺ = 287.2011 ; found: 287.2021

(±)-3bc Chemical Formula: C₂₂H₃₄O₂ Exact Mass: 330.26

Synthesis of (±)-3bc from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10c:

Reaction Time: 24 h

TLC: R_f= 0.53 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 98% (42.0 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.34 (s, 2H), 5.65 (s, 1H), 3.88 (ddq, J = 8.4, 5.4, 2.6 Hz, 1H), 2.18 – 2.09 (m, 1H), 2.05 – 1.99 (m, 1H), 1.98 – 1.92 (m, 1H), 1.91 – 1.86 (m, 1H), 1.79 (s, 3H), 1.70 – 1.64 (m, 1H), 1.62 – 1.56 (m, 1H), 1.53 – 1.47 (m, 2H), 1.27 – 1.21 (m, 3H), 1.21 – 1.18 (m, 9H), 1.10 – 1.02 (m, 2H), 0.85 (t, J = 6.9 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.3, 141.1, 123.9, 114.2, 44.6, 37.5, 32.4, 32.0, 30.2, 30.1, 28.9, 28.9, 28.4, 24.8, 24.3, 22.9, 22.5, 14.3.

HRMS-ESI (m/z): Calc. for C₂₂H₃₄O₂: [M-H]⁺ = 329.2481; found: 329.2494

(±)-3bd Chemical Formula: C₂₃H₃₆O₂ Exact Mass: 344.27

Synthesis of (±)-3bd from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10d: Reaction Time: 24 h TLC: $R_{f}= 0.56$ in 10:1 Hex/EtOAc, Stain= iodine Physical State: yellow oil % Yield: 98% (43.8 mg) ¹H NMR (500 MHz, CDCI₃) δ 6.45 – 6.16 (m, 2H), 6.00 (br s, 1H), 5.53 (d, *J* = 2.1 Hz, 1H), 4.97 – 4.78 (m, 1H), 3.51 (ddq, *J* = 9.0, 4.5, 2.4 Hz, 1H), 2.27 – 2.16 (m, 1H), 2.10 – 1.98 (m, 1H), 1.91 – 1.81 (m, 1H), 1.78 – 1.75 (m, 4H), 1.54 – 1.40 (m, 3H), 1.24 – 1.15 (m, 12H), 1.10 – 1.01 (m, 2H), 0.92 (d, J = 6.5 Hz, 3H), 0.84 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCI₃) δ 150.4, 140.4, 124.1, 113.5, 44.6, 39.5, 37.5, 33.6, 31.9, 31.5, 30.6, 30.2, 28.9, 28.8, 24.8, 23.8, 22.8, 20.4, 14.2. HRMS-ESI (m/z): Calc. for C₂₃H₃₆O₂: [M-H]⁺ = 343.2637 ; found: 343.2633

(±)-3be Chemical Formula: C₂₄H₃₈O₂ Exact Mass: 358.29

Synthesis of (±)-3be from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10e:

Reaction Time: 24 h

TLC: R_f= 0.56 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: orange oil

% Yield: 72% (33.5 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.38 (d, J = 3.7 Hz, 1H), 6.34 (d, J = 3.1 Hz, 1H), 6.27 (d, J = 2.8 Hz, 1H), 5.60 (s, 1H), 4.76 (s, 1H), 3.77 – 3.54 (m, 1H), 2.18 (d, J = 19.4 Hz, 1H), 2.07 (d, J = 19.1 Hz, 1H), 1.80 (s, 3H), 1.69 – 1.61 (m, 1H), 1.53 – 1.43 (m, 3H), 1.20 (d, J = 3.2 Hz, 12H), 1.09 – 1.03 (m, 2H), 1.01 (d, J = 3.1 Hz, 3H), 0.89 – 0.78 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.1, 154.2, 150.5, 139.4, 123.6, 111.1, 107.6, 105.3, 44.6, 41.9, 37.5, 35.7, 34.1, 31.9, 30.1, 29.2, 28.8, 28.1, 24.8, 24.1, 23.8, 22.8, 14.2. HRMS-ESI (m/z): Calc. for C₂₄H₃₈O₂: [M-H]⁺ = 357.2794 ; found: 357.2787

(±)-3b Chemical Formula: C₂₅H₄₀O₂ Exact Mass: 372.30

Synthesis of (±)-3b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10: Reaction Time: 24 h TLC: $R_{f}= 0.58$ in 10:1 Hex/EtOAc, Stain= iodine Physical State: yellow/brown oil % Yield: 79% (38.4 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.41 – 6.21 (m, 2H), 6.05 (br s, 1H), 5.53 (s, 1H), 4.62 (br s, 1H), 3.80 (ddq, J = 8.9, 4.6, 2.4 Hz, 1H), 2.21 – 2.05 (m, 2H), 1.82 – 1.78 (m, 1H), 1.77 (s, 3H), 1.66 – 1.57 (m, 2H), 1.53 – 1.46 (m, 2H), 1.45 – 1.33 (m, 1H), 1.24 – 1.21 (m, 3H), 1.20 (s, 6H), 1.19 – 1.16 (m, 3H), 1.08 – 1.02 (m, 2H), 0.87 – 0.83 (m, 9H). ¹³C{¹H} NMR (126 MHz, CDCI₃) δ 150.3, 140.2, 124.9, 113.7, 44.6, 43.8, 37.5, 35.6, 31.9, 30.8, 30.1, 28.9, 28.8, 27.9, 24.8, 23.8, 22.8, 22.3, 21.8, 16.6, 14.2. HRMS-ESI (m/z): Calc. for C₂₅H₄₀O₂: [M-H]⁺ = 371.2950 ; found: 371.2756

(±)-3bf Chemical Formula: C₂₆H₄₂O₂ Exact Mass: 386.32

Synthesis of (±)-3bf from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10f:

Reaction Time: 24 h

TLC: Rf= 0.58 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/orange oil

% Yield: 56% (28.2 mg)

¹H NMR (500 MHz, CDCl₃) δ 6.55 – 6.08 (m, 2H), 5.90 – 5.79 (m, 1H), 5.42 – 5.31 (m, 1H), 5.00 (br s, 1H), 3.92 (dt, J = 9.8, 3.1 Hz, 1H), 2.20 – 2.11 (m, 1H), 2.10 – 1.97 (m, 2H), 1.81 – 1.75 (m, 1H), 1.74 (s, 3H), 1.52 – 1.43 (m, 3H), 1.23 – 1.18 (m, 8H), 1.18 – 1.11 (m, 4H), 1.03 – 0.96 (m, 2H), 0.84 (dd, J = 7.0, 1.4 Hz, 3H), 0.82 (d, J = 1.4 Hz, 9H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 150.1, 138.2, 125.9, 116.5, 46.5, 44.7, 37.4, 34.2, 34.0, 31.9, 30.8, 30.1, 28.9, 28.8, 28.5, 25.1, 24.7, 23.4, 22.7, 14.2.

HRMS-ESI (m/z): Calc. for C₂₆H₄₂O₂: [M-H]⁺ = 385.3107 ; found: 385.3122

ΟН HO

(±)-19b Chemical Formula: C₂₁H₃₂O₂ Exact Mass: 316.24

Synthesis of (±)-19b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-17: Reaction Time: 24 h TLC: $R_{f}= 0.41$ in 10:1 Hex/EtOAc, Stain= iodine Physical State: yellow oil % Yield: 55% (22.7 mg) ¹H NMR (500 MHz, CDCI₃) δ 6.34 (s, 2H), 5.58 (t, J = 2.0 Hz, 1H), 5.48 (s, 2H), 4.41 (dtq, J = 8.5, 5.4, 2.5 Hz, 1H), 2.55 – 2.39 (m, 3H), 1.89 – 1.83 (m, 4H), 1.55 – 1.44 (m, 2H), 1.27 – 1.22 (m, 3H), 1.20 (s, H), 1.07 (qd, *J* = 7.7, 7.2, 4.2 Hz, 2H), 0.85 (t, *J* = 6.9 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.8, 150.4, 147.2, 126.8, 113.6, 106.4, 44.6, 41.0, 37.5, 37.5, 31.9, 31.4, 30.2, 28.9, 24.8, 22.8, 17.1, 14.2.

HRMS-ESI (m/z): Calc. for C₂₁H₃₂O₂: [M-H]⁺ = 315.2324 ; found: 315.2324

Chemical Formula: C₂₃H₃₆O₂ Exact Mass: 344.27

Synthesis of (±)-22b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-20:

Reaction Time: 24 h

TLC: R_f= 0.41 in 10:1 Hex/EtOAc, Stain= iodine

Physical State: yellow/brown oil

% Yield: 51% (23.0 mg)

¹H NMR (500 MHz, CDCI₃) δ 6.36 (d, J = 2.0 Hz, 2H), 5.57 (s, 1H), 5.20 (s, 2H), 4.04 – 3.96 (m, 1H), 2.34 – 2.28 (m, 1H), 2.21 (dd, J = 16.1, 9.4 Hz, 1H), 1.93 (td, J = 11.0, 10.5, 2.2 Hz, 2H), 1.88 – 1.82 (m, 1H), 1.83 – 1.75 (m, 4H), 1.69 – 1.61 (m, 1H), 1.56 (dqd, J = 11.4, 5.0, 2.5 Hz, 1H), 1.52 – 1.45 (m, 2H), 1.28 – 1.14 (m, 12H), 1.09 – 1.02 (m, 2H), 0.85 (td, J = 7.0, 2.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 153.8, 150.0, 143.6, 127.8, 116.6, 106.6, 44.6, 37.5, 36.1, 33.9, 32.9, 31.9, 30.2, 29.2, 28.9, 28.9, 27.6, 26.6, 24.8, 22.8, 14.2. HRMS-ESI (m/z): Calc. for $C_{23}H_{36}O_2$: [M-H]⁺ = 343.2637 ; found: 343.2631

Computational Studies:

Constrained conformational analyses of the transition states were performed with Grimme's Conformer-Rotamer Ensemble Sampling Tool^{S12} (CREST). The resulting conformers were then optimized with ORCA^{S13-S16} at the composite r²SCAN- $3C^{S17}$ /CPCM(CH₂Cl₂) level and verified as stationary points by inspection of harmonic vibrational frequencies. For **3ad** and **6ad**, the conformers were all confirmed as transition states connecting the desired reactants and products based on inspection of intrinsic reaction coordinate (IRC) scans. Products were similarly modeled by first performing unconstrained conformational analyses followed by r²SCAN-3C/CPCM(CH₂Cl₂) optimizations.

Benchmarking was performed on the global minimum structures for $3ae^{\ddagger}$ and $6ae^{\ddagger}$ against results at the DLPNO-CCSD(T)^{S18-S19}/CBS(3,CC)^{S20}/CPCM(CH₂Cl₂)//r²SCAN-3C/CPCM(CH₂Cl₂) level, with the results shown in **Table S1**. Inspection of **Table S1** indicates that the r²SCAN-3C composite method shows very nice agreement with the benchmark DLPNO-CCSD(T) results thus justifying our choice of computational model.

Listed in **Table S2** are computational summaries for transition state structures. The experimental value listed in **Table S2** assumes that the 1 h ratio of products is completely kinetically controlled. As can be seen from **Table S2**, this assumption does not appear to hold in all cases. In particular, for systems with the **10f** allylic alcohol, we see a large divergence between the computational and experimental ratios. We tentatively attribute this discrepancy to a breakdown of the kinetic assumption listed above. Conformational analysis for each of the systems are listed in **Tables S3-S62**. Representative structures are given in **Tables S63-S122**. **Figure S1** shows the Löwdin partial charges for the *ortho* and *para* carbons (relative to the alkyl group) for **7-7b**. The structures used here were the minima as determined by CREST, with optimizations at the same level of theory as listed above.

		E	E	G	G	ΔE ⁱⁱ	ΔG ⁱⁱⁱ
Theory ⁱ	BS	6ae‡	3ae [‡]	6ae‡	3ae [‡]	kool	kool
_		au	au	au	au	KCal	KCal
CCSD(T) ^{iv}	CBS(3,CC)	-733.558628	-733.558314	-733.275080	-733.274932	-0.20	-0.09
r ² SCA	N-3C	-734.345630	-734.344590	-734.062082	-734.061209	-0.65	-0.55
PBEH	1-3C	-732.914515	-732.913404	-732.619010	-732.617607	-0.70	-0.88
M06	DEF2-SV(P)	-733.382846	-733.383136	-733.100011	-733.099214	0.18	-0.50
M06	DEF2-TZVP	-734.245852	-734.244673	-733.960794	-733.959563	-0.74	-0.77
M06-2X	DEF2-SV(P)	-733.568303	-733.568621	-733.280398	-733.280928	0.20	0.33
M06-2X	DEF2-TZVP	-734.453233	-734.452865	-734.165339	-734.164311	-0.23	-0.65
B3LYP ^v	DEF2-SV(P)	-733.527409	-733.526976	-733.243021	-733.242338	-0.27	-0.43
B3LYP ^v	DEF2-TZVP	-734.401946	-734.400525	-734.115812	-734.114699	-0.89	-0.70
PBE0 ^v	DEF2-TZVP	-733.953871	-733.952908	-733.667888	-733.666829	-0.60	-0.66
WB97X-D3BJ	DEF2-SV(P)	-734.259902	-734.260550	-733.971218	-733.972000	0.41	0.49
WB97X-D3BJ	DEF2-TZVP	-735.118529	-735.118001	-734.829503	-734.828868	-0.33	-0.40
WB97X-V	DEF2-SV(P)	-733.710349	-733.710851	-733.423273	-733.423223	0.31	-0.03
WB97X-V	DEF2-TZVP	-734.569268	-734.568997	-734.281293	-734.281979	-0.17	0.43

Table S1. Summary of benchmarking for 3ae[‡] and 6ae[‡].

All models used the CPCM(CH₂Cl₂) implicit solvation model with the Gaussian charge scheme.

ii DE = E(Abnormal) - E(Normal)iii DG = G(Abnormal) - G(Normal)iv $DLPNO-CCSD(T)//r^2SCAN-3C$

^v D3BJ dispersion model was used.

Table S2. Summary of	computational results.
----------------------	------------------------

Sustem		k ³ /k ⁶	
System	E	G	Expt.
3ac	0.33	0.48	0.33
3ad	0.18	0.24	0.40
3ae	0.41	0.48	0.1
3a	1.00	1.20	0.67
3af	0.20	0.34	5.00
3c	1.02	0.67	0.70
3d	1.74	0.85	1.00
3e	0.55	0.51	0.25
3	0.46	0.49	1.10
3f	5.28	2.34	27
3bc	2.32	4.52	> 100
3bd	3.48	8.80	> 100
3be	214.88	206.01	> 100
3b	40.60	49.72	> 100
3bf	43.00	117.65	17

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-695.040902	-694.784449	1.2	1.0
2	-695.042754	-694.785975	0.0	0.0
3	-695.040806	-694.782988	1.2	1.9
4	-695.036347	-694.779231	4.0	4.2
5	-695.042334	-694.784389	0.3	1.0
6	-695.038989	-694.780489	2.4	3.4
7	-695.039122	-694.780409	2.3	3.5
Avg.	-695.042280	-694.785447		

 Table S3. Conformational analysis for 3ac[‡].

 Table S4. Conformational analysis for 3ac.

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-694.6426066	-694.3949300	0.0	0.0
2	-694.6413948	-694.3942055	0.8	0.5
3	-694.6405366	-694.3929628	1.3	1.2
Avg.	-694.6421988	-694.3945643		

Table S5. Conformational analysis for 6ac[‡].

Conformer #	E	G	DE	DG
Comorner #	au	au	kcal/mol	kcal/mol
1	-695.043855	-694.786599	0.0	0.0
2	-695.041395	-694.784419	1.5	1.4
3	-695.042175	-694.784158	1.1	1.5
4	-695.042770	-694.784092	0.7	1.6
5	-695.036967	-694.779060	4.3	4.7
6	-695.038860	-694.779692	3.1	4.3
Avg.	-695.043319	-694.786131		

Table S6. Conformational analysis for 6ac.

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-694.6416823	-694.3926803	0.0	0.0
2	-694.6397086	-694.3902285	1.2	1.5
Avg.	-694.6414653	-694.3925106		

Conformer #	E	G DE		DG
Conionner #	au	au	kcal/mol	kcal/mol
1	-734.342834	-734.059655	1.2	1.0
2	-734.344604	-734.061245	0.1	0.0
3	-734.344690	-734.060382	0.0	0.5
4	-734.344181	-734.059967	0.3	0.8
5	-734.344229	-734.059910	0.3	0.8
6	-734.343398	-734.058867	0.8	1.5
7	-734.342415	-734.058871	1.4	1.5
8	-734.343353	-734.059511	0.8	1.1
9	-734.343231	-734.058432	0.9	1.8
Avg.	-734.344175	-734.060392		

Table S	7. Cont	formational	analv	sis for	[·] 3ad [‡] .
		onnational	anary	010 101	ouu .

Table S8. Conformational analysis for 3ad.

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-733.9464598	-733.6725199	0.0	0.0
2	-733.9447891	-733.6709757	1.1	1.0
3	-733.9465133	-733.6719802	0.0	0.3
Avg.	-733.9463576	-733.6721758		

Table S9. Conformational analysis for 6ad[‡].

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-734.346141	-734.061660	0.0	0.3
2	-734.345644	-734.062161	0.3	0.0
3	-734.346134	-734.061201	0.0	0.6
4	-734.345518	-734.061860	0.4	0.2
5	-734.344669	-734.059692	0.9	1.5
6	-734.343801	-734.058625	1.5	2.2
Avg.	-734.345809	-734.061756		

Table S10. C	Conformational	analysis	for 6ad .
--------------	----------------	----------	------------------

Conformar #	E	G	DE	DG
Comormer #	au	au	kcal/mol	kcal/mol
1	-733.9451078	-733.6696136	0.0	0.0
2	-733.9451554	-733.6695269	0.0	0.1
3	-733.9424533	-733.6665897	1.7	1.9
4	-733.9424183	-733.6665334	1.7	1.9
Avg.	-733.9449858	-733.6694531		

Conformar #	Е	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-773.644200	-773.333030	0.2	0.1
2	-773.642660	-773.331497	1.2	1.1
3	-773.644436	-773.333124	0.1	0.1
4	-773.642231	-773.331986	1.5	0.8
5	-773.644576	-773.333265	0.0	0.0
Avg.	-773.644278	-773.332969		

Table S11. Conformational analysis for 3ae[‡].

Table S12. Conformational analysis for 3ae.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-773.246127	-772.945009	0.1	0.0
2	-773.246222	-772.944557	0.0	0.3
Avg.	-773.246177	-772.944836		

Table S13. Conformational analysis for 6ae[‡].

Conformar #	Е	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-773.645613	-773.334124	0.0	0.0
2	-773.643223	-773.331717	1.5	1.5
3	-773.643243	-773.332048	1.5	1.3
4	-773.643595	-773.331505	1.3	1.6
Avg.	-773.645128	-773.333660		

 Table S14. Conformational analysis for 6ae.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-773.238073	-772.935667	0.1	0.2
2	-773.237674	-772.935309	0.4	0.4
3	-773.238306	-772.935938	0.0	0.0
4	-773.236347	-772.934262	1.2	1.1
5	-773.237508	-772.935459	0.5	0.3
6	-773.236056	-772.934252	1.4	1.1
7	-773.237958	-772.935609	0.2	0.2
8	-773.237144	-772.935239	0.7	0.4
Avg.	-773.237827	-772.935494		

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-812.947249	-812.609165	0.1	0.0
2	-812.947349	-812.609087	0.0	0.0
3	-812.946129	-812.609048	0.8	0.1
4	-812.945090	-812.607915	1.4	0.8
5	-812.945093	-812.607908	1.4	0.8
6	-812.945158	-812.607240	1.4	1.2
Avg.	-812.946920	-812.608850		

Table S15. Conformational analysis for 3a[‡].

Table S16. Conformational analysis for 3a.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-812.5469972	-812.2195526	0.0	0.0
2	-812.5449901	-812.2175753	1.3	1.2
3	-812.5442272	-812.2159939	1.7	2.2
Avg.	-812.5466676	-812.2192689		

Table S17. Conformational analysis for 6a[‡].

Conformar #	E	G	DE	DG
Comormer #	au	au	kcal/mol	kcal/mol
1	-812.947767	-812.609006	0.0	0.2
2	-812.946622	-812.609248	0.7	0.0
3	-812.945723	-812.607357	1.3	1.2
4	-812.945657	-812.607255	1.3	1.3
5	-812.946514	-812.608662	0.8	0.4
6	-812.945793	-812.607017	1.2	1.4
7	-812.946369	-812.608053	0.9	0.7
8	-812.945474	-812.606604	1.4	1.7
Avg.	-812.946914	-812.608680		

Table S18. Conformational analysis for 6a

Conformer #	Е	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-812.540312	-812.211749	0.2	0.0
2	-812.539903	-812.211568	0.4	0.1
3	-812.540602	-812.211680	0.0	0.0
4	-812.538010	-812.209144	1.6	1.6
5	-812.537488	-812.208888	2.0	1.8
Avg.	-812.540245	-812.211569		
Conformer #	Е	G	DE	DG
-------------	-------------	-------------	----------	----------
Comonner #	au	au	kcal/mol	kcal/mol
1	-852.246587	-851.880393	0.3	1.6
2	-852.246243	-851.880556	0.5	1.5
3	-852.246994	-851.882921	0.1	0.0
4	-852.247086	-851.882647	0.0	0.2
5	-852.245031	-851.879790	1.3	2.0
Avg.	-852.246770	-851.882567		

 Table S19. Conformational analysis for 3af[‡].

Table S20. Conformational analysis for 3af.

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-851.842902	-851.488988	0.0	0.0
2	-851.841912	-851.486364	0.6	1.6
3	-851.840876	-851.485889	1.3	1.9
4	-851.841916	-851.486371	0.6	1.6
Avg.	-851.842390	-851.488607		

Table S21. Conformational analysis for 6af[‡].

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-852.248105	-851.882371	0.4	1.1
2	-852.248760	-851.884061	0.0	0.0
3	-852.247436	-851.880340	0.8	2.3
4	-852.248226	-851.883357	0.3	0.4
5	-852.246646	-851.881230	1.3	1.8
Avg.	-852.248272	-851.883576		

Table S22. Conformational analysis for 6af.

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-851.837324	-851.482272	0.3	0.0
2	-851.837498	-851.481832	0.2	0.3
3	-851.837788	-851.482262	0.0	0.0
Avg.	-851.837576	-851.482163		

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-852.246553	-851.881831	0.0	0.3
2	-852.244519	-851.879668	1.3	1.6
3	-852.246623	-851.882080	0.0	0.1
4	-852.246406	-851.882294	0.1	0.0
5	-852.245382	-851.880987	0.8	0.8
6	-852.245263	-851.880988	0.9	0.8
7	-852.245700	-851.880005	0.6	1.4
8	-852.245362	-851.882064	0.8	0.1
9	-852.246031	-851.880773	0.4	1.0
10	-852.245527	-851.879008	0.7	2.1
11	-852.245099	-851.880388	1.0	1.2
12	-852.245554	-851.880477	0.7	1.1
13	-852.245745	-851.880350	0.6	1.2
14	-852.245758	-851.880368	0.5	1.2
15	-852.245349	-851.881209	0.8	0.7
16	-852.245426	-851.880931	0.8	0.9
17	-852.245093	-851.880375	1.0	1.2
18	-852.244893	-851.879873	1.1	1.5
19	-852.244912	-851.880168	1.1	1.3
20	-852.244488	-851.879861	1.3	1.5
21	-852.244462	-851.880376	1.4	1.2
22	-852.245473	-851.881196	0.7	0.7
23	-852.244482	-851.880538	1.3	1.1
24	-852.244292	-851.879786	1.5	1.6
25	-852.245864	-851.879805	0.5	1.6
26	-852.244470	-851.880393	1.4	1.2
27	-852.244397	-851.880194	1.4	1.3
28	-852.246258	-851.880854	0.2	0.9
29	-852.244230	-851.879348	1.5	1.8
30	-852.244817	-851.879354	1.1	1.8
31	-852.245249	-851.880035	0.9	1.4
32	-852.245258	-851.879291	0.9	1.9
33	-852.245259	-851.879354	0.9	1.8
34	-852.246384	-851.879393	0.1	1.8
35	-852.244326	-851.878660	1.4	2.3
36	-852.244211	-851.879630	1.5	1.7
37	-852.246475	-851.881142	0.1	0.7
38	-852.244684	-851.878801	1.2	2.2
39	-852.246489	-851.880963	0.1	0.8
40	-852.244979	-851.879635	1.0	1.7

 Table S23. Conformational analysis for 3c[‡].

41	-852.244808	-851.879746	1.1	1.6
42	-852.244958	-851.880147	1.0	1.3
43	-852.245789	-851.879872	0.5	1.5
44	-852.244961	-851.879753	1.0	1.6
45	-852.244536	-851.878351	1.3	2.5
46	-852.244963	-851.879797	1.0	1.6
47	-852.245716	-851.880006	0.6	1.4
48	-852.244882	-851.879733	1.1	1.6
49	-852.244992	-851.879985	1.0	1.4
50	-852.245180	-851.878112	0.9	2.6
51	-852.244791	-851.879475	1.1	1.8
52	-852.244984	-851.879954	1.0	1.5
53	-852.245165	-851.879530	0.9	1.7
54	-852.244996	-851.880058	1.0	1.4
55	-852.244905	-851.878656	1.1	2.3
56	-852.245187	-851.879652	0.9	1.7
57	-852.245800	-851.879664	0.5	1.7
58	-852.244391	-851.878815	1.4	2.2
59	-852.245834	-851.879921	0.5	2.5
60	-852.245122	-851.878811	0.9	2.2
61	-852.244584	-851.878653	1.3	2.3
62	-852.245047	-851.878737	1.0	2.2
63	-852.245747	-851.879920	0.5	1.5
64	-852.245034	-851.879025	1.0	2.1
65	-852.245002	-851.880084	1.0	1.4
66	-852.245087	-851.880282	1.0	1.3
Avg.	-852.245665	-851.880949		

Conformer #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-851.845097	-851.489506	0.1	0.3
2	-851.845154	-851.489440	0.1	0.4
3	-851.845119	-851.489624	0.1	0.3
4	-851.845254	-851.490055	0.0	0.0
5	-851.844777	-851.488497	0.3	1.0
6	-851.844847	-851.488577	0.3	0.9
7	-851.844889	-851.488745	0.2	0.8
8	-851.844249	-851.488427	0.6	1.0
9	-851.844175	-851.488145	0.7	1.2
10	-851.844105	-851.488351	0.7	1.1
11	-851.844069	-851.488189	0.7	1.2
12	-851.844035	-851.488217	0.8	1.2
13	-851.844210	-851.488658	0.7	0.9
14	-851.844190	-851.488687	0.7	0.9
15	-851.844285	-851.488689	0.6	0.9
16	-851.844201	-851.488793	0.7	0.8
17	-851.843119	-851.487043	1.3	1.9
18	-851.843067	-851.486749	1.4	2.1
19	-851.842932	-851.486887	1.5	2.0
20	-851.842359	-851.485686	1.8	2.7
21	-851.843839	-851.488176	0.9	1.2
22	-851.844148	-851.487252	0.7	1.8
23	-851.842351	-851.485539	1.8	2.8
24	-851.844115	-851.487243	0.7	1.8
25	-851.844130	-851.487202	0.7	1.8
26	-851.843818	-851.488057	0.9	1.3
27	-851.843814	-851.487706	0.9	1.5
28	-851.843894	-851.487934	0.9	1.3
29	-851.843982	-851.487831	0.8	1.4
30	-851.842326	-851.486004	1.8	2.5
31	-851.842317	-851.485573	1.8	2.8
32	-851.844061	-851.487850	0.7	1.4
33	-851.843845	-851.488304	0.9	1.1
34	-851.843859	-851.488317	0.9	1.1
35	-851.843646	-851.486887	1.0	2.0
36	-851.843581	-851.486730	1.0	2.1
37	-851.843539	-851.486914	1.1	2.0
38	-851.843564	-851.486996	1.1	1.9
39	-851.842953	-851.486722	1.4	2.1
40	-851.843250	-851.486763	1.3	2.1
41	-851.842950	-851.486663	1.4	2.1
42	-851.842788	-851.486555	1.5	2.2

Table S24. Conformational analysis for 3c.

43	-851.842874	-851.486613	1.5	2.2
44	-851.842872	-851.486699	1.5	2.1
45	-851.842859	-851.486703	1.5	2.1
46	-851.843284	-851.488657	1.2	0.9
47	-851.842930	-851.487201	1.5	1.8
48	-851.842915	-851.486948	1.5	1.9
49	-851.842916	-851.487287	1.5	1.7
50	-851.842954	-851.487126	1.4	1.8
51	-851.842920	-851.487007	1.5	1.9
52	-851.842146	-851.485448	2.0	2.9
53	-851.842886	-851.487000	1.5	1.9
54	-851.842926	-851.485680	1.5	2.7
55	-851.842825	-851.485813	1.5	2.7
56	-851.842956	-851.485912	1.4	2.6
57	-851.842820	-851.485775	1.5	2.7
58	-851.842709	-851.486161	1.6	2.4
59	-851.842696	-851.486290	1.6	2.4
60	-851.842550	-851.486959	1.7	1.9
61	-851.842732	-851.486080	1.6	2.5
62	-851.842709	-851.486277	1.6	2.4
63	-851.843049	-851.488137	1.4	1.2
64	-851.842273	-851.487627	1.9	1.5
65	-851.843179	-851.488246	1.3	1.1
66	-851.844778	-851.488340	0.3	1.1
Avg.	-851.844229	-851.488642		
60 61 62 63 64 65 66 Avg.	-851.842550 -851.842732 -851.842709 -851.843049 -851.842273 -851.843179 -851.844778 -851.844229	-851.486959 -851.486080 -851.486277 -851.488137 -851.487627 -851.488246 -851.488340 -851.488642	1.7 1.6 1.6 1.4 1.9 1.3 0.3	1.9 2.5 2.4 1.2 1.5 1.1 1.1

Table S25. Conformational analysis for 6c[‡].

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-852.246482	-851.882016	0.1	0.2
2	-852.246567	-851.882298	0.0	0.0
3	-852.246485	-851.882363	0.1	0.0
4	-852.244265	-851.880548	1.4	1.1
5	-852.245952	-851.881281	0.4	0.7
6	-852.246142	-851.881141	0.3	0.8
7	-852.244783	-851.878442	1.1	2.5
8	-852.245668	-851.880714	0.6	1.0
9	-852.245691	-851.881070	0.5	0.8
10	-852.245618	-851.881498	0.6	0.5
11	-852.245456	-851.880619	0.7	1.1
12	-852.245412	-851.880663	0.7	1.1
13	-852.245726	-851.881366	0.5	0.6
14	-852.245536	-851.881218	0.6	0.7
15	-852.245662	-851.881289	0.6	0.7
16	-852.246259	-851.881766	0.2	0.4

17	-852.244256	-851.880351	1.5	1.3
18	-852.244556	-851.878207	1.3	2.6
19	-852.244499	-851.879161	1.3	2.0
20	-852.244789	-851.879063	1.1	2.1
21	-852.245294	-851.879887	0.8	1.6
22	-852.245602	-851.880036	0.6	1.5
23	-852.244700	-851.879512	1.2	1.8
24	-852.245440	-851.880401	0.7	1.2
25	-852.245546	-851.880500	0.6	1.2
26	-852.244741	-851.880493	1.1	1.2
27	-852.245606	-851.880091	0.6	1.4
28	-852.244806	-851.880288	1.1	1.3
29	-852.244345	-851.878398	1.4	2.5
30	-852.245230	-851.880374	0.8	1.2
31	-852.244641	-851.879286	1.2	1.9
32	-852.244744	-851.878723	1.1	2.3
33	-852.244794	-851.879023	1.1	2.1
34	-852.245300	-851.880501	0.8	1.2
35	-852.244479	-851.880423	1.3	1.2
36	-852.244209	-851.879101	1.5	2.0
37	-852.246429	-851.881781	0.1	0.4
38	-852.245642	-851.879878	0.6	1.6
39	-852.245739	-851.880564	0.5	1.1
40	-852.244868	-851.880254	1.1	1.3
41	-852.245068	-851.879664	0.9	1.7
42	-852.245266	-851.879215	0.8	2.0
43	-852.244926	-851.879514	1.0	1.8
44	-852.244757	-851.878683	1.1	2.3
45	-852.244843	-851.879319	1.1	1.9
46	-852.244770	-851.878794	1.1	2.2
47	-852.244558	-851.878453	1.3	2.5
48	-852.244804	-851.879254	1.1	2.0
49	-852.244875	-851.878624	1.1	2.3
50	-852.244608	-851.877817	1.2	2.9
51	-852.244603	-851.878579	1.2	2.4
52	-852.244747	-851.879581	1.1	1.7
53	-852.244280	-851.878488	1.4	2.4
Avg.	-852.245639	-851.881249		

	E	G	DE	DG
Conformer #	au	au	kcal/mol	kcal/mol
1	-851.843567	-851.487439	0.3	0.4
2	-851.844007	-851.488112	0.0	0.0
3	-851.843144	-851.486635	0.6	0.9
4	-851.843233	-851.486952	0.5	0.7
5	-851.843008	-851.486233	0.6	1.2
6	-851.843071	-851.487124	0.6	0.6
7	-851.843529	-851.487470	0.3	0.4
8	-851.842771	-851.486268	0.8	1.2
9	-851.843077	-851.486971	0.6	0.7
10	-851.843602	-851.487399	0.3	0.4
11	-851.842643	-851.485673	0.9	1.5
12	-851.842493	-851.486060	1.0	1.3
13	-851.843225	-851.486921	0.5	0.7
14	-851.842456	-851.485430	1.0	1.7
15	-851.844037	-851.487978	0.0	0.1
16	-851.842798	-851.485848	0.8	1.4
17	-851.841781	-851.484875	1.4	2.0
18	-851.842479	-851.486377	1.0	1.1
19	-851.843380	-851.486685	0.4	0.9
20	-851.843336	-851.487610	0.4	0.3
21	-851.842046	-851.485180	1.2	1.8
22	-851.841313	-851.484123	1.7	2.5
23	-851.842449	-851.486249	1.0	1.2
24	-851.841941	-851.485823	1.3	1.4
25	-851.842038	-851.485553	1.3	1.6
26	-851.842106	-851.485607	1.2	1.6
27	-851.842071	-851.485673	1.2	1.5
28	-851.841365	-851.485424	1.7	1.7
29	-851.842787	-851.486360	0.8	1.1
30	-851.842896	-851.485962	0.7	1.3
31	-851.842209	-851.485000	1.1	2.0
32	-851.841836	-851.484924	1.4	2.0
33	-851.841737	-851.485526	1.4	1.6
34	-851.841314	-851.484056	1.7	2.5
35	-851.840918	-851.484360	2.0	2.4
36	-851.841688	-851.485951	1.5	1.4
37	-851.841232	-851.484617	1.8	2.2
38	-851.840902	-851.483992	2.0	2.6
Avg.	-851.843128	-851.487077		

Table S26. Conformational analysis for 6c.

Conformer #	E	G	DE	DG
Conformer #	au	au	kcal/mol	kcal/mol
1	-891.549995	-891.156939	0.0	0.3
2	-891.548978	-891.156205	0.6	0.8
3	-891.548765	-891.156915	0.8	0.3
4	-891.548477	-891.155338	1.0	1.3
5	-891.548532	-891.156960	0.9	0.3
6	-891.548338	-891.155351	1.0	1.3
7	-891.548641	-891.155451	0.9	1.2
8	-891.548017	-891.155025	1.2	1.5
9	-891.545226	-891.154695	3.0	1.7
10	-891.547932	-891.154692	1.3	1.7
11	-891.547368	-891.155177	1.7	1.4
12	-891.548180	-891.155109	1.1	1.5
13	-891.547369	-891.155352	1.7	1.3
14	-891.547386	-891.155874	1.6	1.0
15	-891.548300	-891.157441	1.1	0.0
16	-891.547209	-891.156246	1.8	0.7
17	-891.547158	-891.155993	1.8	0.9
18	-891.547582	-891.155613	1.5	1.1
19	-891.547631	-891.155664	1.5	1.1
20	-891.547679	-891.155549	1.5	1.2
21	-891.548090	-891.154944	1.2	1.6
22	-891.547228	-891.156496	1.7	0.6
23	-891.548021	-891.156045	1.2	0.9
24	-891.547797	-891.155904	1.4	1.0
25	-891.547929	-891.155908	1.3	1.0
26	-891.547477	-891.156117	1.6	0.8
27	-891.547508	-891.156327	1.6	0.7
28	-891.548094	-891.155224	1.2	1.4
29	-891.547942	-891.154283	1.3	2.0
30	-891.547970	-891.155040	1.3	1.5
31	-891.546862	-891.154498	2.0	1.8
32	-891.547676	-891.156198	1.5	0.8
33	-891.546909	-891.154328	1.9	2.0
34	-891.547713	-891.155077	1.4	1.5
35	-891.547295	-891.156251	1.7	0.7
36	-891.547532	-891.154144	1.6	2.1
37	-891.546876	-891.155060	2.0	1.5
38	-891.547975	-891.155316	1.3	1.3
39	-891.547655	-891.156395	1.5	0.7
40	-891.547493	-891.155574	1.6	1.2
41	-891.547552	-891.156437	1.5	0.6
42	-891.547566	-891.154699	1.5	1.7

Table S27. Conformational analysis for 3d[‡].

43	-891.547400	-891.154911	1.6	1.6
44	-891.547989	-891.153756	1.3	2.3
45	-891.547277	-891.154713	1.7	1.7
46	-891.549639	-891.156578	0.2	0.5
47	-891.547994	-891.155442	1.3	1.3
48	-891.547195	-891.155490	1.8	1.2
49	-891.547204	-891.155429	1.8	1.3
Avg.	-891.548485	-891.156220		

 Table S28. Conformational analysis for 3d.

Conformor #	Е	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-891.148925	-890.766835	0.0	0.3
2	-891.148966	-890.766912	0.0	0.3
3	-891.148947	-890.766912	0.0	0.3
4	-891.148971	-890.766861	0.0	0.3
5	-891.148979	-890.766798	0.0	0.3
6	-891.148955	-890.767181	0.0	0.1
7	-891.148585	-890.765921	0.2	0.9
8	-891.148691	-890.766029	0.2	0.8
9	-891.148552	-890.765933	0.3	0.9
10	-891.148631	-890.766072	0.2	0.8
11	-891.147991	-890.765501	0.6	1.1
12	-891.148113	-890.765794	0.5	1.0
13	-891.147771	-890.765508	0.8	1.1
14	-891.147938	-890.765400	0.7	1.2
15	-891.147497	-890.764428	0.9	1.8
16	-891.148023	-890.766333	0.6	0.6
17	-891.148088	-890.766699	0.6	0.4
18	-891.147300	-890.764568	1.1	1.7
19	-891.147933	-890.765965	0.7	0.9
20	-891.147976	-890.766271	0.6	0.7
21	-891.147994	-890.766166	0.6	0.7
22	-891.146865	-890.764240	1.3	1.9
23	-891.146544	-890.763354	1.5	2.5
24	-891.146591	-890.763292	1.5	2.5
25	-891.147890	-890.764631	0.7	1.7
26	-891.146104	-890.762825	1.8	2.8
27	-891.147844	-890.764518	0.7	1.8
28	-891.147975	-890.764624	0.6	1.7
29	-891.147963	-890.764987	0.6	1.5
30	-891.147764	-890.765536	0.8	1.1
31	-891.146109	-890.762999	1.8	2.7
32	-891.147759	-890.765136	0.8	1.4
33	-891.148938	-890.767334	0.0	0.0

34	-891.146461	-890.763868	1.6	2.2
35	-891.146554	-890.764021	1.5	2.1
36	-891.146547	-890.764274	1.5	1.9
37	-891.146428	-890.763836	1.6	2.2
38	-891.147196	-890.765439	1.1	1.2
39	-891.146527	-890.764481	1.5	1.8
40	-891.147277	-890.765779	1.1	1.0
41	-891.146496	-890.764450	1.6	1.8
Avg.	-891.148393	-890.766425		

Table S29. Conformational analysis for 6d[‡].

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-891.548923	-891.156934	0.0	0.5
2	-891.548559	-891.156597	0.2	0.7
3	-891.548883	-891.156954	0.0	0.5
4	-891.548387	-891.157190	0.3	0.3
5	-891.548094	-891.155290	0.5	1.5
6	-891.548055	-891.155607	0.5	1.3
7	-891.548097	-891.156010	0.5	1.1
8	-891.547791	-891.155896	0.7	1.2
9	-891.547987	-891.155884	0.6	1.2
10	-891.548323	-891.157742	0.4	0.0
11	-891.545865	-891.154945	1.9	1.8
12	-891.547333	-891.154818	1.0	1.8
13	-891.547837	-891.155972	0.7	1.1
14	-891.546691	-891.153823	1.4	2.5
15	-891.547142	-891.154740	1.1	1.9
16	-891.547834	-891.156365	0.7	0.9
17	-891.545999	-891.155862	1.8	1.2
18	-891.548028	-891.156256	0.6	0.9
19	-891.548849	-891.156628	0.0	0.7
20	-891.547411	-891.156090	0.9	1.0
21	-891.545865	-891.154812	1.9	1.8
22	-891.545844	-891.154215	1.9	2.2
23	-891.548029	-891.154846	0.6	1.8
24	-891.546532	-891.153626	1.5	2.6
25	-891.547299	-891.155934	1.0	1.1
26	-891.547483	-891.156494	0.9	0.8
27	-891.546156	-891.153031	1.7	3.0
28	-891.547176	-891.154070	1.1	2.3
29	-891.548054	-891.155343	0.5	1.5
30	-891.547852	-891.156715	0.7	0.6
31	-891.547721	-891.155300	0.8	1.5
32	-891.547456	-891.156413	0.9	0.8

33	-891.547451	-891.156387	0.9	0.9
34	-891.547183	-891.155211	1.1	1.6
35	-891.547324	-891.155488	1.0	1.4
36	-891.546012	-891.155493	1.8	1.4
37	-891.546972	-891.155454	1.2	1.4
38	-891.547188	-891.155954	1.1	1.1
39	-891.547749	-891.155601	0.7	1.3
40	-891.547338	-891.155571	1.0	1.4
41	-891.546866	-891.156237	1.3	0.9
42	-891.546870	-891.155792	1.3	1.2
43	-891.546946	-891.155379	1.2	1.5
44	-891.546818	-891.153825	1.3	2.5
45	-891.547473	-891.155334	0.9	1.5
46	-891.547052	-891.154846	1.2	1.8
47	-891.548092	-891.156277	0.5	0.9
48	-891.547252	-891.155221	1.0	1.6
49	-891.547071	-891.155229	1.2	1.6
50	-891.546549	-891.154673	1.5	1.9
51	-891.547060	-891.154652	1.2	1.9
52	-891.547841	-891.156012	0.7	1.1
Avg.	-891.547961	-891.156373		

Table S30. Conformational analysis for 6d.

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-891.143484	-890.761076	0.0	0.0
2	-891.142706	-890.760054	0.5	0.6
3	-891.142589	-890.760799	0.6	0.2
4	-891.142823	-890.760066	0.4	0.6
5	-891.141920	-890.759398	1.0	1.1
6	-891.142444	-890.759539	0.7	1.0
7	-891.142543	-890.759831	0.6	0.8
8	-891.142364	-890.759283	0.7	1.1
9	-891.142266	-890.759754	0.8	0.8
10	-891.143093	-890.760900	0.2	0.1
11	-891.142302	-890.759756	0.7	0.8
12	-891.142516	-890.760399	0.6	0.4
13	-891.142035	-890.759761	0.9	0.8
14	-891.140525	-890.757301	1.9	2.4
15	-891.141632	-890.759424	1.2	1.0
16	-891.142908	-890.760813	0.4	0.2
17	-891.140833	-890.758299	1.7	1.7
18	-891.141590	-890.759113	1.2	1.2
19	-891.142085	-890.759222	0.9	1.2
20	-891.142111	-890.759542	0.9	1.0

21	-891.141866	-890.759604	1.0	0.9
22	-891.141048	-890.758849	1.5	1.4
23	-891.142060	-890.758919	0.9	1.4
24	-891.142598	-890.760354	0.6	0.5
25	-891.142050	-890.758816	0.9	1.4
26	-891.142014	-890.759400	0.9	1.1
27	-891.141631	-890.759501	1.2	1.0
28	-891.141470	-890.758764	1.3	1.5
29	-891.141532	-890.759114	1.2	1.2
30	-891.140933	-890.757822	1.6	2.0
31	-891.141901	-890.759696	1.0	0.9
32	-891.142235	-890.760126	0.8	0.6
33	-891.140961	-890.757802	1.6	2.1
34	-891.142737	-890.760059	0.5	0.6
35	-891.140325	-890.757764	2.0	2.1
36	-891.142003	-890.759865	0.9	0.8
37	-891.140447	-890.757901	1.9	2.0
38	-891.140880	-890.758444	1.6	1.7
39	-891.140386	-890.757022	1.9	2.5
40	-891.140724	-890.757950	1.7	2.0
41	-891.140452	-890.756978	1.9	2.6
42	-891.140909	-890.759193	1.6	1.2
43	-891.141259	-890.757931	1.4	2.0
44	-891.141685	-890.759024	1.1	1.3
45	-891.140331	-890.756429	2.0	2.9
Avg.	-891.142375	-890.760065		

Table S31. Conformational analysis for 3e[‡].

Conformer #	E	G	DE	DG
	au	au	kcal/mol	kcal/mol
1	-930.846885	-930.427415	0.7	1.3
2	-930.847514	-930.427702	0.3	1.1
3	-930.847957	-930.429431	0.0	0.0
4	-930.845969	-930.427633	1.2	1.1
5	-930.845088	-930.426705	1.8	1.7
6	-930.845633	-930.426275	1.5	2.0
7	-930.845025	-930.426658	1.8	1.7
8	-930.846665	-930.426950	0.8	1.6
9	-930.845467	-930.425819	1.6	2.3
10	-930.847378	-930.427542	0.4	1.2
11	-930.846029	-930.426942	1.2	1.6
12	-930.846878	-930.427977	0.7	0.9
13	-930.847025	-930.428228	0.6	0.8
14	-930.847010	-930.428256	0.6	0.7
15	-930.846660	-930.426954	0.8	1.6

16	-930,845656	-930,427600	1.4	1.1
17	-930.845029	-930.427305	1.8	1.3
18	-930.846961	-930.428387	0.6	0.7
19	-930.845119	-930,426411	1.8	1.9
20	-930,845654	-930,427957	1.4	0.9
21	-930,845660	-930,425833	1.4	2.3
22	-930 845019	-930 426664	1.8	17
23	-930 845891	-930 427481	1.3	12
24	-930 845788	-930 426121	1.0	21
25	-930 845785	-930 426254	1.4	2.0
26	-930 846523	-930 426776	0.9	1 7
27	-930 846157	-930 426495	1 1	1.8
28	-930 846450	-930 426447	0.9	1.9
20	-930 845010	-930 426481	1.8	1.9
30	-930 845206	-930 426637	1.0	1.8
31	-930 846718	-930 427591	0.8	1.0
32	-930 846727	-930 428135	0.0	0.8
33	-030 8/7151	-930 /29151	0.5	0.0
34	-030 8//811	-930 /25903	2.0	2.2
35	-030 8/5/31	-930 /26386	1.6	1.0
36	-030 8/5705	-930 426546	1.0	1.0
37	-930 846584	-930 426997	0.9	1.5
38	-930 845084	-930 426514	1.8	1.0
30	-930 844847	-930 426739	2.0	1.0
40	-930 846157	-930 427602	1 1	1.7
40	-930 844954	-930 426535	1.1	1.1
42	-930 846096	-930 427598	1.0	1.0
42	-930 845464	-930 425829	1.2	23
44	-930 845813	-930 426610	1.3	1.8
45	-930 845190	-930 427971	1.0	0.9
46	-930 846096	-930 427337	1.7	13
47	-930 845092	-930 426522	1.2	1.8
48	-930 844973	-930 425446	1.9	2.5
49	-930 844985	-930 426121	1.9	2.0
50	-930,845098	-930,426225	1.8	2.0
51	-930.845711	-930,425838	1.4	2.3
52	-930 846306	-930 426604	1.0	1.8
53	-930 845713	-930 425219	1.0	2.6
54	-930 844920	-930 425766	1.9	2.3
55	-930.846602	-930.427261	0.9	1.4
56	-930.845778	-930.425343	1.4	2.6
57	-930.845614	-930.426137	1.5	2.1
58	-930.846600	-930.427065	0.9	1.5
59	-930.845889	-930.425777	1.3	2.3
60	-930.845890	-930.425786	1.3	2.3
~~	00000	0000.20.00		

61	-930.845890	-930.426248	1.3	2.0
62	-930.846024	-930.426705	1.2	1.7
63	-930.844920	-930.424618	1.9	3.0
64	-930.845273	-930.425324	1.7	2.6
65	-930.845917	-930.426569	1.3	1.8
66	-930.844850	-930.425323	1.9	2.6
67	-930.845917	-930.427776	1.3	1.0
68	-930.846658	-930.427081	0.8	1.5
69	-930.845812	-930.427578	1.3	1.2
Avg.	-930.846556	-930.427858		

Table S32. Conformational analysis for 3e.

Conformar #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-930.448677	-930.039514	0.1	0.3
2	-930.448456	-930.039420	0.2	0.3
3	-930.448409	-930.039326	0.3	0.4
4	-930.448635	-930.039287	0.1	0.4
5	-930.448712	-930.039876	0.1	0.0
6	-930.448650	-930.039320	0.1	0.4
7	-930.448568	-930.039827	0.2	0.1
8	-930.448693	-930.039342	0.1	0.4
9	-930.448750	-930.039397	0.0	0.3
10	-930.448817	-930.039314	0.0	0.4
11	-930.448156	-930.038369	0.4	1.0
12	-930.448433	-930.038473	0.2	0.9
13	-930.448095	-930.038380	0.5	1.0
14	-930.448729	-930.039594	0.1	0.2
15	-930.448396	-930.038569	0.3	0.8
16	-930.447767	-930.038388	0.7	1.0
17	-930.447468	-930.037948	0.8	1.2
18	-930.447254	-930.037208	1.0	1.7
19	-930.447568	-930.038181	0.8	1.1
20	-930.447447	-930.038049	0.9	1.2
21	-930.448541	-930.038497	0.2	0.9
22	-930.448307	-930.038373	0.3	1.0
23	-930.447556	-930.038648	0.8	0.8
24	-930.447652	-930.038444	0.7	0.9
25	-930.447634	-930.037199	0.7	1.7
26	-930.447651	-930.038605	0.7	0.8
27	-930.447583	-930.038555	0.8	0.9
28	-930.448428	-930.038467	0.2	0.9
29	-930.446474	-930.036058	1.5	2.4
30	-930.447652	-930.038610	0.7	0.8
31	-930.447819	-930.038323	0.6	1.0

32	-930.447614	-930.038634	0.8	0.8
33	-930.447897	-930.038015	0.6	1.2
34	-930.447532	-930.037912	0.8	1.3
35	-930.447540	-930.037239	0.8	1.7
36	-930.447748	-930.037931	0.7	1.2
37	-930.446506	-930.036517	1.5	2.1
38	-930.446357	-930.036742	1.5	2.0
39	-930.447822	-930.038776	0.6	0.7
40	-930.447698	-930.038589	0.7	0.8
41	-930.447857	-930.038686	0.6	0.8
42	-930.447717	-930.038351	0.7	1.0
43	-930.446327	-930.036742	1.6	2.0
44	-930.447711	-930.038361	0.7	1.0
45	-930.447705	-930.038521	0.7	0.9
46	-930.447721	-930.038520	0.7	0.9
47	-930.447463	-930.037153	0.8	1.7
48	-930.447476	-930.037087	0.8	1.8
49	-930.446622	-930.036757	1.4	2.0
50	-930.447690	-930.037232	0.7	1.7
51	-930.446434	-930.036444	1.5	2.2
52	-930.447382	-930.037699	0.9	1.4
53	-930.447457	-930.037722	0.9	1.4
54	-930.445744	-930.035914	1.9	2.5
55	-930.447445	-930.037599	0.9	1.5
56	-930.447401	-930.037626	0.9	1.4
57	-930.447714	-930.037074	0.7	1.8
58	-930.445890	-930.035303	1.8	2.9
59	-930.447748	-930.037130	0.7	1.7
60	-930.447426	-930.037724	0.9	1.4
61	-930.447603	-930.037723	0.8	1.4
62	-930.447607	-930.037564	0.8	1.5
63	-930.447565	-930.037384	0.8	1.6
64	-930.446690	-930.038090	1.3	1.1
65	-930.448666	-930.039913	0.1	0.0
66	-930.446736	-930.038804	1.3	0.7
Avg.	-930.448123	-930.038934		

Conformer #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-930.848149	-930.428928	0.0	0.6
2	-930.848189	-930.429914	0.0	0.0
3	-930.848075	-930.429871	0.1	0.0
4	-930.847801	-930.428521	0.3	0.9
5	-930.847333	-930.427981	0.5	1.2
6	-930.846440	-930.427005	1.1	1.8
7	-930.847810	-930.428248	0.2	1.0
8	-930.847157	-930.428045	0.7	1.2
9	-930.847317	-930.428272	0.6	1.0
10	-930.847379	-930.428666	0.5	0.8
11	-930.847303	-930.428565	0.6	0.8
12	-930.847116	-930.428155	0.7	1.1
13	-930.847155	-930.428710	0.7	0.8
14	-930.847209	-930.428743	0.6	0.7
15	-930.846545	-930.427583	1.0	1.5
16	-930.846222	-930.426390	1.2	2.2
17	-930.845344	-930.426772	1.8	2.0
18	-930.845632	-930.427003	1.6	1.8
19	-930.845350	-930.427365	1.8	1.6
20	-930.847157	-930.429178	0.7	0.5
21	-930.846268	-930.427519	1.2	1.5
22	-930.847097	-930.427281	0.7	1.7
23	-930.847154	-930.427252	0.7	1.7
24	-930.847178	-930.427455	0.6	1.5
25	-930.846223	-930.425947	1.2	2.5
26	-930.846052	-930.427667	1.4	1.4
27	-930.847402	-930.427716	0.5	1.4
28	-930.846927	-930.427463	0.8	1.5
29	-930.845048	-930.425477	2.0	2.8
30	-930.846067	-930.427486	1.3	1.5
31	-930.846021	-930.426906	1.4	1.9
32	-930.847328	-930.428397	0.6	1.0
33	-930.845519	-930.426113	1.7	2.4
34	-930.846697	-930.426372	0.9	2.2
35	-930.844570	-930.425327	2.3	2.9
36	-930.846387	-930.427475	1.1	1.5
37	-930.847408	-930.428608	0.5	0.8
38	-930.845529	-930.426337	1.7	2.2
39	-930.846016	-930.426673	1.4	2.0
40	-930.846277	-930.427521	1.2	1.5
41	-930.846028	-930.426782	1.4	2.0
42	-930.845533	-930.426376	1.7	2.2

Table S33. Conformational analysis for 6e[‡].

43	-930,845425	-930,426231	1.7	2.3
44	-930.845133	-930.426678	1.9	2.0
45	-930.845217	-930.426402	1.9	2.2
46	-930.846399	-930,427369	1.1	1.6
47	-930.846326	-930.427528	1.2	1.5
48	-930.846523	-930.426657	1.1	2.0
49	-930.845257	-930.426930	1.9	1.9
50	-930.846452	-930.427642	1.1	1.4
51	-930.845164	-930.426723	1.9	2.0
52	-930.846778	-930.427444	0.9	1.6
53	-930.846306	-930.427049	1.2	1.8
54	-930.846111	-930.426466	1.3	2.2
55	-930.845036	-930.425388	2.0	2.8
56	-930.845425	-930.427370	1.7	1.6
57	-930.845447	-930.426800	1.7	2.0
58	-930.846524	-930.426555	1.1	2.1
59	-930.846832	-930.427706	0.9	1.4
60	-930.846233	-930.426931	1.2	1.9
61	-930.845364	-930.426000	1.8	2.5
62	-930.846289	-930.427727	1.2	1.4
63	-930.845545	-930.425431	1.7	2.8
64	-930.847060	-930.427052	0.7	1.8
65	-930.846769	-930.428268	0.9	1.0
66	-930.845357	-930.426751	1.8	2.0
67	-930.845188	-930.426611	1.9	2.1
68	-930.846064	-930.425828	1.3	2.6
69	-930.845233	-930.425146	1.9	3.0
Avg.	-930.847121	-930.428490		

Table S34. Conformational analysis for 6e.

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-930.445612	-930.035836	0.3	0.5
2	-930.446149	-930.036623	0.0	0.0
3	-930.445783	-930.035914	0.2	0.4
4	-930.445757	-930.035460	0.2	0.7
5	-930.445419	-930.035132	0.5	0.9
6	-930.445868	-930.036117	0.2	0.3
7	-930.445979	-930.036240	0.1	0.2
8	-930.445052	-930.034707	0.7	1.2
9	-930.445721	-930.034587	0.3	1.3
10	-930.444747	-930.034621	0.9	1.3
11	-930.445272	-930.035569	0.6	0.7
12	-930.445914	-930.035739	0.1	0.6
13	-930.445411	-930.035639	0.5	0.6

14	-930.445422	-930.034705	0.5	1.2
15	-930.446099	-930.035555	0.0	0.7
16	-930.444380	-930.034302	1.1	1.5
17	-930.444578	-930.034505	1.0	1.3
18	-930.444962	-930.034415	0.7	1.4
19	-930.444430	-930.034186	1.1	1.5
20	-930.444735	-930.034365	0.9	1.4
21	-930.445187	-930.035036	0.6	1.0
22	-930.444654	-930.033920	0.9	1.7
23	-930.445307	-930.034915	0.5	1.1
24	-930.443769	-930.033466	1.5	2.0
25	-930.444564	-930.033966	1.0	1.7
26	-930.445857	-930.035067	0.2	1.0
27	-930.443236	-930.033279	1.8	2.1
28	-930.445118	-930.034770	0.6	1.2
29	-930.443970	-930.033158	1.4	2.2
30	-930.444294	-930.033506	1.2	2.0
31	-930.444958	-930.033984	0.7	1.7
32	-930.444189	-930.032896	1.2	2.3
33	-930.443740	-930.033289	1.5	2.1
34	-930.443265	-930.033445	1.8	2.0
35	-930.443360	-930.034220	1.8	1.5
Avg.	-930.445484	-930.035539		

Table S35. Conformational analysis for 3[‡].

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-970.149986	-969.702432	0.8	2.0
2	-970.149657	-969.702714	1.0	1.9
3	-970.150959	-969.705430	0.2	0.2
4	-970.150051	-969.701891	0.7	2.4
5	-970.149943	-969.704785	0.8	0.6
6	-970.150353	-969.704788	0.5	0.6
7	-970.149361	-969.701516	1.2	2.6
8	-970.151216	-969.704513	0.0	0.7
9	-970.148727	-969.702113	1.6	2.2
10	-970.148406	-969.703503	1.8	1.4
11	-970.148991	-969.703339	1.4	1.5
12	-970.149076	-969.703186	1.3	1.6
13	-970.150015	-969.704918	0.8	0.5
14	-970.149571	-969.702810	1.0	1.8
15	-970.150382	-969.704315	0.5	0.9
16	-970.148851	-969.703496	1.5	1.4
17	-970.149107	-969.702954	1.3	1.7
18	-970.148443	-969.700737	1.7	3.1

19	-970.149036	-969.703456	1.4	1.4
20	-970.149047	-969.703657	1.4	1.3
21	-970.149399	-969.703876	1.1	1.1
22	-970.148882	-969.702192	1.5	2.2
23	-970.149917	-969.704068	0.8	1.0
24	-970.148787	-969.701814	1.5	2.4
25	-970.148922	-969.701161	1.4	2.8
26	-970.148911	-969.703762	1.4	1.2
27	-970.150618	-969.705681	0.4	0.0
28	-970.150526	-969.703895	0.4	1.1
29	-970.149103	-969.701101	1.3	2.9
30	-970.150124	-969.704138	0.7	1.0
31	-970.148497	-969.700165	1.7	3.5
32	-970.148240	-969.701313	1.9	2.7
33	-970,148149	-969,700881	1.9	3.0
34	-970.148646	-969.704034	1.6	1.0
35	-970.148819	-969.703753	1.5	1.2
36	-970.149181	-969.702369	1.3	2.1
37	-970.148288	-969.700542	1.8	3.2
38	-970.148704	-969.704373	1.6	0.8
39	-970.148888	-969.702478	1.5	2.0
40	-970.148835	-969.702389	1.5	2.1
41	-970.148874	-969.702885	1.5	1.8
42	-970.150191	-969.703347	0.6	1.5
43	-970.148428	-969.700671	1.7	3.1
44	-970.148420	-969.702972	1.8	1.7
45	-970.148156	-969.701030	1.9	2.9
46	-970.149392	-969.704329	1.1	0.8
47	-970.149337	-969.703999	1.2	1.1
48	-970.149096	-969.703276	1.3	1.5
49	-970.149147	-969.704446	1.3	0.8
50	-970.149358	-969.703964	1.2	1.1
51	-970.148617	-969.702477	1.6	2.0
52	-970.149442	-969.702475	1.1	2.0
53	-970.148090	-969.702073	2.0	2.3
54	-970.149050	-969.702803	1.4	1.8
55	-970.148354	-969.702959	1.8	1.7
65	-970.148577	-969.703023	1.7	1.7
57	-970.148739	-969.702198	1.6	2.2
58	-970.148351	-969.699770	1.8	3.7
59	-970.148697	-969.702457	1.6	2.0
60	-970.148952	-969.703212	1.4	1.5
61	-970.147645	-969.702877	2.2	1.8
62	-970.147399	-969.703433	2.4	1.4
63	-970.148788	-969.702985	1.5	1.7

64	-970.149224	-969.702948	1.3	1.7
65	-970.148103	-969.702568	2.0	2.0
66	-970.148998	-969.702645	1.4	1.9
67	-970.148171	-969.703075	1.9	1.6
68	-970.148179	-969.703298	1.9	1.5
69	-970.149223	-969.703443	1.3	1.4
70	-970.148733	-969.703206	1.6	1.6
71	-970.149213	-969.703368	1.3	1.5
Avg.	-970.149801	-969.704235		

 Table S36. Conformational analysis for 3.

Conformar #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-969.749488	-969.313668	0.1	0.4
2	-969.749585	-969.313988	0.0	0.2
3	-969.749589	-969.313840	0.0	0.3
4	-969.749541	-969.314285	0.0	0.0
5	-969.749511	-969.314204	0.0	0.1
6	-969.748738	-969.311936	0.5	1.5
7	-969.749217	-969.312672	0.2	1.0
8	-969.748395	-969.311813	0.7	1.6
9	-969.749348	-969.313063	0.2	0.8
10	-969.749157	-969.312829	0.3	0.9
11	-969.749267	-969.312779	0.2	0.9
12	-969.748655	-969.312527	0.6	1.1
13	-969.748490	-969.312409	0.7	1.2
14	-969.747530	-969.310756	1.3	2.2
15	-969.746865	-969.311067	1.7	2.0
16	-969.746830	-969.311241	1.7	1.9
17	-969.748590	-969.312958	0.6	0.8
18	-969.748586	-969.312943	0.6	0.8
19	-969.748568	-969.313014	0.6	0.8
20	-969.748673	-969.313174	0.6	0.7
21	-969.748551	-969.313168	0.7	0.7
22	-969.747437	-969.311048	1.4	2.0
23	-969.747502	-969.310991	1.3	2.1
24	-969.748579	-969.311508	0.6	1.7
25	-969.748452	-969.311566	0.7	1.7
26	-969.748662	-969.311923	0.6	1.5
27	-969.748563	-969.311756	0.6	1.6
28	-969.746588	-969.310127	1.9	2.6
29	-969.748393	-969.312080	0.8	1.4
30	-969.748325	-969.312155	0.8	1.3
31	-969.746739	-969.310175	1.8	2.6
32	-969.748403	-969.312225	0.7	1.3

33	-969.748402	-969.312325	0.7	1.2
34	-969.749001	-969.313797	0.4	0.3
35	-969.747519	-969.313772	1.3	0.3
Avg.	-969.748976	-969.313407		

 Table S37. Conformational analysis for 6[‡].

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-970.151611	-969.705475	0.0	0.5
2	-970.150983	-969.705090	0.4	0.7
3	-970.151103	-969.704330	0.3	1.2
4	-970.150612	-969.703863	0.6	1.5
5	-970.150697	-969.704512	0.6	1.1
6	-970.150465	-969.703822	0.7	1.5
7	-970.150627	-969.704667	0.6	1.0
8	-970.150532	-969.704657	0.7	1.0
9	-970.149938	-969.703583	1.0	1.6
10	-970.149180	-969.702673	1.5	2.2
11	-970.149921	-969.703549	1.1	1.7
12	-970.150546	-969.703315	0.7	1.8
13	-970.149928	-969.704924	1.1	0.8
14	-970.149688	-969.702591	1.2	2.3
15	-970.148670	-969.701924	1.8	2.7
16	-970.150108	-969.705078	0.9	0.7
17	-970.150401	-969.703800	0.8	1.5
18	-970.150059	-969.705883	1.0	0.2
19	-970.149140	-969.701860	1.6	2.7
20	-970.148589	-969.701570	1.9	2.9
21	-970.149057	-969.704102	1.6	1.3
22	-970.149018	-969.703816	1.6	1.5
23	-970.148754	-969.702214	1.8	2.5
24	-970.149622	-969.704205	1.2	1.3
25	-970.149082	-969.704337	1.6	1.2
26	-970.149115	-969.704440	1.6	1.1
27	-970.151501	-969.706202	0.1	0.0
28	-970.149097	-969.704296	1.6	1.2
29	-970.148982	-969.703721	1.6	1.6
30	-970.148886	-969.704310	1.7	1.2
31	-970.149064	-969.704529	1.6	1.0
32	-970.149924	-969.703080	1.1	2.0
33	-970.150970	-969.705255	0.4	0.6
34	-970.150073	-969.703983	1.0	1.4
35	-970.148594	-969.702862	1.9	2.1
36	-970.148480	-969.702567	2.0	2.3
37	-970.150286	-969.704567	0.8	1.0

38	-970.148870	-969.703212	1.7	1.9
39	-970.148730	-969.702794	1.8	2.1
40	-970.150580	-969.703816	0.6	1.5
41	-970.149991	-969.703299	1.0	1.8
42	-970.148718	-969.702819	1.8	2.1
43	-970.148452	-969.703017	2.0	2.0
44	-970.149688	-969.702925	1.2	2.1
Avg.	-970.150525	-969.704908		

Table S38. Conformational analysis for 6.

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-969.747643	-969.311119	0.4	0.4
2	-969.748115	-969.311749	0.1	0.0
3	-969.748074	-969.311139	0.2	0.4
4	-969.747219	-969.310609	0.7	0.7
5	-969.747002	-969.310271	0.8	0.9
6	-969.747237	-969.309971	0.7	1.1
7	-969.746590	-969.309780	1.1	1.2
8	-969.747172	-969.310703	0.7	0.7
9	-969.748334	-969.310634	0.0	0.7
10	-969.747523	-969.310702	0.5	0.7
11	-969.746188	-969.309053	1.3	1.7
12	-969.747264	-969.309676	0.7	1.3
13	-969.746077	-969.309264	1.4	1.6
14	-969.745974	-969.308991	1.5	1.7
15	-969.746464	-969.308857	1.2	1.8
16	-969.747075	-969.309921	0.8	1.1
17	-969.746159	-969.309822	1.4	1.2
18	-969.745545	-969.308591	1.7	2.0
19	-969.745439	-969.308130	1.8	2.3
20	-969.745283	-969.308708	1.9	1.9
21	-969.745568	-969.309427	1.7	1.5
Avg.	-969.747510	-969.310722		

Table S39. Conformational analysis for 3	3 f ‡.
--	---------------

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.452222	-1008.977090	0.2	1.4
2	-1009.452238	-1008.976750	0.1	1.6
3	-1009.451004	-1008.976976	0.9	1.4
4	-1009.451343	-1008.976320	0.7	1.9
5	-1009.450590	-1008.975591	1.2	2.3
6	-1009.450179	-1008.975325	1.4	2.5
7	-1009.451774	-1008.978942	0.4	0.2

8	-1009.449292	-1008.975307	2.0	2.5
9	-1009.450700	-1008.976364	1.1	1.8
10	-1009.450406	-1008.976435	1.3	1.8
11	-1009.449979	-1008.975732	1.6	2.2
12	-1009.452462	-1008.979188	0.0	0.1
13	-1009.449815	-1008.975852	1.7	2.1
14	-1009.449779	-1008.975285	1.7	2.5
15	-1009.450463	-1008.975681	1.3	2.3
16	-1009.449873	-1008.975060	1.6	2.6
17	-1009.450102	-1008.974734	1.5	2.8
18	-1009.452247	-1008.978635	0.1	0.4
19	-1009.451697	-1008.979275	0.5	0.0
20	-1009.449769	-1008.974882	1.7	2.8
21	-1009.450444	-1008.977599	1.3	1.1
22	-1009.450887	-1008.978303	1.0	0.6
23	-1009.449755	-1008.974950	1.7	2.7
24	-1009.451138	-1008.978406	0.8	0.5
25	-1009.449740	-1008.975078	1.7	2.6
26	-1009.451249	-1008.978078	0.8	0.8
27	-1009.450647	-1008.978056	1.1	0.8
28	-1009.449602	-1008.974001	1.8	3.3
29	-1009.449949	-1008.974312	1.6	3.1
30	-1009.449605	-1008.977691	1.8	1.0
31	-1009.451307	-1008.978414	0.7	0.5
32	-1009.449613	-1008.974887	1.8	2.8
33	-1009.450233	-1008.977756	1.4	1.0
34	-1009.450534	-1008.978043	1.2	0.8
35	-1009.449631	-1008.977872	1.8	0.9
36	-1009.450451	-1008.978004	1.3	0.8
37	-1009.450481	-1008.976953	1.2	1.5
38	-1009.450120	-1008.976601	1.5	1.7
39	-1009.450180	-1008.977312	1.4	1.2
Avg.	-1009.451434	-1008.978332		

Table S40. Conformational analysis for 3f.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.045872	-1008.583862	0.0	0.0
2	-1009.045881	-1008.583905	0.0	0.0
3	-1009.045830	-1008.583706	0.0	0.1
4	-1009.045381	-1008.582880	0.3	0.6
5	-1009.045723	-1008.583727	0.1	0.1
6	-1009.045720	-1008.583725	0.1	0.1
7	-1009.045350	-1008.583764	0.3	0.1
8	-1009.044896	-1008.582752	0.6	0.7

9	-1009.045327	-1008.583627	0.3	0.2
10	-1009.045551	-1008.582520	0.2	0.9
11	-1009.045550	-1008.582526	0.2	0.9
12	-1009.045353	-1008.583788	0.3	0.1
13	-1009.044961	-1008.582031	0.6	1.2
14	-1009.044222	-1008.581441	1.0	1.5
15	-1009.045534	-1008.582554	0.2	0.8
16	-1009.045536	-1008.582553	0.2	0.8
17	-1009.045542	-1008.582562	0.2	0.8
18	-1009.044609	-1008.583184	0.8	0.5
19	-1009.044876	-1008.582336	0.6	1.0
20	-1009.044891	-1008.582363	0.6	1.0
21	-1009.045344	-1008.582857	0.3	0.7
22	-1009 044464	-1008 581962	0.9	12
23	-1009 044229	-1008 581430	1.0	1.6
24	-1009 044276	-1008 581833	1.0	1.3
25	-1009 044474	-1008 582442	0.9	0.9
26	-1009 044374	-1008 582951	0.9	0.6
27	-1009 044381	-1008 582316	0.9	1.0
28	-1009 043528	-1008 579824	1.5	2.6
29	-1009 044451	-1008 582538	0.9	0.9
30	-1009 044373	-1008 582242	0.9	1.0
31	-1009.043650	-1008 580409	1 4	22
32	-1009.043375	-1008.580489	1.6	2.1
33	-1009.043375	-1008.580492	1.6	2.1
34	-1009.044386	-1008.582213	0.9	1.1
35	-1009.043228	-1008.580297	1.7	2.3
36	-1009.044547	-1008.581217	0.8	1.7
37	-1009.044546	-1008.581351	0.8	1.6
38	-1009.043322	-1008.580557	1.6	2.1
39	-1009.043222	-1008.580230	1.7	2.3
40	-1009.044762	-1008.581570	0.7	1.5
41	-1009.044263	-1008.580662	1.0	2.0
42	-1009.044252	-1008.580976	1.0	1.8
43	-1009.044613	-1008.582419	0.8	0.9
44	-1009.044625	-1008.581168	0.8	1.7
45	-1009.044089	-1008.581647	1.1	1.4
46	-1009.044239	-1008.580590	1.0	2.1
47	-1009.044090	-1008.581223	1.1	1.7
48	-1009.044276	-1008.580659	1.0	2.0
49	-1009.044223	-1008.581601	1.0	1.4
50	-1009.044197	-1008.581718	1.1	1.4
51	-1009.044212	-1008.581377	1.0	1.6
52	-1009.044192	-1008.581113	1.1	1.8
53	-1009.045470	-1008.583582	0.3	0.2

54	-1009.045346	-1008.583621	0.3	0.2
Avg.	-1009.045155	-1008.583145		

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.450306	-1008.976013	0.4	1.8
2	-1009.450386	-1008.976595	0.3	1.4
3	-1009.449968	-1008.975535	0.6	2.1
4	-1009.450923	-1008.978470	0.0	0.2
5	-1009.450838	-1008.978807	0.1	0.0
6	-1009.447769	-1008.975444	2.0	2.1
7	-1009.450740	-1008.977980	0.1	0.5
8	-1009.449741	-1008.974852	0.7	2.5
9	-1009.447901	-1008.975990	1.9	1.8
10	-1009.449584	-1008.974724	0.8	2.6
11	-1009.449606	-1008.977332	0.8	0.9
12	-1009.449406	-1008.974720	1.0	2.6
13	-1009.450480	-1008.977701	0.3	0.7
14	-1009.450533	-1008.977242	0.2	1.0
15	-1009.449590	-1008.975574	0.8	2.0
16	-1009.449167	-1008.974506	1.1	2.7
17	-1009.449939	-1008.977388	0.6	0.9
18	-1009.447828	-1008.975992	1.9	1.8
19	-1009.449415	-1008.975112	0.9	2.3
20	-1009.449775	-1008.977374	0.7	0.9
21	-1009.450284	-1008.978139	0.4	0.4
22	-1009.450127	-1008.978222	0.5	0.4
23	-1009.448781	-1008.974082	1.3	3.0
24	-1009.448939	-1008.976259	1.2	1.6
25	-1009.448367	-1008.973459	1.6	3.4
26	-1009.448710	-1008.974180	1.4	2.9
27	-1009.449189	-1008.977266	1.1	1.0
28	-1009.448459	-1008.974353	1.5	2.8
29	-1009.447928	-1008.976297	1.9	1.6
30	-1009.448584	-1008.975265	1.5	2.2
31	-1009.449484	-1008.974313	0.9	2.8
32	-1009.449595	-1008.974449	0.8	2.7
33	-1009.448471	-1008.973126	1.5	3.6
34	-1009.450047	-1008.976560	0.5	1.4
35	-1009.449894	-1008.977217	0.6	1.0
36	-1009.450031	-1008.977092	0.6	1.1
37	-1009.449479	-1008.977020	0.9	1.1
38	-1009.449442	-1008.976219	0.9	1.6
39	-1009.448536	-1008.974845	1.5	2.5

Table S41. Conformational analysis for 6f[‡].

40	-1009.448511	-1008.974794	1.5	2.5
41	-1009.447780	-1008.972305	2.0	4.1
42	-1009.450317	-1008.977981	0.4	0.5
43	-1009.448574	-1008.975286	1.5	2.2
44	-1009.449287	-1008.978004	1.0	0.5
45	-1009.448560	-1008.975199	1.5	2.3
46	-1009.449533	-1008.975642	0.9	2.0
47	-1009.449290	-1008.975567	1.0	2.0
48	-1009.448834	-1008.975247	1.3	2.2
49	-1009.449546	-1008.975690	0.9	2.0
50	-1009.449000	-1008.975786	1.2	1.9
51	-1009.448426	-1008.975230	1.6	2.2
52	-1009.448852	-1008.976584	1.3	1.4
53	-1009.449498	-1008.976963	0.9	1.2
54	-1009.448672	-1008.974995	1.4	2.4
55	-1009.448646	-1008.975479	1.4	2.1
56	-1009.449477	-1008.977079	0.9	1.1
57	-1009.447931	-1008.974369	1.9	2.8
58	-1009.448241	-1008.974761	1.7	2.5
59	-1009.448958	-1008.974797	1.2	2.5
60	-1009.449294	-1008.976751	1.0	1.3
61	-1009.449481	-1008.976952	0.9	1.2
62	-1009.449401	-1008.976681	1.0	1.3
63	-1009.449498	-1008.975419	0.9	2.1
64	-1009.448879	-1008.974406	1.3	2.8
65	-1009.448464	-1008.976074	1.5	1.7
66	-1009.448580	-1008.974295	1.5	2.8
67	-1009.448599	-1008.976691	1.5	1.3
Avg.	-1009.449865	-1008.977530		

Table S42. Conformational analysis for 6f.

Conformer #	E	G	DE	DG
Comorner #	au	au	kcal/mol	kcal/mol
1	-1009.043661	-1008.580852	0.0	0.0
2	-1009.040614	-1008.577587	1.9	2.0
3	-1009.043468	-1008.580364	0.1	0.3
4	-1009.042842	-1008.579528	0.5	0.8
5	-1009.040522	-1008.576776	2.0	2.6
Avg.	-1009.043343	-1008.580442		

Conformer #	E	G	DE	DG
Conformer #	au	au	kcal/mol	kcal/mol
1	-1009.448213	-1008.974824	1.0	1.9
2	-1009.447915	-1008.975930	1.2	1.2
3	-1009.448222	-1008.975080	1.0	1.7
4	-1009.449846	-1008.977784	0.0	0.0
5	-1009.447780	-1008.975279	1.3	1.6
6	-1009.449454	-1008.977840	0.2	0.0
7	-1009.448121	-1008.974372	1.1	2.2
8	-1009.449247	-1008.977039	0.4	0.5
9	-1009.448969	-1008.976453	0.6	0.9
10	-1009.448883	-1008.975824	0.6	1.3
11	-1009.448983	-1008.977720	0.5	0.1
12	-1009.448973	-1008.977592	0.5	0.2
13	-1009.448849	-1008.976695	0.6	0.7
14	-1009.448789	-1008.977206	0.7	0.4
15	-1009.448983	-1008.976214	0.5	1.0
16	-1009.448546	-1008.976568	0.8	0.8
17	-1009.448562	-1008.976322	0.8	1.0
18	-1009.448541	-1008.976498	0.8	0.8
19	-1009.448885	-1008.976075	0.6	1.1
20	-1009.448321	-1008.976465	1.0	0.9
21	-1009.448108	-1008.976642	1.1	0.8
22	-1009.449000	-1008.976384	0.5	0.9
23	-1009.448138	-1008.976404	1.1	0.9
24	-1009.448096	-1008.976950	1.1	0.6
25	-1009.448023	-1008.976288	1.1	1.0
26	-1009.448129	-1008.976577	1.1	0.8
27	-1009.448008	-1008.976629	1.2	0.8
28	-1009.448012	-1008.976655	1.2	0.7
29	-1009.447958	-1008.976396	1.2	0.9
30	-1009.447889	-1008.976829	1.2	0.6
31	-1009.448130	-1008.975886	1.1	1.2
32	-1009.447545	-1008.975534	1.4	1.4
33	-1009.447999	-1008.975580	1.2	1.4
34	-1009.447596	-1008.974823	1.4	1.9
35	-1009.447503	-1008.975301	1.5	1.6
36	-1009.448219	-1008.975121	1.0	1.7
37	-1009.447491	-1008.975160	1.5	1.7
38	-1009.448144	-1008.973834	1.1	2.5
39	-1009.448125	-1008.976041	1.1	1.1
40	-1009.448204	-1008.975800	1.0	1.3
41	-1009.447750	-1008.975831	1.3	1.3
42	-1009.447733	-1008.975632	1.3	1.4

Table S43. Conformational analysis for 3bc[‡].

43	-1009.448156	-1008.975243	1.1	1.6
44	-1009.447668	-1008.974810	1.4	1.9
45	-1009.448303	-1008.975629	1.0	1.4
46	-1009.448015	-1008.976004	1.1	1.2
47	-1009.447492	-1008.974834	1.5	1.9
48	-1009.447513	-1008.974764	1.5	1.9
49	-1009.447461	-1008.974154	1.5	2.3
50	-1009.448214	-1008.976249	1.0	1.0
51	-1009.447911	-1008.974818	1.2	1.9
52	-1009.448233	-1008.975988	1.0	1.2
53	-1009.448290	-1008.976306	1.0	1.0
54	-1009.447956	-1008.974908	1.2	1.8
55	-1009.448481	-1008.974653	0.9	2.0
56	-1009.448071	-1008.973272	1.1	2.9
57	-1009.447470	-1008.975222	1.5	1.6
58	-1009.448235	-1008.976636	1.0	0.8
59	-1009.447502	-1008.975383	1.5	1.5
60	-1009.448706	-1008.976266	0.7	1.0
61	-1009.449504	-1008.975367	0.2	1.6
62	-1009.448290	-1008.974546	1.0	2.1
63	-1009.448255	-1008.975178	1.0	1.7
64	-1009.448369	-1008.975074	0.9	1.7
Avg.	-1009.448616	-1008.976711		

Table S44. Conformational analysis for 3bc.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.049017	-1008.585263	0.0	0.4
2	-1009.048066	-1008.583191	0.6	1.7
3	-1009.048932	-1008.584622	0.1	0.8
4	-1009.047878	-1008.583132	0.7	1.7
5	-1009.047300	-1008.582937	1.1	1.8
6	-1009.048728	-1008.584834	0.2	0.6
7	-1009.046764	-1008.582075	1.4	2.4
8	-1009.048683	-1008.584993	0.2	0.5
9	-1009.048033	-1008.585800	0.6	0.0
10	-1009.048059	-1008.585862	0.6	0.0
11	-1009.046991	-1008.583607	1.3	1.4
12	-1009.047469	-1008.583425	1.0	1.5
13	-1009.046381	-1008.581592	1.7	2.7
14	-1009.047207	-1008.584251	1.1	1.0
15	-1009.046357	-1008.583055	1.7	1.8
16	-1009.047314	-1008.584606	1.1	0.8
17	-1009.047619	-1008.583804	0.9	1.3
18	-1009.047121	-1008.584548	1.2	0.8

19	-1009 047283	-1008 584759	11	07
20	-1009.047237	-1008.584466	1.1	0.9
21	-1009.047144	-1008.584721	1.2	0.7
22	-1009.047289	-1008.584881	1.1	0.6
23	-1009.047065	-1008.584711	1.2	0.7
24	-1009.047253	-1008.585090	1.1	0.5
25	-1009.047212	-1008.584512	1.1	0.8
26	-1009.047310	-1008.584748	1.1	0.7
27	-1009.047130	-1008.584659	1.2	0.8
28	-1009.047136	-1008.584720	1.2	0.7
29	-1009.047171	-1008.584979	1.2	0.6
30	-1009.047114	-1008.584550	1.2	0.8
31	-1009.047298	-1008.584692	1.1	0.7
32	-1009.045947	-1008.582615	1.9	2.0
33	-1009.047664	-1008.583614	0.8	1.4
34	-1009.047324	-1008.583021	1.1	1.8
35	-1009.047081	-1008.584646	1.2	0.8
36	-1009.047165	-1008.584474	1.2	0.9
37	-1009.047602	-1008.583553	0.9	1.4
38	-1009.047123	-1008.584603	1.2	0.8
39	-1009.047081	-1008.584631	1.2	0.8
40	-1009.047515	-1008.584097	0.9	1.1
41	-1009.047595	-1008.584514	0.9	0.8
42	-1009.047660	-1008.584404	0.9	0.9
43	-1009.045982	-1008.582984	1.9	1.8
44	-1009.046409	-1008.583191	1.6	1.7
45	-1009.047576	-1008.583652	0.9	1.4
46	-1009.045872	-1008.582935	2.0	1.8
47	-1009.046014	-1008.581853	1.9	2.5
48	-1009.047503	-1008.584308	0.9	1.0
49	-1009.046068	-1008.582863	1.9	1.9
50	-1009.047097	-1008.583499	1.2	1.5
51	-1009.046359	-1008.583106	1.7	1.7
52	-1009.047028	-1008.583746	1.2	1.3
53	-1009.046332	-1008.583605	1.7	1.4
54	-1009.046374	-1008.583387	1.7	1.6
55	-1009.046314	-1008.583342	1.7	1.6
56	-1009.046702	-1008.584081	1.5	1.1
57	-1009.046796	-1008.584108	1.4	1.1
58	-1009.046854	-1008.584361	1.4	0.9
59	-1009.045973	-1008.583182	1.9	1.7
60	-1009.047589	-1008.583039	0.9	1.8
61	-1009.046131	-1008.583337	1.8	1.6
62	-1009.045950	-1008.583310	1.9	1.6
63	-1009.046008	-1008.583201	1.9	1.7

64	-1009.046844	-1008.583486	1.4	1.5
65	-1009.046101	-1008.583872	1.8	1.2
66	-1009.046103	-1008.583494	1.8	1.5
Avg.	-1009.047740	-1008.584639		

Table S45. Conformational analysis for 6bc[‡].

Conformer #	ш	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.448830	-1008.975497	0.0	0.7
2	-1009.447955	-1008.974668	0.6	1.2
3	-1009.448392	-1008.976603	0.3	0.0
4	-1009.448576	-1008.975116	0.2	0.9
5	-1009.447665	-1008.975897	0.8	0.4
6	-1009.447703	-1008.975859	0.7	0.5
7	-1009.446680	-1008.972730	1.4	2.4
8	-1009.448231	-1008.975484	0.4	0.7
9	-1009.447615	-1008.975559	0.8	0.7
10	-1009.447114	-1008.974035	1.1	1.6
11	-1009.447033	-1008.974269	1.1	1.5
12	-1009.447595	-1008.975495	0.8	0.7
13	-1009.447666	-1008.975158	0.8	0.9
14	-1009.447521	-1008.974990	0.8	1.0
15	-1009.447510	-1008.973320	0.8	2.1
16	-1009.447540	-1008.975162	0.8	0.9
17	-1009.446696	-1008.973796	1.4	1.8
18	-1009.446480	-1008.972799	1.5	2.4
19	-1009.447992	-1008.974092	0.5	1.6
20	-1009.447748	-1008.974805	0.7	1.1
21	-1009.446775	-1008.975007	1.3	1.0
22	-1009.447350	-1008.974451	0.9	1.4
23	-1009.447676	-1008.975144	0.7	0.9
24	-1009.447202	-1008.974360	1.0	1.4
25	-1009.447235	-1008.974942	1.0	1.0
26	-1009.446687	-1008.974212	1.4	1.5
27	-1009.446469	-1008.972024	1.5	2.9
28	-1009.446639	-1008.973958	1.4	1.7
29	-1009.447019	-1008.973255	1.2	2.1
30	-1009.447451	-1008.974293	0.9	1.4
31	-1009.447202	-1008.974223	1.0	1.5
32	-1009.446528	-1008.974460	1.5	1.3
33	-1009.447331	-1008.973492	1.0	2.0
34	-1009.446592	-1008.973797	1.4	1.8
35	-1009.446935	-1008.973381	1.2	2.0
36	-1009.446472	-1008.973702	1.5	1.8
37	-1009.446553	-1008.973022	1.4	2.2

38	-1009.447083	-1008.974167	1.1	1.5
39	-1009.446684	-1008.973451	1.4	2.0
40	-1009.446705	-1008.973315	1.4	2.1
41	-1009.447618	-1008.974918	0.8	1.1
42	-1009.447543	-1008.975417	0.8	0.7
43	-1009.448863	-1008.975348	0.0	0.8
Avg.	-1009.447822	-1008.975288		

Table S46. Conformational analysis for 6bc.

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1009.037584	-1008.573797	0.0	0.0
2	-1009.036967	-1008.573869	0.4	0.0
3	-1009.037330	-1008.573063	0.2	0.5
4	-1009.036702	-1008.573081	0.6	0.5
5	-1009.036929	-1008.573118	0.4	0.5
6	-1009.036751	-1008.572933	0.5	0.6
7	-1009.036758	-1008.572594	0.5	0.8
8	-1009.036650	-1008.573631	0.6	0.1
9	-1009.036971	-1008.572810	0.4	0.7
10	-1009.036896	-1008.572746	0.4	0.7
11	-1009.036761	-1008.572599	0.5	0.8
12	-1009.036186	-1008.572464	0.9	0.9
13	-1009.036229	-1008.572917	0.8	0.6
14	-1009.036520	-1008.571868	0.7	1.3
15	-1009.037578	-1008.573800	0.0	0.0
16	-1009.035519	-1008.569835	1.3	2.5
17	-1009.037196	-1008.572953	0.2	0.6
18	-1009.036846	-1008.572458	0.5	0.9
19	-1009.036933	-1008.571417	0.4	1.5
20	-1009.036578	-1008.571717	0.6	1.4
21	-1009.035875	-1008.571583	1.1	1.4
22	-1009.036740	-1008.573065	0.5	0.5
23	-1009.037022	-1008.573035	0.4	0.5
24	-1009.036836	-1008.572705	0.5	0.7
25	-1009.035595	-1008.571736	1.2	1.3
26	-1009.035899	-1008.571370	1.1	1.6
27	-1009.035705	-1008.571329	1.2	1.6
28	-1009.035361	-1008.571705	1.4	1.4
29	-1009.035604	-1008.571301	1.2	1.6
30	-1009.035989	-1008.571372	1.0	1.6
31	-1009.035877	-1008.570932	1.1	1.8
32	-1009.035901	-1008.571365	1.1	1.6
33	-1009.034619	-1008.570641	1.9	2.0
34	-1009.035346	-1008.571530	1.4	1.5

35	-1009.034800	-1008.571283	1.7	1.6
36	-1009.036001	-1008.570386	1.0	2.2
37	-1009.036606	-1008.571892	0.6	1.2
38	-1009.035216	-1008.570671	1.5	2.0
39	-1009.034633	-1008.570963	1.9	1.8
40	-1009.035550	-1008.571373	1.3	1.6
41	-1009.035083	-1008.571094	1.6	1.7
42	-1009.035627	-1008.571371	1.2	1.6
43	-1009.036769	-1008.572611	0.5	0.8
44	-1009.034918	-1008.569300	1.7	2.9
45	-1009.034490	-1008.569376	1.9	2.8
46	-1009.036329	-1008.571005	0.8	1.8
Avg.	-1009.036739	-1008.572953		

Table S47. Conformational analysis for 3bd[‡].

Conformar #	E	G	DE	DG
Comormer #	au	au	kcal/mol	kcal/mol
1	-1048.748907	-1048.249156	2.1	2.7
2	-1048.750138	-1048.250446	1.3	1.9
3	-1048.750178	-1048.250245	1.3	2.0
4	-1048.752115	-1048.253509	0.1	0.0
5	-1048.751834	-1048.252657	0.2	0.5
6	-1048.750313	-1048.251744	1.2	1.1
7	-1048.752217	-1048.253216	0.0	0.2
8	-1048.752083	-1048.252062	0.1	0.9
9	-1048.751613	-1048.252386	0.4	0.7
10	-1048.751096	-1048.250818	0.7	1.7
11	-1048.751382	-1048.251124	0.5	1.5
12	-1048.750911	-1048.251778	0.8	1.1
13	-1048.751004	-1048.251904	0.8	1.0
14	-1048.749313	-1048.251645	1.8	1.2
15	-1048.749704	-1048.250760	1.6	1.7
16	-1048.749234	-1048.251600	1.9	1.2
17	-1048.749103	-1048.249532	2.0	2.5
18	-1048.749293	-1048.251322	1.8	1.4
19	-1048.750560	-1048.251463	1.0	1.3
20	-1048.749661	-1048.250065	1.6	2.2
21	-1048.749098	-1048.249647	2.0	2.4
22	-1048.751210	-1048.251837	0.6	1.0
23	-1048.750451	-1048.249334	1.1	2.6
24	-1048.750944	-1048.251399	0.8	1.3
25	-1048.751323	-1048.251741	0.6	1.1
26	-1048.750919	-1048.252300	0.8	0.8
27	-1048.750778	-1048.253133	0.9	0.2
28	-1048.750849	-1048.253078	0.9	0.3

29	-1048.749214	-1048.249924	1.9	2.2
30	-1048.750600	-1048.251281	1.0	1.4
31	-1048.750564	-1048.251470	1.0	1.3
32	-1048.750551	-1048.250963	1.0	1.6
33	-1048.750020	-1048.250463	1.4	1.9
34	-1048.750533	-1048.250002	1.1	2.2
35	-1048.750237	-1048.250294	1.2	2.0
36	-1048.751110	-1048.250284	0.7	2.0
37	-1048.750321	-1048.250987	1.2	1.6
38	-1048.750260	-1048.251125	1.2	1.5
39	-1048.750265	-1048.251327	1.2	1.4
40	-1048.749716	-1048.248905	1.6	2.9
41	-1048.751290	-1048.250594	0.6	1.8
42	-1048.750770	-1048.250814	0.9	1.7
43	-1048.750445	-1048.251845	1.1	1.0
44	-1048.749244	-1048.249960	1.9	2.2
45	-1048.749908	-1048.252440	1.4	0.7
46	-1048.749302	-1048.251339	1.8	1.4
47	-1048.750011	-1048.252928	1.4	0.4
48	-1048.749307	-1048.249095	1.8	2.8
49	-1048.749918	-1048.250925	1.4	1.6
50	-1048.750111	-1048.251588	1.3	1.2
51	-1048.750618	-1048.250081	1.0	2.2
52	-1048.749969	-1048.251972	1.4	1.0
53	-1048.749966	-1048.251600	1.4	1.2
54	-1048.749553	-1048.251424	1.7	1.3
55	-1048.749937	-1048.251710	1.4	1.1
56	-1048.750226	-1048.249769	1.2	2.3
57	-1048.750244	-1048.250842	1.2	1.7
58	-1048.750595	-1048.250919	1.0	1.6
59	-1048.750535	-1048.250154	1.1	2.1
60	-1048.750398	-1048.249947	1.1	2.2
61	-1048.749908	-1048.251700	1.4	1.1
62	-1048.750041	-1048.250046	1.4	2.2
63	-1048.750006	-1048.250122	1.4	2.1
64	-1048.751281	-1048.251619	0.6	1.2
65	-1048.749297	-1048.249762	1.8	2.4
66	-1048.750944	-1048.252171	0.8	0.8
67	-1048.749475	-1048.249723	1.7	2.4
68	-1048.749807	-1048.249865	1.5	2.3
69	-1048.749432	-1048.250383	1.7	2.0
70	-1048.750074	-1048.250563	1.3	1.8
71	-1048.749077	-1048.250757	2.0	1.7
72	-1048.749803	-1048.250891	1.5	1.6
73	-1048.749858	-1048.251194	1.5	1.5

74	-1048.749892	-1048.250809	1.5	1.7
75	-1048.750172	-1048.250507	1.3	1.9
76	-1048.749051	-1048.250467	2.0	1.9
77	-1048.749581	-1048.248743	1.7	3.0
78	-1048.750305	-1048.252131	1.2	0.9
79	-1048.749639	-1048.250655	1.6	1.8
80	-1048.749467	-1048.250420	1.7	1.9
Avg.	-1048.750953	-1048.252142		

Table S48. Conformational analysis for 3bd.

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1048.353459	-1047.862457	0.0	0.5
2	-1048.352822	-1047.862416	0.4	0.6
3	-1048.352058	-1047.860819	0.9	1.6
4	-1048.352264	-1047.860678	0.8	1.6
5	-1048.353027	-1047.862389	0.3	0.6
6	-1048.351306	-1047.860434	1.4	1.8
7	-1048.350654	-1047.859474	1.8	2.4
8	-1048.351862	-1047.863179	1.0	0.1
9	-1048.351907	-1047.863169	1.0	0.1
10	-1048.351922	-1047.863297	1.0	0.0
11	-1048.352724	-1047.861877	0.5	0.9
12	-1048.350875	-1047.860889	1.6	1.5
13	-1048.352175	-1047.861539	0.8	1.1
14	-1048.350436	-1047.859436	1.9	2.4
15	-1048.351999	-1047.861437	0.9	1.2
16	-1048.351474	-1047.862324	1.2	0.6
17	-1048.352078	-1047.861776	0.9	1.0
18	-1048.351439	-1047.861918	1.3	0.9
19	-1048.350860	-1047.860785	1.6	1.6
20	-1048.350417	-1047.860649	1.9	1.7
21	-1048.351361	-1047.862752	1.3	0.3
22	-1048.350963	-1047.861760	1.6	1.0
23	-1048.351045	-1047.862039	1.5	0.8
24	-1048.351294	-1047.863028	1.4	0.2
25	-1048.351120	-1047.861879	1.5	0.9
26	-1048.351029	-1047.861986	1.5	0.8
27	-1048.351082	-1047.862584	1.5	0.4
28	-1048.351066	-1047.861940	1.5	0.9
29	-1048.351085	-1047.862359	1.5	0.6
30	-1048.351275	-1047.861091	1.4	1.4
31	-1048.351161	-1047.862023	1.4	0.8
32	-1048.351050	-1047.862118	1.5	0.7
33	-1048.351834	-1047.861783	1.0	0.9

24	1040 251020	1017 000010	4 5	0.7
34	-1048.351036	-1047.862249	1.5	0.7
35	-1048.351035	-1047.862153	1.5	0.7
36	-1048.351345	-1047.860924	1.3	1.5
37	-1048.351108	-1047.862010	1.5	0.8
38	-1048.351412	-1047.861629	1.3	1.0
39	-1048.350394	-1047.860178	1.9	2.0
40	-1048.350992	-1047.861874	1.5	0.9
41	-1048.350299	-1047.859282	2.0	2.5
42	-1048.350972	-1047.861998	1.6	0.8
43	-1048.351340	-1047.862336	1.3	0.6
44	-1048.351520	-1047.860972	1.2	1.5
45	-1048.350367	-1047.860091	1.9	2.0
46	-1048.350923	-1047.859405	1.6	2.4
47	-1048.350989	-1047.862000	1.5	0.8
48	-1048.350997	-1047.861875	1.5	0.9
49	-1048.350976	-1047.862096	1.6	0.8
50	-1048.350600	-1047.858466	1.8	3.0
51	-1048.351276	-1047.861228	1.4	1.3
52	-1048.351261	-1047.860792	1.4	1.6
53	-1048.351815	-1047.861069	1.0	1.4
54	-1048.351125	-1047.861097	1.5	1.4
55	-1048.350481	-1047.859112	1.9	2.6
56	-1048.350911	-1047.860903	1.6	1.5
57	-1048.351236	-1047.861908	1.4	0.9
58	-1048.350394	-1047.859775	1.9	2.2
59	-1048.350929	-1047.861042	1.6	1.4
60	-1048.350912	-1047.860906	1.6	1.5
Avg.	-1048.351958	-1047.862265		

Table S49. Conformational analysis for 6bd[‡].

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1048.750882	-1048.250645	0.0	0.7
2	-1048.750126	-1048.249575	0.5	1.4
3	-1048.750802	-1048.250732	0.1	0.6
4	-1048.750443	-1048.250745	0.3	0.6
5	-1048.750733	-1048.250185	0.1	1.0
6	-1048.748458	-1048.247345	1.5	2.8
7	-1048.750340	-1048.249729	0.4	1.3
8	-1048.749882	-1048.250749	0.6	0.6
9	-1048.748584	-1048.248054	1.5	2.3
10	-1048.750303	-1048.250055	0.4	1.1
11	-1048.749141	-1048.249122	1.1	1.6
12	-1048.750502	-1048.249322	0.3	1.5
13	-1048.749153	-1048.249805	1.1	1.2

14	-1048.748151	-1048.248298	1.7	2.2
15	-1048.749603	-1048.250234	0.8	0.9
16	-1048.749482	-1048.250529	0.9	0.8
17	-1048.749432	-1048.248527	0.9	2.0
18	-1048.749694	-1048.250310	0.8	0.9
19	-1048.748278	-1048.246727	1.7	3.1
20	-1048.748729	-1048.248531	1.4	2.0
21	-1048.749472	-1048.249572	0.9	1.4
22	-1048.749297	-1048.249802	1.0	1.2
23	-1048.750080	-1048.249482	0.5	1.4
24	-1048.749261	-1048.249671	1.0	1.3
25	-1048.748801	-1048.249466	1.3	1.4
26	-1048.748794	-1048.249467	1.3	1.4
27	-1048.748787	-1048.249390	1.3	1.5
28	-1048.748072	-1048.247884	1.8	2.4
29	-1048.749026	-1048.249593	1.2	1.3
30	-1048.749567	-1048.249356	0.8	1.5
31	-1048.749288	-1048.248118	1.0	2.3
32	-1048.749211	-1048.250383	1.1	0.8
33	-1048.748113	-1048.247972	1.8	2.4
34	-1048.748792	-1048.249201	1.3	1.6
35	-1048.748023	-1048.247870	1.8	2.4
36	-1048.748581	-1048.249334	1.5	1.5
37	-1048.748118	-1048.247991	1.8	2.3
38	-1048.748768	-1048.249333	1.3	1.5
39	-1048.747958	-1048.246174	1.9	3.5
40	-1048.748773	-1048.247103	1.3	2.9
41	-1048.749415	-1048.248775	0.9	1.9
42	-1048.748570	-1048.249661	1.5	1.3
43	-1048.749332	-1048.249706	1.0	1.3
44	-1048.748410	-1048.248993	1.6	1.7
45	-1048.748600	-1048.249381	1.4	1.5
46	-1048.748891	-1048.248913	1.3	1.8
47	-1048.748420	-1048.248181	1.6	2.2
48	-1048.748553	-1048.247990	1.5	2.3
49	-1048.749686	-1048.250557	0.8	0.7
50	-1048.748898	-1048.248637	1.3	1.9
51	-1048.748100	-1048.248069	1.8	2.3
52	-1048.748533	-1048.249002	1.5	1.7
53	-1048.748031	-1048.248637	1.8	1.9
54	-1048.747853	-1048.247562	1.9	2.6
55	-1048.747896	-1048.248659	1.9	1.9
56	-1048.747959	-1048.247306	1.9	2.8
57	-1048.748339	-1048.249166	1.6	1.6
58	-1048.748986	-1048.248808	1.2	1.8
59	-1048.748234	-1048.249401	1.7	1.5
------	--------------	--------------	-----	-----
60	-1048.749004	-1048.248242	1.2	2.2
61	-1048.748332	-1048.248583	1.6	2.0
62	-1048.748412	-1048.248764	1.6	1.9
63	-1048.748481	-1048.248776	1.5	1.9
64	-1048.748218	-1048.248894	1.7	1.8
65	-1048.750497	-1048.251730	0.3	0.0
66	-1048.748380	-1048.248972	1.6	1.7
67	-1048.747845	-1048.247810	1.9	2.5
68	-1048.749892	-1048.250489	0.6	0.8
69	-1048.747946	-1048.248281	1.9	2.2
70	-1048.747896	-1048.248233	1.9	2.2
71	-1048.748459	-1048.248013	1.5	2.3
72	-1048.748093	-1048.248437	1.8	2.1
73	-1048.747819	-1048.248654	1.9	1.9
74	-1048.748550	-1048.247907	1.5	2.4
75	-1048.748848	-1048.248300	1.3	2.2
76	-1048.747781	-1048.248390	2.0	2.1
77	-1048.750910	-1048.250803	0.0	0.6
78	-1048.748845	-1048.248302	1.3	2.2
79	-1048.748727	-1048.248800	1.4	1.8
80	-1048.749364	-1048.249071	1.0	1.7
81	-1048.748223	-1048.247857	1.7	2.4
82	-1048.748114	-1048.247233	1.8	2.8
83	-1048.748586	-1048.247806	1.5	2.5
Avg.	-1048.749777	-1048.250090		

Table S50. Conformational analysis for 6bd.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1048.338555	-1047.848307	0.0	0.0
2	-1048.338251	-1047.847702	0.2	0.4
3	-1048.337961	-1047.847258	0.4	0.7
4	-1048.338103	-1047.847316	0.3	0.7
5	-1048.337461	-1047.846817	0.7	1.0
6	-1048.337654	-1047.847263	0.6	0.7
7	-1048.338598	-1047.848371	0.0	0.0
8	-1048.338159	-1047.847553	0.3	0.5
9	-1048.338314	-1047.847647	0.2	0.5
10	-1048.337399	-1047.846002	0.8	1.5
11	-1048.337536	-1047.846990	0.7	0.9
12	-1048.337927	-1047.847345	0.4	0.6
13	-1048.337434	-1047.846205	0.7	1.4
14	-1048.338126	-1047.847284	0.3	0.7
15	-1048.336364	-1047.845657	1.4	1.7

16	-1048.336628	-1047.845911	1.2	1.5
17	-1048.337436	-1047.846984	0.7	0.9
18	-1048.335749	-1047.843189	1.8	3.3
19	-1048.337650	-1047.847497	0.6	0.5
20	-1048.335739	-1047.844354	1.8	2.5
21	-1048.336837	-1047.846672	1.1	1.1
22	-1048.337805	-1047.847768	0.5	0.4
23	-1048.336733	-1047.845079	1.2	2.1
24	-1048.335730	-1047.844626	1.8	2.3
25	-1048.335510	-1047.844156	1.9	2.6
26	-1048.337742	-1047.845565	0.5	1.8
27	-1048.336762	-1047.844230	1.2	2.6
28	-1048.336910	-1047.844551	1.1	2.4
29	-1048.336233	-1047.845060	1.5	2.1
30	-1048.335989	-1047.843790	1.6	2.9
31	-1048.336095	-1047.844566	1.6	2.4
32	-1048.336756	-1047.845939	1.2	1.5
33	-1048.337339	-1047.846139	0.8	1.4
34	-1048.335678	-1047.844275	1.8	2.6
35	-1048.337440	-1047.846217	0.7	1.4
36	-1048.337142	-1047.846944	0.9	0.9
37	-1048.336486	-1047.843987	1.3	2.8
38	-1048.336370	-1047.845649	1.4	1.7
39	-1048.336876	-1047.846688	1.1	1.1
40	-1048.336651	-1047.845876	1.2	1.6
41	-1048.336713	-1047.846548	1.2	1.1
42	-1048.335757	-1047.843145	1.8	3.3
Avg.	-1048.337739	-1047.847376		

Table S51. Conformational analysis for 3be[‡].

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1088.051930	-1087.522997	0.0	0.9
2	-1088.049523	-1087.523764	1.5	0.4
3	-1088.049513	-1087.523213	1.5	0.8
4	-1088.048879	-1087.523236	1.9	0.8
5	-1088.049892	-1087.523643	1.3	0.5
6	-1088.049782	-1087.522608	1.3	1.2
7	-1088.050251	-1087.523122	1.1	0.8
8	-1088.048786	-1087.522605	2.0	1.2
9	-1088.050207	-1087.522461	1.1	1.3
10	-1088.050285	-1087.523304	1.0	0.7
11	-1088.050023	-1087.521986	1.2	1.5
12	-1088.048867	-1087.522018	1.9	1.5
13	-1088.049338	-1087.522810	1.6	1.0

14	-1088.049801	-1087.523254	1.3	0.8
15	-1088.050324	-1087.522556	1.0	1.2
16	-1088.050190	-1087.524131	1.1	0.2
17	-1088.050085	-1087.522001	1.2	1.5
18	-1088.050107	-1087.524454	1.1	0.0
19	-1088.049374	-1087.523456	1.6	0.6
20	-1088.049817	-1087.522134	1.3	1.5
21	-1088.048967	-1087.522647	1.9	1.1
22	-1088.049009	-1087.522394	1.8	1.3
23	-1088.048842	-1087.522532	1.9	1.2
24	-1088.050211	-1087.522546	1.1	1.2
25	-1088.049689	-1087.522397	1.4	1.3
26	-1088.049194	-1087.523252	1.7	0.8
27	-1088.049850	-1087.522850	1.3	1.0
28	-1088.049259	-1087.523923	1.7	0.3
29	-1088.049015	-1087.522704	1.8	1.1
30	-1088.049327	-1087.523225	1.6	0.8
31	-1088.049197	-1087.523279	1.7	0.7
32	-1088.049331	-1087.523289	1.6	0.7
33	-1088.049093	-1087.522696	1.8	1.1
34	-1088.049156	-1087.523031	1.7	0.9
35	-1088.049182	-1087.523250	1.7	0.8
36	-1088.048860	-1087.521753	1.9	1.7
37	-1088.049180	-1087.523419	1.7	0.6
38	-1088.050006	-1087.522997	1.2	0.9
39	-1088.049000	-1087.522849	1.8	1.0
40	-1088.049505	-1087.521896	1.5	1.6
41	-1088.049391	-1087.521965	1.6	1.6
42	-1088.049256	-1087.523374	1.7	0.7
Avg.	-1088.050222	-1087.523324		

Table S52.	Conformational	analysis	for 3be.
------------	----------------	----------	----------

Conformer #	E	G	DE	DG
Comormer #	au	au	kcal/mol	kcal/mol
1	-1087.652493	-1087.134702	0.3	0.7
2	-1087.651591	-1087.133294	0.9	1.6
3	-1087.652863	-1087.135092	0.1	0.5
4	-1087.652570	-1087.134696	0.2	0.7
5	-1087.651850	-1087.133111	0.7	1.7
6	-1087.652401	-1087.134575	0.4	0.8
7	-1087.652830	-1087.135405	0.1	0.3
8	-1087.650875	-1087.132752	1.3	1.9
9	-1087.652853	-1087.134891	0.1	0.6
10	-1087.652961	-1087.134674	0.0	0.7
11	-1087.651550	-1087.135603	0.9	0.2

10	1007 651 400	1007 105600	10	0.1
12	-1007.001400	-1007.130033	1.0	0.1
1/	-1087.051020	-1087.133040	1.2	1.0
14	-1087.6511/8	-1007.134470	1.0	0.9
16	-1087.651250	-1087.135277	1.1	0.5
17	-1087.051230	-1087.135004	1.1	0.3
17	-1087.650568	-1087.133337	1.0	0.0
10	-1087.050500	-1087.134334	0.4	0.9
20	-1087.650500	-1007.134144	1.5	1.1
20	-1087.050590	-1007.1359/2	0.8	1.5
21	-1087.051000	-1087.135603	0.0	0.0
22	1097 652510	1097 134460	0.0	0.2
23	-1087.052510	-1087.134409	0.3	0.9
24	1007.002004	-1007.134025	0.3	0.7
20	-1007.001300	-1007.134033	1.0	0.7
20	-1007.001997	-1007.134023	0.0	0.0
27	-1087.050525	-1087.133495	1.5	1.5
28	-1087.050839	-1087.134458	1.3	0.9
29		-1087.134181	1.4	1.0
30	-1087.050947	-1087.135074	1.3	0.1
31	-1087.652021	-1087.134729	0.6	0.7
32	-1087.650313	-1087.133080	1.7	1.7
33	-1087.650780	-1087.134635	1.4	0.8
34	-1087.650740	-1087.134459	1.4	0.9
35	-1087.651274	-1087.135246	1.1	0.4
36	-1087.651439	-1087.135535	1.0	0.2
37	-1087.650741	-1087.134749	1.4	0.7
38	-1087.651282	-1087.134215	1.1	1.0
39	-1087.650297	-1087.132928	1.7	1.8
40	-1087.650134	-1087.132251	1.8	2.3
41	-1087.650710	-1087.134359	1.4	0.9
42	-1087.651416	-1087.135635	1.0	0.1
43	-1087.650751	-1087.134515	1.4	0.8
44	-1087.650559	-1087.135105	1.5	0.5
45	-1087.650716	-1087.134379	1.4	0.9
46	-1087.650849	-1087.132495	1.3	2.1
47	-1087.650676	-1087.134575	1.4	0.8
48	-1087.650824	-1087.135006	1.3	0.5
49	-1087.650088	-1087.132441	1.8	2.1
50	-1087.650590	-1087.134501	1.5	0.8
51	-1087.650833	-1087.133749	1.3	1.3
52	-1087.652166	-1087.134509	0.5	0.8
53	-1087.651410	-1087.134152	1.0	1.1
54	-1087.650942	-1087.134586	1.3	0.8
55	-1087.650891	-1087.134628	1.3	0.8
56	-1087.651479	-1087.133907	0.9	1.2

57	-1087.650928	-1087.134660	1.3	0.7
58	-1087.650824	-1087.134412	1.3	0.9
59	-1087.650923	-1087.134537	1.3	0.8
60	-1087.650955	-1087.134185	1.3	1.0
61	-1087.650442	-1087.132950	1.6	1.8
62	-1087.651117	-1087.133651	1.2	1.4
63	-1087.650796	-1087.134357	1.4	0.9
64	-1087.650652	-1087.132781	1.4	1.9
65	-1087.650717	-1087.134181	1.4	1.0
66	-1087.650849	-1087.134414	1.3	0.9
67	-1087.650720	-1087.133799	1.4	1.3
68	-1087.650173	-1087.132232	1.7	2.3
69	-1087.650112	-1087.133807	1.8	1.3
70	-1087.650910	-1087.134219	1.3	1.0
71	-1087.650236	-1087.132492	1.7	2.1
72	-1087.650657	-1087.133352	1.4	1.6
73	-1087.650179	-1087.134345	1.7	0.9
74	-1087.650681	-1087.133617	1.4	1.4
75	-1087.650626	-1087.133667	1.5	1.4
76	-1087.649968	-1087.133224	1.9	1.6
77	-1087.650925	-1087.134455	1.3	0.9
78	-1087.649788	-1087.133040	2.0	1.8
79	-1087.650560	-1087.133655	1.5	1.4
80	-1087.650000	-1087.133478	1.9	1.5
81	-1087.649942	-1087.133394	1.9	1.5
82	-1087.649839	-1087.133682	2.0	1.4
83	-1087.649822	-1087.133359	2.0	1.6
84	-1087.649828	-1087.133607	2.0	1.4
85	-1087.649885	-1087.134413	1.9	0.9
86	-1087.649838	-1087.133186	2.0	1.7
87	-1087.649875	-1087.133830	1.9	1.3
88	-1087.649867	-1087.133904	1.9	1.2
89	-1087.650896	-1087.133114	1.3	1.7
90	-1087.650443	-1087.133762	1.6	1.3
91	-1087.649836	-1087.133175	2.0	1.7
92	-1087.650440	-1087.133617	1.6	1.4
Avg.	-1087.651789	-1087.134791		

Conformar #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-1088.046467	-1087.518322	0.0	0.9
2	-1088.045880	-1087.519481	0.4	0.2
3	-1088.046402	-1087.518251	0.0	1.0
4	-1088.045660	-1087.517501	0.5	1.4
5	-1088.045346	-1087.518837	0.7	0.6
6	-1088.045414	-1087.517826	0.7	1.2
7	-1088.045296	-1087.519129	0.7	0.4
8	-1088.045300	-1087.517515	0.7	1.4
9	-1088.044964	-1087.516630	0.9	2.0
10	-1088.045115	-1087.518445	0.8	0.9
11	-1088.044959	-1087.517297	0.9	1.6
12	-1088.044980	-1087.518461	0.9	0.8
13	-1088.044847	-1087.517410	1.0	1.5
14	-1088.043988	-1087.515520	1.6	2.7
15	-1088.045453	-1087.517329	0.6	1.6
16	-1088.044542	-1087.516769	1.2	1.9
17	-1088.044311	-1087.517604	1.4	1.4
18	-1088.045832	-1087.519803	0.4	0.0
19	-1088.044692	-1087.518181	1.1	1.0
20	-1088.045478	-1087.518033	0.6	1.1
21	-1088.045025	-1087.517708	0.9	1.3
22	-1088.045341	-1087.516525	0.7	2.1
23	-1088.044099	-1087.516944	1.5	1.8
24	-1088.044097	-1087.515994	1.5	2.4
25	-1088.044258	-1087.517492	1.4	1.5
26	-1088.044844	-1087.517944	1.0	1.2
27	-1088.044964	-1087.517272	0.9	1.6
28	-1088.044711	-1087.517674	1.1	1.3
29	-1088.043877	-1087.516706	1.6	1.9
30	-1088.044110	-1087.517075	1.5	1.7
31	-1088.043799	-1087.516049	1.7	2.4
32	-1088.043907	-1087.516585	1.6	2.0
33	-1088.043706	-1087.516455	1.7	2.1
34	-1088.045189	-1087.518288	0.8	1.0
35	-1088.043805	-1087.516710	1.7	1.9
36	-1088.043695	-1087.516018	1.7	2.4
37	-1088.045196	-1087.518682	0.8	0.7
38	-1088.045026	-1087.518251	0.9	1.0
39	-1088.043838	-1087.516867	1.6	1.8
40	-1088.043815	-1087.516693	1.7	2.0
41	-1088.044152	-1087.517630	1.5	1.4
42	-1088.043456	-1087.516754	1.9	1.9

Table S53. Conformational analysis for 6be[‡].

43 44	
44	1.8
	2.4
45	2.0
46	1.6
47	1.9
48	2.0
49	1.8
50	2.7
51	1.7
52	2.2
53	1.5
54	1.8
55	2.0
56	1.9
57	1.7
58	2.0
59	2.2
60	1.9
61	2.0
62	3.1
63	2.9
64	0.8
65	1.9
00	2.3
60	2.0
67	2.5
67 68	
65 67 68 69	2.6
62 63 64 65	3.1 2.9 0.8 1.9 2.3 2.0 2.5

Table S54. Conformational analysis for 6be.

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1087.634767	-1087.117858	0.1	0.0
2	-1087.634766	-1087.117498	0.1	0.2
3	-1087.634253	-1087.117176	0.5	0.4
4	-1087.634588	-1087.116753	0.2	0.7
5	-1087.634088	-1087.116455	0.6	0.9
6	-1087.634566	-1087.117275	0.3	0.4
7	-1087.633895	-1087.116855	0.7	0.6
8	-1087.634818	-1087.117704	0.1	0.1
9	-1087.634981	-1087.116507	0.0	0.8
10	-1087.634896	-1087.116806	0.1	0.7
11	-1087.634173	-1087.116680	0.5	0.7
12	-1087.632682	-1087.113607	1.4	2.7
13	-1087.633972	-1087.116430	0.6	0.9

14	-1087.633681	-1087.116159	0.8	1.1
15	-1087.633911	-1087.115516	0.7	1.5
16	-1087.633236	-1087.115617	1.1	1.4
17	-1087.633823	-1087.115700	0.7	1.4
18	-1087.633815	-1087.116410	0.7	0.9
19	-1087.633652	-1087.115710	0.8	1.3
20	-1087.633155	-1087.115339	1.1	1.6
21	-1087.633378	-1087.114981	1.0	1.8
22	-1087.632389	-1087.113931	1.6	2.5
23	-1087.634012	-1087.114672	0.6	2.0
24	-1087.632817	-1087.115386	1.4	1.6
25	-1087.632554	-1087.115449	1.5	1.5
26	-1087.634546	-1087.115043	0.3	1.8
27	-1087.632265	-1087.113887	1.7	2.5
28	-1087.633219	-1087.115228	1.1	1.7
29	-1087.633945	-1087.115350	0.7	1.6
30	-1087.633414	-1087.115084	1.0	1.7
31	-1087.633981	-1087.114524	0.6	2.1
32	-1087.632363	-1087.115026	1.6	1.8
33	-1087.632508	-1087.115190	1.6	1.7
34	-1087.632447	-1087.115003	1.6	1.8
35	-1087.632699	-1087.115255	1.4	1.6
36	-1087.632816	-1087.114651	1.4	2.0
37	-1087.633974	-1087.116359	0.6	0.9
38	-1087.633446	-1087.114990	1.0	1.8
39	-1087.632087	-1087.113875	1.8	2.5
40	-1087.632199	-1087.114682	1.7	2.0
41	-1087.632332	-1087.113776	1.7	2.6
42	-1087.632681	-1087.113451	1.4	2.8
43	-1087.632265	-1087.113883	1.7	2.5
44	-1087.633436	-1087.114199	1.0	2.3
45	-1087.633809	-1087.116378	0.7	0.9
46	-1087.631887	-1087.114504	1.9	2.1
47	-1087.632462	-1087.115209	1.6	1.7
48	-1087.633152	-1087.115334	1.1	1.6
49	-1087.631944	-1087.113460	1.9	2.8
50	-1087.632018	-1087.114292	1.9	2.2
51	-1087.631869	-1087.113031	2.0	3.0
52	-1087.631831	-1087.113898	2.0	2.5
53	-1087.632378	-1087.115701	1.6	1.4
54	-1087.632323	-1087.113255	1.7	2.9
55	-1087.632422	-1087.114507	1.6	2.1
Avg.	-1087.634089	-1087.116701		

Conformer #	E	G	DE	DG
Conformer #	au	au	kcal/mol	kcal/mol
1	-1127.355495	-1126.800826	0.0	0.7
2	-1127.353364	-1126.798268	1.3	2.3
3	-1127.354822	-1126.801658	0.4	0.1
4	-1127.353421	-1126.798519	1.3	2.1
5	-1127.353116	-1126.800086	1.5	1.1
6	-1127.354345	-1126.800836	0.7	0.7
7	-1127.352471	-1126.799647	1.9	1.4
8	-1127.352459	-1126.799743	1.9	1.3
9	-1127.352449	-1126.799691	1.9	1.4
10	-1127.354156	-1126.800528	0.8	0.8
11	-1127.352802	-1126.799444	1.7	1.5
12	-1127.352797	-1126.799457	1.7	1.5
13	-1127.354002	-1126.799711	0.9	1.4
14	-1127.354235	-1126.800147	0.8	1.1
15	-1127.353266	-1126.798865	1.4	1.9
16	-1127.353997	-1126.801161	0.9	0.4
17	-1127.353509	-1126.799788	1.2	1.3
18	-1127.354599	-1126.799495	0.6	1.5
19	-1127.353043	-1126.800366	1.5	0.9
20	-1127.352810	-1126.798192	1.7	2.3
21	-1127.354629	-1126.800082	0.5	1.1
22	-1127.352936	-1126.799569	1.6	1.4
23	-1127.354257	-1126.799717	0.8	1.4
24	-1127.352868	-1126.799927	1.6	1.2
25	-1127.352704	-1126.799392	1.8	1.6
26	-1127.352646	-1126.799500	1.8	1.5
27	-1127.353238	-1126.799580	1.4	1.4
28	-1127.353223	-1126.799406	1.4	1.6
29	-1127.353472	-1126.800314	1.3	1.0
30	-1127.352314	-1126.797262	2.0	2.9
31	-1127.353213	-1126.798683	1.4	2.0
32	-1127.353046	-1126.798146	1.5	2.3
33	-1127.353338	-1126.799348	1.4	1.6
34	-1127.353013	-1126.799303	1.6	1.6
35	-1127.352980	-1126.799574	1.6	1.4
36	-1127.354258	-1126.799002	0.8	1.8
37	-1127.352886	-1126.798328	1.6	2.2
38	-1127.353072	-1126.799862	1.5	1.3
39	-1127.352799	-1126.800077	1.7	1.1
40	-1127.352856	-1126.800030	1.7	1.2
41	-1127.352741	-1126.798531	1.7	2.1
42	-1127.354285	-1126.798612	0.8	2.0

Table S55. Conformational analysis for 3b[‡].

43	-1127.352884	-1126.798987	1.6	1.8
44	-1127.354213	-1126.799063	0.8	1.8
45	-1127.352639	-1126.799576	1.8	1.4
46	-1127.352838	-1126.799915	1.7	1.2
47	-1127.352957	-1126.799067	1.6	1.8
48	-1127.352660	-1126.800693	1.8	0.7
49	-1127.352502	-1126.798512	1.9	2.1
50	-1127.352911	-1126.798902	1.6	1.9
51	-1127.352731	-1126.801029	1.7	0.5
52	-1127.353392	-1126.799050	1.3	1.8
53	-1127.352962	-1126.799235	1.6	1.7
54	-1127.353764	-1126.800577	1.1	0.8
55	-1127.352888	-1126.799693	1.6	1.4
56	-1127.352677	-1126.799043	1.8	1.8
57	-1127.353113	-1126.798498	1.5	2.1
58	-1127.352419	-1126.798334	1.9	2.2
59	-1127.354075	-1126.799293	0.9	1.6
60	-1127.354988	-1126.801877	0.3	0.0
61	-1127.352809	-1126.799189	1.7	1.7
62	-1127.352378	-1126.798909	2.0	1.9
Avg.	-1127.354036	-1126.800442		

Table S56. Conformational analysis for 3b.

Conformor #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1126.953548	-1126.409296	0.6	1.1
2	-1126.954115	-1126.409266	0.3	1.1
3	-1126.954559	-1126.409719	0.0	0.8
4	-1126.953217	-1126.407818	0.8	2.0
5	-1126.951916	-1126.407213	1.7	2.4
6	-1126.952932	-1126.409521	1.0	0.9
7	-1126.952550	-1126.410724	1.3	0.2
8	-1126.952294	-1126.410082	1.4	0.6
9	-1126.952682	-1126.410479	1.2	0.3
10	-1126.953251	-1126.408743	0.8	1.4
11	-1126.952569	-1126.411013	1.2	0.0
12	-1126.951401	-1126.408627	2.0	1.5
13	-1126.953507	-1126.408317	0.7	1.7
14	-1126.953608	-1126.409090	0.6	1.2
15	-1126.952074	-1126.407430	1.6	2.2
16	-1126.952451	-1126.407834	1.3	2.0
17	-1126.951501	-1126.408259	1.9	1.7
18	-1126.952548	-1126.408512	1.3	1.6
19	-1126.952336	-1126.409315	1.4	1.1
20	-1126.951339	-1126.406960	2.0	2.5

21	-1126.951798	-1126.408722	1.7	1.4
22	-1126.951663	-1126.408749	1.8	1.4
23	-1126.951724	-1126.409174	1.8	1.2
24	-1126.951682	-1126.407642	1.8	2.1
25	-1126.951703	-1126.409148	1.8	1.2
26	-1126.951708	-1126.409045	1.8	1.2
27	-1126.953110	-1126.409358	0.9	1.0
28	-1126.951527	-1126.408668	1.9	1.5
29	-1126.951516	-1126.408918	1.9	1.3
30	-1126.952057	-1126.407851	1.6	2.0
31	-1126.951390	-1126.406409	2.0	2.9
32	-1126.952310	-1126.407705	1.4	2.1
33	-1126.951666	-1126.409235	1.8	1.1
34	-1126.949780	-1126.406549	3.0	2.8
35	-1126.951427	-1126.406767	2.0	2.7
36	-1126.951650	-1126.408843	1.8	1.4
37	-1126.951731	-1126.407322	1.8	2.3
38	-1126.952020	-1126.407644	1.6	2.1
39	-1126.951501	-1126.409054	1.9	1.2
40	-1126.951664	-1126.409192	1.8	1.1
41	-1126.951554	-1126.407855	1.9	2.0
42	-1126.951383	-1126.407961	2.0	1.9
43	-1126.951823	-1126.408713	1.7	1.4
44	-1126.951567	-1126.407211	1.9	2.4
Avg.	-1126.953158	-1126.409714		

Table S57. Conformational analysis for 6b[‡].

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1127.351993	-1126.798273	0.0	0.0
2	-1127.350850	-1126.796072	0.7	1.4
3	-1127.350470	-1126.797383	1.0	0.6
4	-1127.351076	-1126.796578	0.6	1.1
5	-1127.349955	-1126.795258	1.3	1.9
6	-1127.351209	-1126.797303	0.5	0.6
7	-1127.351010	-1126.796764	0.6	0.9
8	-1127.350998	-1126.797155	0.6	0.7
9	-1127.351179	-1126.796943	0.5	0.8
10	-1127.351197	-1126.796830	0.5	0.9
11	-1127.349842	-1126.796339	1.3	1.2
12	-1127.350493	-1126.796954	0.9	0.8
13	-1127.350796	-1126.796643	0.8	1.0
14	-1127.349591	-1126.795628	1.5	1.7
15	-1127.351109	-1126.796439	0.6	1.2
16	-1127.351632	-1126.796320	0.2	1.2

17	-1127.351481	-1126.796726	0.3	1.0
18	-1127.350787	-1126.798101	0.8	0.1
19	-1127.349662	-1126.796129	1.5	1.3
20	-1127.349144	-1126.794792	1.8	2.2
21	-1127.349633	-1126.795860	1.5	1.5
22	-1127.351362	-1126.796785	0.4	0.9
23	-1127.350268	-1126.794922	1.1	2.1
24	-1127.350001	-1126.796535	1.2	1.1
25	-1127.350147	-1126.795382	1.2	1.8
26	-1127.350729	-1126.796430	0.8	1.2
27	-1127.349822	-1126.795222	1.4	1.9
28	-1127.350838	-1126.796275	0.7	1.3
29	-1127.350195	-1126.796182	1.1	1.3
30	-1127.350097	-1126,796546	1.2	1.1
31	-1127.350107	-1126,797326	1.2	0.6
32	-1127.349579	-1126.794551	1.5	2.3
33	-1127.349702	-1126.795391	1.4	1.8
34	-1127.350711	-1126.796057	0.8	1.4
35	-1127.349645	-1126.796045	1.5	1.4
36	-1127.349558	-1126.795429	1.5	1.8
37	-1127.350076	-1126.796282	1.2	1.2
38	-1127.349990	-1126.796568	1.3	1.1
39	-1127.349289	-1126.795474	1.7	1.8
40	-1127.349749	-1126.795971	1.4	1.4
41	-1127.350070	-1126.795624	1.2	1.7
42	-1127.350055	-1126.795988	1.2	1.4
43	-1127.350688	-1126.797070	0.8	0.8
44	-1127.350673	-1126.795616	0.8	1.7
45	-1127.349485	-1126.796076	1.6	1.4
46	-1127.349992	-1126.796530	1.3	1.1
47	-1127.350466	-1126.795782	1.0	1.6
48	-1127.350342	-1126.797253	1.0	0.6
49	-1127.350569	-1126.796390	0.9	1.2
50	-1127.349776	-1126.794950	1.4	2.1
51	-1127.350352	-1126.795807	1.0	1.5
52	-1127.350140	-1126.796328	1.2	1.2
53	-1127.349177	-1126.795514	1.8	1.7
54	-1127.349667	-1126.795548	1.5	1.7
55	-1127.349376	-1126.794556	1.6	2.3
56	-1127.350493	-1126.795587	0.9	1.7
57	-1127.349085	-1126.795224	1.8	1.9
58	-1127.349198	-1126.795934	1.8	1.5
59	-1127.349780	-1126.795602	1.4	1.7
60	-1127.349778	-1126.795180	1.4	1.9
61	-1127.350819	-1126.796481	0.7	1.1

	4407040700			
62	-1127.349760	-1126.796837	1.4	0.9
63	-1127.349176	-1126.794463	1.8	2.4
64	-1127.349323	-1126.794562	1.7	2.3
65	-1127.349125	-1126.794359	1.8	2.5
66	-1127.348975	-1126.793871	1.9	2.8
67	-1127.350364	-1126.797822	1.0	0.3
68	-1127.349152	-1126.795310	1.8	1.9
69	-1127.350612	-1126.795979	0.9	1.4
70	-1127.349305	-1126.794810	1.7	2.2
71	-1127.349474	-1126.796186	1.6	1.3
72	-1127.349559	-1126.797157	1.5	0.7
73	-1127.349534	-1126.795781	1.5	1.6
74	-1127.349078	-1126.795704	1.8	1.6
75	-1127.349432	-1126.796736	1.6	1.0
76	-1127.349356	-1126.795254	1.7	1.9
77	-1127.349235	-1126.795855	1.7	1.5
78	-1127.349901	-1126.795522	1.3	1.7
79	-1127.349641	-1126.796288	1.5	1.2
80	-1127.349102	-1126.795530	1.8	1.7
81	-1127.350397	-1126.797461	1.0	0.5
82	-1127.348966	-1126.795944	1.9	1.5
83	-1127.348847	-1126.795427	2.0	1.8
84	-1127.349194	-1126.794586	1.8	2.3
85	-1127.348922	-1126.795929	1.9	1.5
86	-1127.349403	-1126.795040	1.6	2.0
87	-1127.350273	-1126.794556	1.1	2.3
88	-1127.349351	-1126.796395	1.7	1.2
89	-1127.349136	-1126.795209	1.8	1.9
90	-1127.348957	-1126.795286	1.9	1.9
91	-1127.349120	-1126.794339	1.8	2.5
92	-1127.350034	-1126.795324	1.2	1.9
93	-1127.350102	-1126.795099	1.2	2.0
94	-1127.349547	-1126.796168	1.5	1.3
95	-1127.349095	-1126.794511	1.8	2.4
96	-1127.349262	-1126.796058	1.7	1.4
97	-1127.348952	-1126.794217	1.9	2.5
98	-1127.349252	-1126.795459	1.7	1.8
99	-1127.349477	-1126.795385	1.6	1.8
100	-1127.348820	-1126.793899	2.0	2.7
101	-1127.349036	-1126.794338	1.9	2.5
102	-1127.349104	-1126.795835	1.8	1.5
103	-1127.349353	-1126.796224	1.7	1.3
104	-1127.349723	-1126.794653	1.4	2.3
105	-1127.349685	-1126.795785	1.4	1.6
106	-1127.348987	-1126.793659	1.9	2.9

Avg.	-1127.350541	-1126.796757		
------	--------------	--------------	--	--

Conformer #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1126.937573	-1126.393509	0.0	0.0
2	-1126.937289	-1126.392590	0.2	0.6
3	-1126.937030	-1126.392480	0.4	0.6
4	-1126.936672	-1126.392109	0.6	0.9
5	-1126.936568	-1126.392219	0.7	0.8
6	-1126.936848	-1126.392200	0.5	0.8
7	-1126.937645	-1126.393450	0.0	0.0
8	-1126.936528	-1126.392631	0.7	0.6
9	-1126.937347	-1126.391800	0.2	1.1
10	-1126.936424	-1126.391467	0.8	1.3
11	-1126.934813	-1126.390862	1.8	1.7
12	-1126.936428	-1126.391174	0.8	1.5
13	-1126.934933	-1126.390866	1.7	1.7
14	-1126.935630	-1126.391322	1.3	1.4
15	-1126.935319	-1126.390803	1.5	1.7
16	-1126.935657	-1126.391434	1.2	1.3
17	-1126.934501	-1126.389084	2.0	2.8
18	-1126.935463	-1126.390660	1.4	1.8
19	-1126.935976	-1126.390695	1.0	1.8
20	-1126.935300	-1126.390326	1.5	2.0
21	-1126.934571	-1126.389580	1.9	2.5
22	-1126.934893	-1126.390122	1.7	2.1
23	-1126.935633	-1126.389758	1.3	2.4
24	-1126.936446	-1126.391448	0.8	1.3
25	-1126.936647	-1126.390367	0.6	2.0
26	-1126.935178	-1126.389203	1.5	2.7
27	-1126.935420	-1126.390513	1.4	1.9
28	-1126.934611	-1126.389401	1.9	2.6
29	-1126.934645	-1126.389212	1.9	2.7
30	-1126.935443	-1126.390008	1.4	2.2
31	-1126.935300	-1126.389983	1.5	2.2
32	-1126.934835	-1126.390195	1.8	2.1
33	-1126.934656	-1126.389822	1.9	2.3
34	-1126.934506	-1126.390237	2.0	2.1
35	-1126.934543	-1126.388612	1.9	3.1
Avg.	-1126.936728	-1126.392441		

Table S58. Conformational analysis for 6b.

Conformar #	E	G	DE	DG
Conionnel #	au	au	kcal/mol	kcal/mol
1	-1166.652315	-1166.070981	1.6	3.1
2	-1166.651978	-1166.069466	1.8	4.1
3	-1166.654674	-1166.072561	0.2	2.1
4	-1166.654152	-1166.073140	0.5	1.8
5	-1166.654312	-1166.072017	0.4	2.5
6	-1166.653317	-1166.070337	1.0	3.5
7	-1166.653575	-1166.072302	0.8	2.3
8	-1166.653260	-1166.072870	1.0	1.9
9	-1166.653250	-1166.071469	1.0	2.8
10	-1166.653355	-1166.072156	1.0	2.4
11	-1166.653253	-1166.072027	1.0	2.5
12	-1166.652528	-1166.072135	1.5	2.4
13	-1166.652488	-1166.072307	1.5	2.3
14	-1166.654597	-1166.071962	0.2	2.5
15	-1166.652687	-1166.071713	1.4	2.7
16	-1166.654149	-1166.071309	0.5	2.9
17	-1166.652284	-1166.071192	1.7	3.0
18	-1166.652953	-1166.070564	1.2	3.4
19	-1166.652606	-1166.071598	1.5	2.7
20	-1166.654923	-1166.075940	0.0	0.0
21	-1166.652661	-1166.071188	1.4	3.0
22	-1166.652568	-1166.071288	1.5	2.9
23	-1166.652585	-1166.071566	1.5	2.7
24	-1166.652370	-1166.071589	1.6	2.7
25	-1166.652424	-1166.071108	1.6	3.0
26	-1166.652081	-1166.072599	1.8	2.1
27	-1166.652919	-1166.070720	1.3	3.3
28	-1166.653473	-1166.070947	0.9	3.1
29	-1166.652116	-1166.073110	1.8	1.8
30	-1166.651808	-1166.071173	2.0	3.0
31	-1166.654029	-1166.073359	0.6	1.6
32	-1166.652618	-1166.072052	1.4	2.4
33	-1166.652452	-1166.071383	1.6	2.9
34	-1166.652090	-1166.071457	1.8	2.8
35	-1166.652071	-1166.070807	1.8	3.2
36	-1166.652433	-1166.071906	1.6	2.5
37	-1166.652139	-1166.072157	1.7	2.4
38	-1166.652351	-1166.071617	1.6	2.7
39	-1166.652406	-1166.070277	1.6	3.6
40	-1166.653249	-1166.072835	1.1	1.9
41	-1166.654004	-1166.074030	0.6	1.2
42	-1166.652545	-1166.071600	1.5	2.7

Table S59. Conformational analysis for 3bf[‡].

43	-1166.654893	-1166.074431	0.0	0.9
44	-1166.653010	-1166.070422	1.2	3.5
45	-1166.653929	-1166.074792	0.6	0.7
46	-1166.652621	-1166.069731	1.4	3.9
47	-1166.653818	-1166.073393	0.7	1.6
48	-1166.652029	-1166.071561	1.8	2.7
49	-1166.654328	-1166.073919	0.4	1.3
50	-1166.653865	-1166.073580	0.7	1.5
51	-1166.652418	-1166.070594	1.6	3.4
52	-1166.652898	-1166.070878	1.3	3.2
53	-1166.652507	-1166.072270	1.5	2.3
54	-1166.653197	-1166.073763	1.1	1.4
55	-1166.651815	-1166.070005	2.0	3.7
Avg.	-1166.653854	-1166.074378		

Table S60. Conformational analysis for 3bf.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1166.248655	-1165.677740	1.0	1.8
2	-1166.248731	-1165.677768	0.9	1.8
3	-1166.250051	-1165.679529	0.1	0.7
4	-1166.250218	-1165.679129	0.0	0.9
5	-1166.248099	-1165.677103	1.3	2.2
6	-1166.249938	-1165.679838	0.2	0.5
7	-1166.248970	-1165.680482	0.8	0.1
8	-1166.248956	-1165.680260	0.8	0.2
9	-1166.249119	-1165.679356	0.7	0.8
10	-1166.248973	-1165.680430	0.8	0.1
11	-1166.248789	-1165.679167	0.9	0.9
12	-1166.249116	-1165.678999	0.7	1.0
13	-1166.248969	-1165.680570	0.8	0.0
14	-1166.250005	-1165.679165	0.1	0.9
15	-1166.249597	-1165.678148	0.4	1.5
16	-1166.248356	-1165.678747	1.2	1.1
17	-1166.248325	-1165.680049	1.2	0.3
18	-1166.249190	-1165.678418	0.6	1.4
19	-1166.249465	-1165.677726	0.5	1.8
20	-1166.248272	-1165.678607	1.2	1.2
21	-1166.248259	-1165.678741	1.2	1.1
22	-1166.248397	-1165.679365	1.1	0.8
23	-1166.249177	-1165.678658	0.7	1.2
24	-1166.247174	-1165.675813	1.9	3.0
25	-1166.248015	-1165.678697	1.4	1.2
26	-1166.247839	-1165.678339	1.5	1.4

27	-1166 248062	-1165 677280	1 /	21
28	-1166 248002	-1165 678889	1.4	1 1
29	-1166 247522	-1165 676720	17	2.4
30	-1166 248008	-1165 678920	1 4	1.0
31	-1166 247972	-1165 678961	1.4	1.0
32	-1166 249455	-1165 677675	0.5	1.8
33	-1166 247771	-1165 678215	1 5	1.5
34	-1166 247839	-1165 678488	1.5	1.3
35	-1166 247398	-1165 676860	1.8	23
36	-1166 248237	-1165 677470	1.0	1 9
37	-1166 248231	-1165 677801	1.2	1.5
38	-1166 2/77/3	-1165.675510	1.2	3.2
30	-1166 2/19002	-1165 680261	0.8	0.2
40	-1166 2/7572	-1165.678205	1.7	1.5
40	-1166 2/7625	-1165 678/25	1.7	1.3
41	-1166 247025	-1165 678307	1.0	1.3
42	-1166 247770	-1165.678620	1.5	1.4
43	-1166 247170	-1165 676325	1.0	2.7
44	-1100.247127	-1105.070325	1.9	2.7
45	-1100.240302	1165 679/72	1.2	0.0
40	-1100.247900	-1105.070475	1.4	1.5
47	-1100.240030	-1103.079193	1.4	0.9
40	-1100.247520	-1103.070037	1.7	1.2
49 50	-1100.247391	-1103.070400	1.0	2.0
50	-1100.247090	-1103.077103	2.0	2.2
51	-1100.240009	-1103.070090	1.4	1.1
52	-1100.247300	-1100.070022	1.0	1.1
53	-1100.240002	-1103.070003	1.4	2.4
54	-1100.240009	-1103.070907	1.4	1.0
55	-1100.247027	-1105.079060	1.0	0.9
56	-1166.247441	-1165.675909	1.7	2.9
57	-1166.248026		1.4	2.5
58	-1166.247404	-1165.677732	1.8	1.8
59	-1166.247147		1.9	1.7
60	-1166.247127	-1165.677468	1.9	1.9
61	-1166.247403	-1165.679039	1.8	1.0
62	-1166.247128	-1165.677653	1.9	1.8
63	-1166.247982	-1165.679330	1.4	0.8
64	-1166.248269	-1165.678622	1.2	1.2
65	-1166.24/101	-1165.677492	2.0	1.9
66	-1166.247881	-1165.677301	1.5	2.1
67	-1166.247795		1.5	1.5
68	-1166.24/669	-1165.678014	1.6	1.6
69	-1166.247032	-1165.678973	2.0	1.0
/0	-1166.247051	-1165.677983	2.0	1.6
71	-1166.247755	-1165.678542	1.5	1.3

72	-1166.247386	-1165.677572	1.8	1.9
73	-1166.247626	-1165.678084	1.6	1.6
74	-1166.247664	-1165.677274	1.6	2.1
75	-1166.247101	-1165.676746	2.0	2.4
76	-1166.247132	-1165.674821	1.9	3.6
77	-1166.247643	-1165.678595	1.6	1.2
78	-1166.247884	-1165.678094	1.5	1.6
79	-1166.247685	-1165.678246	1.6	1.5
80	-1166.248315	-1165.675624	1.2	3.1
81	-1166.247163	-1165.677111	1.9	2.2
82	-1166.247872	-1165.675808	1.5	3.0
83	-1166.247285	-1165.674947	1.8	3.5
84	-1166.247192	-1165.676809	1.9	2.4
85	-1166.248728	-1165.675764	0.9	3.0
Avg.	-1166.248897	-1165.679380		

Table S61. Conformational analysis for 6bf[‡].

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1166.651170	-1166.068813	0.3	1.6
2	-1166.651603	-1166.069689	0.0	1.1
3	-1166.648900	-1166.065119	1.7	4.0
4	-1166.650413	-1166.069149	0.7	1.4
5	-1166.651124	-1166.070573	0.3	0.5
6	-1166.650518	-1166.070061	0.7	0.9
7	-1166.650479	-1166.069643	0.7	1.1
8	-1166.650391	-1166.068176	0.8	2.0
9	-1166.651396	-1166.071438	0.1	0.0
10	-1166.650354	-1166.068887	0.8	1.6
11	-1166.648846	-1166.067215	1.7	2.6
12	-1166.649521	-1166.067793	1.3	2.3
13	-1166.650535	-1166.069466	0.7	1.2
14	-1166.650562	-1166.069691	0.7	1.1
15	-1166.650200	-1166.069016	0.9	1.5
16	-1166.649968	-1166.068776	1.0	1.7
17	-1166.650392	-1166.070269	0.8	0.7
18	-1166.650349	-1166.069966	0.8	0.9
19	-1166.650262	-1166.069340	0.8	1.3
20	-1166.650262	-1166.069398	0.8	1.3
21	-1166.650275	-1166.068890	0.8	1.6
22	-1166.649956	-1166.069014	1.0	1.5
23	-1166.649180	-1166.070060	1.5	0.9
24	-1166.649254	-1166.068735	1.5	1.7
25	-1166.650292	-1166.069604	0.8	1.2
26	-1166.650430	-1166.068614	0.7	1.8

~ ~	1100 050051	4400 074400		
27	-1166.650274	-1166.071168	0.8	0.2
28	-1166.649354	-1166.069890	1.4	1.0
29	-1166.650642	-1166.070230	0.6	0.8
30	-1166.649173	-1166.069231	1.5	1.4
31	-1166.650223	-1166.069875	0.9	1.0
32	-1166.649213	-1166.069036	1.5	1.5
33	-1166.650517	-1166.068885	0.7	1.6
34	-1166.648844	-1166.066052	1.7	3.4
35	-1166.649846	-1166.067844	1.1	2.3
36	-1166.649705	-1166.069493	1.2	1.2
37	-1166.649257	-1166.068555	1.5	1.8
38	-1166.649356	-1166.067586	1.4	2.4
39	-1166.648876	-1166.065263	1.7	3.9
40	-1166.649435	-1166.068751	1.4	1.7
41	-1166.649474	-1166.067496	1.3	2.5
42	-1166.649488	-1166.068640	1.3	1.8
43	-1166.649383	-1166.068402	1.4	1.9
44	-1166.650954	-1166.069712	0.4	1.1
45	-1166.649424	-1166.069700	1.4	1.1
46	-1166.648698	-1166.067225	1.8	2.6
47	-1166.649425	-1166.069203	1.4	1.4
48	-1166.650130	-1166.068457	0.9	1.9
49	-1166.649270	-1166.069666	1.5	1.1
50	-1166.649659	-1166.069082	1.2	1.5
51	-1166.649308	-1166.069167	1.4	1.4
52	-1166.649044	-1166.069148	1.6	1.4
53	-1166.649304	-1166.069931	1.4	0.9
54	-1166.649950	-1166.066875	1.0	2.9
55	-1166.649922	-1166.067328	1.1	2.6
56	-1166.650015	-1166.068911	1.0	1.6
57	-1166.650079	-1166.069171	1.0	1.4
58	-1166.648723	-1166.067370	1.8	2.6
59	-1166.648803	-1166.067363	1.8	2.6
60	-1166.648694	-1166.066713	1.8	3.0
61	-1166.648826	-1166.067334	1.7	2.6
62	-1166.649207	-1166.069758	1.5	1.1
63	-1166.649239	-1166.068912	1.5	1.6
64	-1166.649120	-1166.068200	1.6	2.0
65	-1166.649797	-1166.069535	1.1	1.2
66	-1166.650170	-1166.067833	0.9	2.3
67	-1166.649229	-1166.069321	1.5	1.3
68	-1166.649223	-1166.068194	1.5	2.0
69	-1166.650165	-1166.067930	0.9	2.2
70	-1166.649517	-1166.067319	1.3	2.6
71	-1166.648437	-1166.066083	2.0	3.4

72	-1166.649712	-1166.068209	1.2	2.0
73	-1166.648564	-1166.068188	1.9	2.0
74	-1166.649339	-1166.068443	1.4	1.9
75	-1166.649325	-1166.068208	1.4	2.0
76	-1166.648741	-1166.065868	1.8	3.5
77	-1166.649836	-1166.068017	1.1	2.1
Avg.	-1166.650305	-1166.069880		

Table S62. Conformational analysis for 6bf.

Conformar #	E	G	DE	DG
Comonner #	au	au	kcal/mol	kcal/mol
1	-1166.232884	-1165.661685	0.0	0.0
2	-1166.232359	-1165.660518	0.3	0.7
3	-1166.232322	-1165.660381	0.4	0.8
4	-1166.230007	-1165.658169	1.8	2.2
5	-1166.230066	-1165.657569	1.8	2.6
6	-1166.232005	-1165.660407	0.6	0.8
7	-1166.231738	-1165.659924	0.7	1.1
8	-1166.231816	-1165.659861	0.7	1.1
9	-1166.232347	-1165.660413	0.3	0.8
10	-1166.232506	-1165.659854	0.2	1.1
11	-1166.231733	-1165.659409	0.7	1.4
12	-1166.230967	-1165.658837	1.2	1.8
13	-1166.230805	-1165.658761	1.3	1.8
14	-1166.231850	-1165.659960	0.6	1.1
15	-1166.231125	-1165.659116	1.1	1.6
16	-1166.231053	-1165.659027	1.1	1.7
17	-1166.229962	-1165.658855	1.8	1.8
18	-1166.230374	-1165.658353	1.6	2.1
19	-1166.231043	-1165.658200	1.2	2.2
20	-1166.231681	-1165.659420	0.8	1.4
21	-1166.230003	-1165.657632	1.8	2.5
22	-1166.231131	-1165.659095	1.1	1.6
Avg.	-1166.232023	-1165.660437		

	7 9		
9			
-		7	
	2.361	2.566	P
	• • • • •		1
			۵
C	-0.863091	-1.100226	-0.642569
С	-2.039228	-1.042961	0.125538
C	-2.981620	-0.069673	-0.084443
С	-4.284300	-0.095353	0.622242
H	-4.3633//	0.800561	1.254214
п	-3.108/30	-0.025561	-0.096955
п	-4.400005	-0.964457	1.243100 1.102155
C	-1 299324	1 245386	-1.105155
с н	-0 834203	1 760279	-0 568476
H	-1 200746	1 901816	-2 285390
C	-0 569446	-0 070767	-1 668163
н	0.513783	0.071659	-1.771695
H	-3.313816	0.675146	-2.008391
Η	-3.271885	1.920182	-0.778645
Н	-2.243785	-1.840973	0.834911
Н	-0.381098	-2.068123	-0.755195
С	0.634556	0.457092	1.326800
С	0.775812	-0.918174	1.046706
С	1.888096	-1.332887	0.281185
С	2.746771	-0.406629	-0.286886
С	2.547194	0.962407	-0.050156
С	1.494585	1.392048	0.761965
Η	1.354696	2.451476	0.962676
С	3.457113	1.966102	-0.691981
H	3.105708	2.190363	-1.707218
H	4.475658	1.577696	-0.778166
H	3.580299	-0./38010	-0.901443
U	2.015209	-2.668894	0.112124
H	2.//4926	-2.0003//	-0.4369/9
п	U.ZZZ4ZU _0 302511	-1.048U9U	1,02/941 0 1060/0
U U	-0.3323II	1 750766	2.130240 2.211333
н Ц	3 474127	2 904260	-0 131882
Н	-0.890379	-0.516206	-2.627794
ΤT	0.090319	0.010200	2.02//94

 Table S63. Coordinates for global minimum of 3ac[‡].

С	-0.858487	-0.792503	0.206676
С	-1.759396	0.184457	0.932315
С	-2.990943	0.531635	0.529473
С	-3.822641	1.527781	1.281158
H	-4.135741	2.344313	0.617159
H U	-3.2/92/1	1.954806	2.1286/3
Г	-3 617103	-0 062584	-0 706643
C	-2 902183	-1 330556	-1 173482
C	-1.392715	-1.106303	-1.204744
H	-0.867481	-1.983692	-1.599403
Н	-1.163804	-0.265717	-1.875089
Η	-3.267970	-1.628572	-2.162848
Η	-3.131658	-2.152685	-0.481470
Η	-4.676580	-0.268366	-0.501438
Н	-3.611539	0.695167	-1.506167
H	-1.362571	0.614398	1.854092
н С	-0.861481	-1.727488	0.182766
C	1 646239	-0.314203 -1 188657	0.147029
C	2.976231	-0.785432	0.300740
C	3.284330	0.524017	-0.074829
С	2.246573	1.413003	-0.335171
С	0.917574	0.994678	-0.229080
0	-0.035219	1.929060	-0.529783
Η	-0.909812	1.597758	-0.244220
Η	2.450213	2.440216	-0.624354
С	4.720969	0.954828	-0.204548
Η	5.299824	0.667277	0.679896
H	5.193925	0.475698	-1.070368
H	4.799697	2.037582	-0.333192
H	3.771899	-1.497571	0.512175
0	1.325048	-2.4/5215	0./52048

 Table S64. Coordinates for global minimum of 3ac.

 Table S65. Coordinates for global minimum of 6ac[‡].

С	0.882471	1.131521	-0.718120
С	2.036798	1.064192	0.081847
С	2.960495	0.065167	-0.080898
С	4.241843	0.070920	0.665115
Н	4.368190	0.966553	1.276271
Н	4.280585	-0.816124	1.313143
Н	5.086571	-0.028902	-0.028605
С	2.753962	-1.016504	-1.088440
С	1.284579	-1.239754	-1.430598
Н	0.791464	-1.730864	-0.585014
Н	1.193325	-1.910259	-2.290276
С	0.582808	0.083960	-1.722676
Н	-0.503086	-0.042335	-1.831431
Н	3.322725	-0.716976	-1.986014
Н	3.227769	-1.941407	-0.738433
Н	2.240454	1.871911	0.780436
Н	0.437168	2.109941	-0.872332
С	-2.468961	-1.009925	-0.007457
С	-1.410347	-1.336191	0.838711
С	-0.609113	-0.310233	1.317426
С	-0.825173	1.030670	0.921669
С	-1.950691	1.346552	0.122563
С	-2.744305	0.325298	-0.362465
Н	-3.598160	0.544057	-0.999763
С	-2.229663	2.775285	-0.234888
Н	-1.955108	3.448520	0.582029
Н	-3.284311	2.921062	-0.480180
Н	-0.302527	1.818553	1.455055
0	0.424342	-0.523042	2.156370
Н	0.523568	-1.470059	2.336886
Н	-1.236903	-2.370909	1.120599

-3.225079	-2.033039	-0.454617
-3.939545	-1.701018	-1.017845
-1.645163	3.072632	-1.116275
0.916101	0.498320	-2.691543
	-3.225079 -3.939545 -1.645163 0.916101	-3.225079-2.033039-3.939545-1.701018-1.6451633.0726320.9161010.498320

 Table S66. Coordinates for global minimum of 6ac.

C	0 0 0 0 5 0 1	0 001710	0 100510
C C	0.000001	0.004/10	0.196510
C	1.767023	-0.1612/8	0.942669
С	2.996785	-0.522039	0.545791
С	3.825369	-1.505934	1.316649
Η	4.136902	-2.335893	0.668799
Η	3.280647	-1.914943	2.172106
Η	4.746244	-1.031403	1.679333
С	3.623419	0.043367	-0.703654
С	2.913552	1.304494	-1.195701
С	1.402969	1.086492	-1.219456
Н	0.881217	1.957866	-1.632289
Н	1.168281	0.234118	-1.872432
Н	3.279705	1.580808	-2.191226
Н	3.148009	2.139760	-0.521120
Н	4.684486	0.247650	-0.505566
Н	3.612191	-0.731011	-1.487111
Н	1.368980	-0.571341	1.872987
Н	0.895322	1.750296	0.756503
С	-0.577577	0.343332	0.154612
C	-0.898212	-0.975521	-0.221149
C	-2.216265	-1.412801	-0.333934
C	-3 245825	-0 517648	-0 077923
C	-2 964640	0.796220	0.077923
C	-1 6/0869	1 228123	0.293107
C C	_1 386601	2 661916	0.407949
	1.3000UI	2.001010	1 755045
п 	-0.049404	2.120/00	1./55045
Н	-U./81048	3.185463	0.053299

Н	-2.330304	3.201739	0.910172
Η	-3.780227	1.488426	0.490931
0	-4.527744	-0.983231	-0.203126
Н	-5.146442	-0.270072	0.003077
Н	-2.427274	-2.438341	-0.620232
0	0.061276	-1.904332	-0.518776
Η	0.931257	-1.571228	-0.220988

Η	1.552710	2.462595	-1.018755
0	-0.132527	2.260216	1.056340
Н	-0.145353	3.010041	0.443002
Н	0.385568	0.147130	2.419183
0	2.039181	-1.769713	2.019833
Н	2.742822	-2.364752	1.722219
Н	3.107744	0.207556	-2.755959
Н	-0.624002	-3.255947	-0.990628
Н	-2.216768	-2.560339	-1.346917

Table S68. Coordinates for global minimum of 3ad.

•	-La		
СССНННССССНННННН	0.830204	0.575788	0.425779
	1.677462	-0.552593	0.978700
	2.907165	-0.870455	0.549362
	3.677416	-2.026581	1.114426
	3.092883	-2.586963	1.849479
	3.982208	-2.711896	0.312514
	4.600968	-1.675979	1.592847
	3.591323	-0.076541	-0.532262
	2.923558	1.275137	-0.771264
	1.406189	1.133705	-0.897992
	0.749760	2.457926	-1.279295
	-0.338461	2.359317	-1.352229
	0.970075	3.225571	-0.527136
	1.125932	2.811701	-2.245545
	1.200530	0.399822	-1.693364
	3.146144	1.949504	0.068929
	3.331411	1.744502	-1.675197
	3.597466	-0.670959	-1.459809
	4.647700	0.056244	-0.260613
H	1.230809	-1.136416	1.785645
H	0.848211	1.393494	1.160018
C	-0.617670	0.150299	0.267433
C	-1.675143	0.937625	0.747825
C	-3.009562	0.588552	0.548162

С	-3.333565	-0.579904	-0.144580
С	-2.305671	-1.388696	-0.618668
С	-0.972580	-1.027045	-0.410107
0	-0.029941	-1.876208	-0.922825
Η	0.841974	-1.653104	-0.542054
Η	-2.520440	-2.309673	-1.153503
С	-4.774972	-0.965128	-0.345282
Η	-5.227341	-1.283036	0.601676
Η	-5.360864	-0.116764	-0.714291
Η	-4.868270	-1.788869	-1.057602
Η	-3.796746	1.233931	0.933999
0	-1.345580	2.085000	1.422144
Η	-2.158539	2.533579	1.689881

 Table S69. Coordinates for global minimum of 6ad[‡].

С	-0.910463	-1.076363	0.484849
С	-1.992070	-0.352457	1.002763
С	-2.891178	0.278859	0.178967
С	-4.109092	0.924595	0.722239
Η	-5.000074	0.567041	0.190391
Η	-4.227044	0.764752	1.795525
Η	-4.055854	2.004433	0.522614
С	-2.721996	0.258449	-1.300839
С	-1.284127	-0.002854	-1.738351
Η	-0.694807	0.902080	-1.558380
Η	-1.246830	-0.201572	-2.814327
С	-0.647900	-1.168932	-0.974813
Η	0.440781	-1.157053	-1.133441
С	-1.153618	-2.551778	-1.451456
Η	-0.929605	-2.664790	-2.516371
Η	-3.408464	-0.517488	-1.679858
Η	-3.097457	1.197973	-1.724961
Η	-2.170553	-0.366758	2.075016
Η	-0.483991	-1.857004	1.109118

2.539222	0.681016	-0.739970
1.554252	1.592867	-0.364023
0.787088	1.309113	0.756836
0.966101	0.108579	1.478252
2.012082	-0.770742	1.118845
2.773803	-0.494331	-0.001741
3.568909	-1.169968	-0.308642
2.244520	-2.017833	1.918586
1.584106	-2.824526	1.572448
2.032230	-1.853949	2.978779
0.459355	-0.006510	2.431195
-0.178310	2.138335	1.206331
-0.238736	2.920828	0.638358
1.410314	2.505514	-0.935489
3.264720	0.986544	-1.836770
3.923486	0.296563	-2.003492
3.273147	-2.369841	1.809820
-2.234496	-2.650294	-1.309223
-0.659834	-3.359900	-0.903628
	2.539222 1.554252 0.787088 0.966101 2.012082 2.773803 3.568909 2.244520 1.584106 2.032230 0.459355 -0.178310 -0.238736 1.410314 3.264720 3.923486 3.273147 -2.234496 -0.659834	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

 Table S70. Coordinates for global minimum of 6ad.

С	1.677239	-0.521307	1.001285
С	2.903684	-0.866973	0.583866
С	3.659911	-2.013215	1.186847
Н	4.586572	-1.657685	1.655587
Н	3.067585	-2.542542	1.938478
Н	3.958060	-2.727453	0.408053
С	3.596639	-0.116702	-0.522872
С	2.944764	1.234599	-0.804637
С	1.425523	1.108763	-0.927283
С	0.788772	2.429887	-1.350642
Н	1.028127	3.220638	-0.628520
Н	1.164933	2.743054	-2.330746
Н	-0.301466	2.345699	-1.415806

0.412458

Н	1.210313	0.356616	-1.702035
Н	3.176099	1.932471	0.013843
Н	3.358347	1.670283	-1.722816
Н	3.594499	-0.740883	-1.430759
Н	4.654860	0.011948	-0.256515
Н	1.222831	-1.075504	1.824742
Н	0.882097	1.436667	1.121130
С	-0.616344	0.185232	0.273972
С	-0.950900	-0.996598	-0.412637
С	-2.274677	-1.376988	-0.631690
С	-3.295507	-0.570281	-0.146309
С	-2.999539	0.590088	0.565705
С	-1.672899	0.967210	0.780548
С	-1.411555	2.224127	1.573142
Н	-2.354519	2.673811	1.893495
Н	-0.815208	2.015504	2.468973
Н	-0.863627	2.969939	0.987647
Н	-3.813587	1.196009	0.952849
0	-4.617199	-0.878876	-0.326982
Н	-4.688491	-1.700599	-0.830683
Н	-2.485393	-2.298565	-1.168567
0	-0.001810	-1.841320	-0.922020
Н	0.862089	-1.627712	-0.518054

Table S71. Coordinates for global minimum of 3ae[‡].

С	-2.276813	-0.317683	-0.005404
Н	-2.504614	2.610831	0.496135
Н	-1.384786	2.963595	-0.791429
Н	0.492310	0.458484	1.985343
Н	-0.967823	-1.418953	1.372552
С	1.437634	-1.728189	0.541378
С	0.471537	-1.600931	-0.500207
С	0.778304	-0.702422	-1.558477
С	1.780112	0.239026	-1.413984
С	2.616418	0.194984	-0.288538
С	2.476229	-0.823139	0.662978
Н	3.165202	-0.889673	1.501371
С	3.673756	1.238253	-0.109053
Н	3.255508	2.084082	0.453059
Н	4.021562	1.624226	-1.070631
Н	1.955219	0.977518	-2.192421
0	0.032721	-0.818751	-2.675001
Н	0.293274	-0.143308	-3.319614
Н	-0.181116	-2.445157	-0.698525
0	1.210276	-2.723028	1.417068
Н	1.863382	-2.699508	2.133127
Н	4.522694	0.852749	0.461171
С	-2.703573	-1.527756	-0.841346
Н	-2.675535	-2.445596	-0.243162
Н	-3.731278	-1.380437	-1.189074
Н	-2.067023	-1.656165	-1.719217
С	-3.333135	-0.132104	1.121570
Η	-3.411592	-1.037843	1.731505
Н	-3.092595	0.707150	1.779542
Н	-4.305554	0.053384	0.652620

 Table S72. Coordinates for global minimum of 3ae.

Н	4.582479	-1.774856	1.321616
Η	3.589930	-3.021852	0.575890
Н	3.163840	-2.403969	2.191521
С	3.171143	-0.576481	-0.786230
С	2.120381	0.259999	-1.514310
С	1.438366	1.288574	-0.597702
С	0.437316	2.097781	-1.426387
Н	0.969429	2.647127	-2.212223
Н	-0.301827	1.446731	-1.905589
Н	-0.098141	2.823087	-0.805664
С	2.488082	2.249015	-0.017330
Н	3.172223	1.736315	0.666920
Н	3.081535	2.699719	-0.821773
Н	1.998025	3.056375	0.539078
Н	1.352251	-0.398038	-1.941509
Н	2.585695	0.786022	-2.358060
Н	3.460210	-1.442045	-1.398973
Н	4.097618	0.001666	-0.646410
Н	1.309170	-0.960388	2.118911
Н	0.676387	1.291605	1.407267
С	-0.685841	0.099142	0.351373
С	-1.040454	-1.127785	-0.234513
С	-2.372811	-1.470401	-0.487702
С	-3.402903	-0.601334	-0.149515
С	-3.084126	0.611108	0.465836
С	-1.754076	0.941896	0.709895
0	-1.435843	2.127967	1.320148
Н	-2.251988	2.606033	1.518373
Н	-3.872113	1.302201	0.759866
С	-4.838411	-0.952314	-0.434099
Н	-5.250463	-0.300898	-1.213838
Н	-4.933262	-1.987263	-0.772316
Н	-5.459506	-0.819700	0.458217
Н	-2.582209	-2.432944	-0.946100
0	-0.112498	-2.062287	-0.600920
Н	0.743802	-1.827225	-0.188826

	2.215	718	
C C	-0.978220 -0.400422	-0.565591 0.675124	0.847205 1.234234
С	-0.771137	1.858472	0.673067
С Н	-0.162788	3.144605	0.266349
H	-0.942279	3.866095	1.384224
H	0.526109	3.014200	1.946721
C	-1.860/49 -2 245807	1.935235 0 593475	-0.344148 -0.967109
H	-1.538626	0.353680	-1.765707
Н	-3.234592	0.669848	-1.433893
С ч	-2.257300	-0.558370	0.047309
H	-1.584218	2.660297	-1.120531
Η	0.355577	0.676702	2.013457
H	-0.908879	-1.383750	1.562641
C	2.439706	0.267332	-0.399822 -1.494463
C	0.789803	-0.842825	-1.443015
С	0.652685	-1.594965	-0.241390
C	1.641024	-1.418320	0.779199
H	3.227161	-0.162802	1.493734
С	1.650014	-2.332590	1.962842
H	2.631736	-2.340636	2.442155
н н	1.3/3833 0 132209	-3.352339 -2 546491	1.681026
0	0.081269	-1.271051	-2.505532
Н	0.225106	-0.686783	-3.265495
H	1.665448	0.895659	-2.379066
U H	3.21637U 3.781480	1.694823	-0.482008
H	0.923722	-1.991500	2.713942
С	-2.558186	-1.897489	-0.632219
Н	-3.577471	-1.879600	-1.031934

Table S73. Coordinates for global minimum of 6ae[‡].

Н	-1.874011	-2.096385	-1.458368
Н	-2.491632	-2.720172	0.088926
С	-3.360407	-0.324580	1.118963
Н	-3.376707	-1.146997	1.841390
Н	-3.215051	0.611310	1.665021
Н	-4.330846	-0.291894	0.611759

 Table S74. Coordinates for global minimum of 6ae.

~			
Ţ	J J		
С	0.751527	0.435844	0.457885
С	1.551390	-0.741642	0.974130
С	2.847336	-0.953664	0.729984
С	3.581057	-2.148553	1.267639
Η	4.018877	-2.734023	0.447392
Η	4.416372	-1.841364	1.911035
Η	2.921550	-2.804098	1.844272
С	3.650557	-0.011713	-0.126130
С	2.927352	1.309748	-0.376225
H	3.437899	1.876955	-1.166305
C	1.44/9/9	1.125194	-0.762060
С	1.34/590	0.314901	-2.058309
H	1.735901	-0.698/88	-1.942646
H	1.920054	0.229645	-2.845160
пС	0.307394	2 506920	-2.392073 -1.010891
ч	1 304121	2 974889	-1 884663
H	-0 241597	2 434079	-1 203683
Н	0.990905	3.169238	-0.151535
Н	2.971763	1.922528	0.535785
Н	3.895179	-0.509946	-1.077734
Н	4.619943	0.179316	0.356765
Н	1.010349	-1.449187	1.602844
Н	0.788765	1.195042	1.252105
С	-0.727327	0.113819	0.279655
С	-1.167565	-1.043381	-0.393614
С	-2.519123	-1.330174	-0.585389
С	-3.475446	-0.463822	-0.075789

С	-3.082758	0.662739	0.639946
С	-1.726379	0.946238	0.829050
С	-1.391509	2.147151	1.680946
Н	-0.787252	1.862384	2.550138
Η	-2.308202	2.612969	2.050906
Н	-0.828384	2.905700	1.130860
Н	-3.837568	1.319153	1.066987
0	-4.789489	-0.778902	-0.292406
Н	-5.349681	-0.105014	0.115251
Н	-2.824045	-2.226314	-1.120661
0	-0.229927	-1.921363	-0.860120
Н	-0.678586	-2.660726	-1.291759

Table S75. Coordinates for global minimum of 3a[‡].

Н	-0.944233	-2.465308	-1.870873
С	-3.180169	-0.953160	-2.163905
Н	-3.648475	0.031523	-2.240981
Н	-3.985422	-1.694420	-2.078491
Н	-3.495922	0.326926	0.206308
0	-2.052621	0.237165	2.469154
Н	-2.848496	0.784492	2.388075
Н	-0.138179	-1.434920	2.223935
0	0.696729	-2.794139	0.226267
Н	0.824083	-3.274530	-0.606603
Н	-2.629366	-1.167658	-3.082911
Н	-0.314907	0.537622	-0.843930
С	-0.320795	2.488340	0.026124
Η	-1.108061	2.224736	0.747885
С	-1.004436	3.067644	-1.212458
С	0.588981	3.526327	0.688773
Η	1.133529	3.108238	1.543756
Η	1.324674	3.923469	-0.018939
Η	-0.006357	4.370286	1.052430
Η	-1.611672	3.937748	-0.941536
Η	-1.660976	2.327120	-1.684966
Η	-0.269205	3.396337	-1.955205

Table S76. Coordinates for global minimum of 3a.

С	-0.872966	2.243405	0.539837
С	-1.371672	3.154183	-0.585997
Η	-0.841669	4.112822	-0.559288
Η	-2.442023	3.364985	-0.477248
Η	-1.210320	2.713418	-1.575056
С	-1.195415	2.860756	1.904159
Η	-2.277578	2.956584	2.052980
Η	-0.793499	2.249092	2.719911
Н	-0.762398	3.864030	1.986470
Н	0.221866	2.177397	0.462757
Н	-3.445107	1.364860	0.954293
Η	-3.388459	-1.032607	1.442762
Η	-4.469839	-0.801295	0.082355
Η	-0.855053	-2.059553	-1.537802
Η	-0.764318	0.559590	-1.608253
С	0.767014	-0.224266	-0.372119
С	1.764356	0.514306	-1.026353
С	3.115323	0.383209	-0.708500
С	3.517874	-0.511108	0.285215
С	2.552405	-1.269392	0.940275
С	1.202629	-1.128201	0.610259
0	0.325017	-1.907598	1.313330
Η	-0.541963	-1.896929	0.862122
Η	2.830170	-1.981970	1.712008
С	4.978331	-0.673952	0.612057
Η	5.485747	0.295679	0.644873
Η	5.115174	-1.173121	1.575138
Η	5.481261	-1.278139	-0.153197
Η	3.852368	0.984505	-1.237974
0	1.354951	1.394264	-1.994956
Η	2.130202	1.841259	-2.359354

Table S77. Coordinates for global minimum of 6a[‡].

С	-2.803686	0.981640	0.188536
С	-3.980569	1.779130	0.614077
Η	-4.905568	1.314756	0.249022
Η	-4.033171	1.902452	1.697494
Н	-3.934367	2.769669	0.140405
С	-2.708267	0.615499	-1.250694
С	-1.331055	0.102872	-1.667617
Н	-0.677614	0.971640	-1.806894
Н	-1.394356	-0.402348	-2.636919
С	-0.651775	-0.822951	-0.645378
Н	-3.505825	-0.117587	-1.445856
Н	-2.987883	1.488926	-1.855284
Н	-1.999142	0.805268	2.147284
Н	-0.427747	-0.944450	1.543679
С	2.790364	0.309393	-0.826645
С	2.798164	-0.501280	0.313599
С	1.972654	-0.158817	1.369503
С	1.099087	0.950051	1.282258
С	1.161409	1.798644	0.151456
С	1.982009	1.456399	-0.908862
Н	2.023480	2.078988	-1.799483
С	0.315176	3.030079	0.116502
Η	0.476105	3.602262	-0.799554
Н	0.528720	3.668987	0.980305
Η	0.589231	1.278269	2.182744
0	1.907632	-0.875448	2.514137
Н	2.498145	-1.641892	2.467106
Н	3.446305	-1.372087	0.356906
0	3.606541	-0.062496	-1.832410
Н	3.533076	0.557342	-2.573145
Н	-0.748474	2.761454	0.181154
Η	0.427229	-0.804701	-0.864024
С	-1.024910	-2.342519	-0.744746
Н	-0.995221	-2.558388	-1.821947
С	-2.421900	-2.683623	-0.222501
С	0.032458	-3.214194	-0.063500
Η	1.032830	-3.010577	-0.460696
Η	0.055415	-3.052830	1.020997
Н	-0.191170	-4.273185	-0.229523
Η	-2.625532	-3.747814	-0.381233
Η	-3.207520	-2.118969	-0.731290
Н	-2.503575	-2.489203	0.853593

	20		
		8	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Se .	
	T		
7		$\mathbf{X}$	
		s 2	
-			
7			
С	-0.712462	-0.072605	-0.589969
C	-1.402705	-1.395897	-0.846502
С	-2.652923	-1.691045	-0.476807
С	-3.269285	-3.036707	-0.725828
Η	-2.568881	-3.720417	-1.214699
Н	-4.166359	-2.947695	-1.352662
Η	-3.593971	-3.491561	0.220261
С	-3.513307	-0.686083	0.243885
С	-2.967211	0.736079	0.128219
С	-1.471339	0.779281	0.453686
Η	-1.337915	0.302160	1.434841
С	-0.901095	2.210150	0.573075
С	-1.308175	2.860443	1.898960
Η	-1.003003	2.243412	2.751977
Η	-2.394117	3.003194	1.955080
H	-0.841222	3.845927	2.008224
С	-1.2/9340	3.118895	-0.600594
H	-2.349/32	3.355800	-0.586463
п	-1.043044 0.720672	2.002100	-1.567465
п u	-0.730073	2 100034	-0.530140
н Н	-3 526808	1 406289	0.300937
H	-3 124349	1 096006	-0 897912
H	-4.536829	-0.734912	-0.154640
Н	-3.593819	-0.980372	1.303400
Н	-0.810457	-2.149385	-1.368265
Н	-0.750197	0.483768	-1.535435
С	0.765484	-0.254447	-0.268368
С	1.727306	0.341970	-1.106584
С	3.096796	0.226596	-0.881685
С	3.537232	-0.510626	0.210684
С	2.618885	-1.119860	1.058606
С	1.243496	-0.994066	0.829855
С	0.325415	-1.657298	1.827055
Η	-0.623801	-1.956974	1.378971
Η	0.101620	-0.975302	2.656816

 Table S78. Coordinates for global minimum of 6a.

Н	0.807653	-2.541341	2.254947
Н	2.971185	-1.698918	1.910092
0	4.889787	-0.605900	0.398142
Н	5.064044	-1.144368	1.181519
Н	3.814414	0.698059	-1.548728
0	1.276999	1.063096	-2.182835
Н	2.035764	1.417818	-2.664598

Table S79. Coordinates for global minimum of 3af[‡].



С	0./1/829	0.094342	-0.8//699
С	1.485660	1.255904	-1.117037
С	2.321788	1.784318	-0.174061
С	3.247336	2.897923	-0.502265
Η	4.275518	2.630166	-0.227120
Η	3.210151	3.175847	-1.557341
Η	2.989556	3.773311	0.109762
С	2.391237	1.215943	1.200883
С	1.182867	0.356026	1.550565
Η	0.339617	1.029638	1.739817
Η	1.354497	-0.183899	2.483949
С	0.744088	-0.607601	0.435610
Η	3.338424	0.660138	1.279008
Η	2.493983	2.039707	1.919980
Η	1.483893	1.676285	-2.120249
Η	0.480972	-0.504111	-1.753411
С	-1.598449	1.607405	-0.079349
С	-1.406069	0.862707	-1.264681
С	-2.052161	-0.392140	-1.376598
С	-2.727596	-0.942302	-0.302419
С	-2.833760	-0.217641	0.896279
С	-2.277151	1.060026	1.002675
Η	-2.383860	1.628884	1.923057
С	-3.530447	-0.834441	2.070793
Η	-2.854101	-1.537067	2.574113
Η	-4.408848	-1.403291	1.752339

~ ~

Н	-3.181832	-1.926563	-0.386395
0	-1.907397	-1.015069	-2.566860
Н	-2.324762	-1.888908	-2.538419
Н	-1.056863	1.362515	-2.162117
0	-1.050871	2.837948	-0.067455
Н	-1.193089	3.262718	0.792049
Η	-3.832428	-0.078860	2.799581
Η	-0.282002	-0.923223	0.677073
С	1.520202	-1.982226	0.289149
С	0.632542	-2.956998	-0.501730
С	1.754188	-2.575449	1.683390
Н	2.130757	-3.599156	1.579236
Н	2.496243	-2.006363	2.252103
Н	0.823958	-2.613320	2.262694
Н	-0.320708	-3.123823	0.013515
Н	1.140675	-3.922598	-0.598563
Н	0.416322	-2.600576	-1.514547
С	2.868662	-1.838882	-0.430578
Н	3.540864	-1.150623	0.090006
Н	3.362738	-2.816195	-0.469387
Η	2.748895	-1.487981	-1.461438

Table S80. Coordinates for global minimum of 3af.



Η

С

Η

С

-3.655943

-1.522661

-1.278252

-1.267217

0.288647	1.349070
2.197143	0.380814

0.908936

0.653947

0.709822

0.339037

С	0.174084	2.515087	0.813233
Н	0.902903	2.253928	0.045242
Н	0.440280	1.977004	1.731376
Н	0.269559	3.589649	1.009591
С	-2.192385	2.834639	1.437360
Н	-3.242253	2.838181	1.131370
Н	-1.898589	3.877653	1.599230
Н	-2.114467	2.309578	2.397677
С	-1.538896	2.869322	-0.972488
Н	-2.569631	2.705858	-1.305209
Н	-1.386683	3.951618	-0.883039
Н	-0.860546	2.504375	-1.750669
Н	-3.241525	-1.394561	1.404306
Н	-4.315938	-1.410429	0.018031
Н	-0.522256	-2.215286	-1.464979
Н	-0.715680	0.370147	-1.646989
С	0.815504	-0.273455	-0.329378
С	1.819681	0.296969	-1.125022
С	3.169049	0.214044	-0.790076
С	3.565608	-0.468908	0.362117
С	2.595571	-1.091268	1.141342
С	1.247863	-1.007430	0.785076
0	0.364561	-1.671961	1.594042
Н	-0.466087	-1.808486	1.100985
Н	2.869581	-1.662350	2.024027
С	5.020399	-0.530063	0.743147
Н	5.640517	-0.817213	-0.112675
Η	5.373600	0.450605	1.083817
Н	5.188485	-1.247842	1.550254
Н	3.911481	0.689343	-1.428885
0	1.417320	0.978980	-2.245485
Н	2.196113	1.343937	-2.686041

 Table S81. Coordinates for global minimum of 6af[‡].



С	-1.679542	-1.123628	-1.082703
С	-2.601498	-1.474034	-0.131458
С	-3.674088	-2.456873	-0.422614
Н	-3.547557	-3.331339	0.230973
Н	-4.654412	-2.033038	-0.169953
H	-3 671369	-2 784721	-1 463880
C	-2 600332	-0 831592	1 211492
C	-1 286148	-0 132338	1 538980
с ц	-0.54/101	-0 903939	1 77/66/
п П	-1 302016	0.903939	7.774004
C	0 706944	0.475015	0 202612
	2 150001	0.099343	1 244055
п т	-3.439904	-0.143929	1.244055
H	-2.82////	-1.593675	1.969083
н	-1.722032	-1.594461	-2.062310
H	-0.390440	0.410522	-1./83411
С	2.843543	0.037794	0.860256
С	2.805591	0.621253	-0.410747
С	2.076241	-0.011247	-1.401734
С	1.336057	-1.184666	-1.127668
С	1.446793	-1.796282	0.142949
С	2.172607	-1.165446	1.137925
Η	2.246057	-1.604549	2.129893
С	0.756946	-3.099914	0.387241
Н	1.110410	-3.859021	-0.319306
Н	-0.324307	-2.997042	0.220758
Н	0.910000	-1.733351	-1.962144
0	1.984369	0.466095	-2.663421
Н	2.489475	1.288079	-2.748482
Н	3.349542	1.541601	-0.603420
0	3.567895	0.682108	1.796881
H	3.544049	0.194359	2.633510
H	0.922453	-3.457665	1,405706
н	0 353050	0 879089	0 621668
C	-1 277244	2 161581	0 150380
C	-2 623020	2 166784	-0 588248
C	-0 251933	2 958250	-0 671938
	-0.231933	2.930230	-0.071930
п 11	-0.009303	2.JIJIJ/	-1.03/101
H	-0.622523	3.9/5939	-0.836376
H	0.705842	3.025044	-0.143276
Н	-2.53/131	1.752709	-1.5989/8
Н	-2.979490	3.198640	-0.683302
Η	-3.389689	1.602221	-0.049575
С	-1.444355	2.851919	1.509175
Η	-2.267768	2.420568	2.086738
Η	-0.526809	2.786604	2.105649
Η	-1.670885	3.911780	1.348241

 Table S82. Coordinates for global minimum of 6af.



С	-0.670397	-0.201046	-0.588999
С	-1.180551	-1.614234	-0.810458
С	-2.366291	-2.087736	-0.421181
С	-2.772687	-3.518642	-0.617494
Η	-1.980989	-4.104560	-1.093840
Η	-3.015738	-3.985075	0.347260
Н	-3.678879	-3.588444	-1.233575
С	-3.358557	-1.184411	0.253706
С	-3.043002	0.290227	0.014631
Н	-3.236437	0.526460	-1.041090
Н	-3.729621	0.896592	0.610944
С	-1.581962	0.628928	0.359121
Н	-1.416840	0.292903	1.391091
С	-1.303509	2.169613	0.369908
С	-2.320715	2.866284	1.295489
Η	-2.375382	2.365078	2.270199
Η	-3.326458	2.892809	0.866280
Н	-2.011897	3.903621	1.466904
С	-1.409126	2.795415	-1.027423
Η	-2.384813	2.601902	-1.486979
Η	-0.629497	2.420927	-1.698574
Η	-1.287944	3.882954	-0.953610
С	0.092130	2.473328	0.942058
Η	0.892599	2.127879	0.285010
Η	0.209120	3.555675	1.074539
Η	0.228943	1.994878	1.919891
Η	-3.377605	-1.401445	1.334614
Η	-4.368636	-1.416515	-0.113280
Η	-0.479499	-2.282918	-1.312492
Η	-0.717008	0.294349	-1.566170
С	0.810306	-0.285650	-0.229905
С	1.764862	0.157329	-1.164664
С	3.135411	0.095306	-0.927511
С	3.584365	-0.441317	0.272942
С	2.672881	-0.918547	1.208155
С	1.296498	-0.851816	0.962477
С	0.387194	-1.389836	2.038809

0.087565	-0.593465	2.731195
-0.522705	-1.830031	1.624777
0.909105	-2.151617	2.625345
3.032525	-1.356144	2.137389
4.938038	-0.486305	0.472396
5.118820	-0.887901	1.332696
3.847990	0.453145	-1.666517
1.304170	0.682998	-2.346056
2.056312	0.972195	-2.879487
	0.087565 - $0.522705$ 0.909105 3.032525 4.938038 5.118820 3.847990 1.304170 2.056312	0.087565 -0.593465 -0.522705 -1.830031 0.909105 -2.151617 3.032525 -1.356144 4.938038 -0.486305 5.118820 -0.887901 3.847990 0.453145 1.304170 0.682998 2.056312 0.972195

Table S83. Coordinates for global minimum of 3c[‡].

ł	2.359		
С	-2.089750	0.035472	-1.185686
С	-3.244207	0.584454	-0.599353
С	-3.276995	1.886247	-0.172036
С	-4.533964	2.505231	0.311977
Η	-5.394565	1.840792	0.215202
Η	-4.409508	2.782108	1.368512
Η	-4.726045	3.444732	-0.222087
С	-2.071025	2.759870	-0.265749
С	-0.765236	1.973145	-0.296763
H	-0.565960	1.568169	0.701073
н С	0.070145	2.634099	-0.546803 -1.299620
н	0.040492	0.020001	-1 235145
Н	-2.191081	3.354794	-1.187995
H	-2.080784	3.488342	0.553790
Н	-4.153598	-0.010476	-0.571034
Н	-2.221313	-0.791376	-1.879081
С	-0.746650	-2.454459	-0.543820
С	-1.673042	-1.770076	0.273483
С	-1.180287	-1.034042	1.372334
С	0.186132	-0.879248	1.568850
С	1.085390	-1.501729	0.698401
С	0.61/059	-2.29/528	-0.35/583
H	1.321102	-2./95310	-1.020402
П	-2 113914	-0 476352	2.596597
н	-1.688471	0.039487	2.872611
H	-2.725316	-2.029498	0.224605
0	-1.282305	-3.210438	-1.529443

Η	-0.577596	-3.598311	-2.068674
Н	-0.830957	1.209538	-2.336120
С	2.557876	-1.257878	0.851949
Н	3.120180	-2.118730	0.471102
Н	2.805835	-1.136761	1.913372
С	2.989850	0.007347	0.087059
Н	2.726082	-0.108717	-0.973613
Н	2.414971	0.865835	0.462587
С	4.484418	0.288436	0.220615
Н	5.052525	-0.575921	-0.152787
Н	4.741664	0.393564	1.284645
С	4.919269	1.545301	-0.532644
Н	4.656943	1.438545	-1.594279
Н	4.348285	2.406052	-0.157522
С	6.415655	1.821718	-0.397501
Н	7.004686	0.986239	-0.792944
Н	6.706729	2.725805	-0.942403
Н	6.694741	1.958012	0.653757

 Table S84. Coordinates for global minimum of 3c.



С	2.509176	0.594388	0.442564
С	3.041741	-0.738209	0.926063
С	4.220970	-1.264775	0.563217
С	4.681207	-2.603562	1.058300
Н	3.923734	-3.091614	1.678097
Η	4.920736	-3.262258	0.213109
Η	5.602977	-2.500195	1.645180
С	5.161434	-0.539935	-0.365769
С	4.822522	0.944131	-0.505025
С	3.327266	1.126474	-0.750279
Н	3.039085	0.581258	-1.660430
Η	3.077218	2.181012	-0.914392
Η	5.105832	1.470083	0.417257
Η	5.402987	1.388655	-1.321796
Η	5.136646	-1.032262	-1.350920

Η	6.188454	-0.668875	0.002801
Н	2.411767	-1.283593	1.631545
Н	2.618804	1.307443	1.270540
С	1.033032	0.538694	0.100387
С	0.482987	-0.491783	-0.680270
С	-0.863759	-0.501114	-1.046287
С	-1.705777	0.534170	-0.648761
С	-1.185023	1.573808	0.122915
С	0.162111	1.568822	0.483670
0	0.697324	2.593405	1.221905
Н	-0.000174	3.229931	1.426787
Н	-1.824687	2.395191	0.441423
С	-3.172156	0.501671	-0.993086
Н	-3.315534	-0.033079	-1.940651
Н	-3.541792	1.525289	-1.136840
С	-4.009937	-0.182158	0.098863
С	-5.495194	-0.244524	-0.250509
С	-6.339933	-0.903751	0.839695
С	-7.821942	-0.973498	0.474727
Н	-8.409948	-1.443535	1.270203
Н	-7.971362	-1.555160	-0.442388
Н	-8.229826	0.029506	0.302825
Н	-5.957825	-1.916473	1.029221
Н	-6.215980	-0.345579	1.778041
Н	-5.623694	-0.796613	-1.193284
Н	-5.870063	0.773399	-0.434051
Н	-3.624638	-1.198707	0.261009
Н	-3.874208	0.359187	1.045811
Η	-1.238534	-1.324705	-1.648507
0	1.244393	-1.529110	-1.144619
Н	2.110274	-1.520367	-0.690272

 Table S85. Coordinates for global minimum of 6c[‡].



C 3.454632 1.840041 -0.0	37211
	J I U I H
C 4.238697 2.857915 0.7	03166
н 3.614627 3.658321 1.1	05379
н 4.772953 2.367354 1.5	28880
H 5 015986 3 283423 0 0	55362
C = 4 215705 = 0.789259 = 0.7	76389
C = 3 377772 -0 446305 -1 0	86986
H = 3 216813 -1 010562 -0 1	62368
H = 3.210013 = 1.010302 = 0.1 H = 3.915056 = 1.105/83 = 1.7	75346
C = 2.027302 = 0.057956 = 1.6	92551
1256277 0 022649 17	70715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07060
H = 4.575894 = 1.201102 = 1.7	1 4 4 0 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H 1.56611/ 2.723673 U.3	81075
H 0.405999 1.385583 -1.3	26667
C 0.219620 -2.677098 0.0	49716
C 1.071832 -2.099674 0.9	90440
C 0.902574 -0.758141 1.2	99595
C -0.077433 0.022209 0.6	42455
C -0.984573 -0.605107 -0.2	45227
C -0.808195 -1.936511 -0.5	66401
н -1.471841 -2.427138 -1.2	75508
Н -0.298777 1.012709 1.0	29029
0 1.666317 -0.114125 2.2	04642
Н 2.330728 -0.713758 2.5	76526
Н 1.842539 -2.699299 1.4	66693
0 0.422519 -3.980084 -0.2	31671
н -0.226959 -4.288320 -0.8	80550
н 2.147203 0.318443 -2.7	14663
C -2.140309 0.176574 -0.7	98389
H -2.427782 -0.227204 -1.7	76519
H = 1.850395 1.225508 $-0.9$	43567
C = -3.353147 0.126932 0.1	48344
H = 3648105 = 0921259 02	93567
H = 3 057153 0 511374 1 1	31211
C = 1537757 = 0.929827 = 0.3	81105
$11 \qquad 4.557757 \qquad 0.529027 \qquad -0.5$	77161
H = 4.010057 $0.040955 = 1.5$	77104 07715
H -4.2334/6 1.9/695/ -U.5	2//15
C -5./532// 0.8//564 0.5	40616
H -6.054867 -0.169548 0.6	80911
н -5.468183 1.253464 1.5	32977
C -6.933761 1.685489 0.0	04304
н -7.252293 1.309897 -0.9	74948
н _7 793812 1 633810 0 6	80020

a *_		r K K	
C C	-0.786761	-0.739488	-0.387635
C	-2.467300	-2.276438	0.716879
С	-3.114500	-2.864955	1.934974
Н	-2.715315	-2.433932	2.857391
Η	-4.199538	-2.698688	1.910292
H	-2.966099	-3.952214	1.961454
C	-2.057994	-2.740279 -2.425138	-0.613273 -1771154
C	-1.578256	-0.978610	-1.687104
Н	-2.445736	-0.304201	-1.718469
Η	-0.943519	-0.720394	-2.543137
H	-1.190469	-3.098227	-1.723989
л Н	-3 986110	-2.010324 -2.268858	-2.729090 -0.783162
H	-3.202069	-3.819641	-0.557013
Н	-1.085385	-1.108120	1.785348
Η	0.184783	-1.238052	-0.497162
C	-0.518876	0.741171	-0.172361
C	-1.541405 -1.352959	1.588083 2.961880	0.296011
C	-0.122216	3.514273	0.113374
С	0.908843	2.705921	-0.357766
С	0.716420	1.331089	-0.502993
С	1.885793	0.502111	-0.979689
C	2.644503	-0.161293	0.180621
C	3./93369 4 563970	-1.043063 -1.700939	-U.298/35 0 846720
C	5.707000	-2.587689	0.355427
H	5.329003	-3.392581	-0.285746
Н	6.245951	-3.047989	1.190254
Η	6.428294	-2.006299	-0.230701
H	4.960568	-0.918911	1.508945
Н	3.86/889	-2.296330	1.453/59

 Table S86. Coordinates for global minimum of 6c.

Н	3.396216	-1.826570	-0.963531
Н	4.486801	-0.444994	-0.906698
Н	3.029689	0.625043	0.844764
Н	1.946489	-0.759277	0.783453
Н	1.556282	-0.267867	-1.688488
Н	2.580115	1.150365	-1.527712
Н	1.863613	3.156862	-0.614054
0	0.131590	4.854655	0.231937
Н	-0.658159	5.302257	0.563135
Н	-2.168811	3.577024	0.818267
0	-2.789534	1.125144	0.612902
Н	-2.760712	0.149813	0.679206

Table S87. Coordinates for global minimum of 3d[‡].



Н	-1.397965	-2.712374	1.269464
0	1.206141	-3.122512	1.785090
Н	0.503374	-3.436120	2.373013
Н	2.640954	-2.199382	-0.123378
0	2.025447	-0.886688	-2.239703
Н	1.596616	-0.453533	-2.992908
С	-2.634959	-1.386674	-0.759566
Н	-3.212351	-2.172741	-0.258748
Н	-2.902065	-1.398728	-1.823327
С	-3.015389	-0.018585	-0.162292
Н	-2.739251	-0.003721	0.901540
Н	-2.418615	0.763215	-0.653317
С	-4.501753	0.293665	-0.315712
Н	-5.092485	-0.492307	0.176826
Н	-4.772144	0.264402	-1.381294
С	-4.883002	1.654611	0.266451
Н	-4.609404	1.681386	1.330344
Н	-4.288467	2.436599	-0.226067
С	-6.370735	1.964270	0.109370
Н	-6.659543	1.969530	-0.948022
Н	-6.983080	1.210858	0.618179
Η	-6.622639	2.942809	0.531286
С	0.837521	1.575387	2.469772
Н	1.696074	2.244926	2.583129
Н	-0.080057	2.163815	2.565419
Η	0.865796	0.840240	3.279441

## Table S88. Coordinates for global minimum of 3d.



Н	0.862860	2.525030	-0.577727
Η	2.089019	3.135301	-1.705095
Н	2.345590	3.272320	0.045293
Н	2.232490	0.666484	-1.565073
Н	4.338710	2.021531	-1.847015
Η	4.576296	1.951252	-0.098458
Η	5.911599	0.152196	-1.063084
Н	4.589578	-0.393840	-2.074997
Η	3.049056	-1.388307	1.529169
Η	2.590298	1.202586	1.407830
С	0.925010	0.092776	0.710520
С	0.392718	-0.974835	-0.032172
С	-0.955845	-1.325866	0.039879
С	-1.820728	-0.615760	0.868163
С	-1.316295	0.438807	1.629791
С	0.033766	0.779426	1.547534
0	0.542165	1.814249	2.290113
Н	-0.170107	2.202112	2.815336
Η	-1.974687	0.999089	2.291384
С	-3.290280	-0.946034	0.905621
Η	-3.689260	-0.740125	1.907337
Η	-3.432786	-2.016653	0.711258
С	-4.091764	-0.138651	-0.127088
С	-5.584664	-0.459002	-0.096064
С	-6.389710	0.340196	-1.120369
С	-7.882336	0.016936	-1.078309
Η	-8.302299	0.237840	-0.090055
Н	-8.058192	-1.045189	-1.284767
Н	-8.440527	0.600003	-1.818464
Н	-6.238675	1.413478	-0.939585
Η	-5.995605	0.137876	-2.125962
Н	-5.730461	-1.534097	-0.277641
Η	-5.978696	-0.259200	0.911479
Н	-3.939797	0.933684	0.060381
Η	-3.689512	-0.341149	-1.129716
Η	-1.313714	-2.162022	-0.555153
0	1.167857	-1.720213	-0.878908
Н	2.109958	-1.545240	-0.687798

• I • ~ ~ I	2.428	- - 	
С	-1.304846	-1.090166	-0.653188
С	-1.995771	-1.875552	0.280332
С	-3.356265	-1.775342	0.432224
С	-4.101887	-2.701731	1.316495
Η	-4.936177	-3.161501	0.771444
H	-3.465357	-3.478066	1.745008
H	-4.560314	-2.121830	2.130147
C	-4.145861	-0./88354	-0.357132
C	-3.30861/	0.3848//	-0.855091
н u	-3.084180	1.038073	-0.005385 -1.575490
п С	-3.079404	-0 072382	-1 /89655
н	-1 321967	0.072302	-1 600556
Н	-4.596086	-1.348676	-1.193762
H	-4.997074	-0.439262	0.240086
Н	-1.453508	-2.642655	0.827564
Н	-0.355941	-1.467316	-1.024334
С	-0.101559	2.710429	-0.071869
С	-0.913819	2.232653	0.956197
С	-0.724253	0.930099	1.396946
С	0.241293	0.093215	0.797315
С	1.101716	0.619254	-0.192268
С	0.905032	1.910272	-0.645606
Η	1.536071	2.321762	-1.430479
Η	0.465135	-0.863546	1.259627
0	-1.458096	0.380462	2.387733
H	-2.11131/	1.U162UU	2./15/39
н	-T.0/T2TA	2.0/3//9 3 077/05	1.395124 _0 /01520
U U	-U.JZ4JI0 0 20/30/	J. 91/420 A 915570	-0.401039
C	0.294304 2 234304	-0 218255	-0 711982
н	2.498919	0.103312	-1.726232
H	1.927690	-1.271266	-0.767241

 Table S89. Coordinates for global minimum of 6d[‡].

С	3.473370	-0.113329	0.194810
Н	3.784763	0.938696	0.251781
Н	3.199793	-0.417202	1.214710
С	4.633321	-0.971132	-0.305526
Η	4.895977	-0.667613	-1.329449
Η	4.310819	-2.020955	-0.365494
С	5.871444	-0.872201	0.585067
Η	6.191270	0.177352	0.642955
Н	5.604602	-1.171608	1.607976
С	7.027130	-1.735137	0.081500
Η	7.328768	-1.434918	-0.928685
Н	7.903302	-1.649997	0.732686
Н	6.738453	-2.791913	0.042828
С	-2.175024	-0.676984	-2.902025
Н	-2.644615	0.068756	-3.550373
Н	-1.210535	-0.957712	-3.335654
Н	-2.811696	-1.567163	-2.874554

 Table S90. Coordinates for global minimum of 6d.



С	-0.713990	-1.461184	-0.358923
С	0.633877	-1.371705	-1.036736
С	1.723625	-2.054639	-0.675120
С	3.041403	-1.896237	-1.375937
Н	3.352918	-2.838107	-1.847070
Н	3.829995	-1.631813	-0.658048
Н	3.000548	-1.118124	-2.144412
С	1.691228	-3.016514	0.484368
С	0.268431	-3.438426	0.845985
С	-0.661794	-2.231569	0.982322
С	-2.058756	-2.652465	1.433758
Н	-2.729343	-1.789740	1.511614
Н	-2.019289	-3.142999	2.412865
Н	-2.498287	-3.357692	0.717428
Н	-0.240430	-1.567010	1.750349
Η	0.268481	-4.014616	1.780281
Н	-0.124931	-4.101288	0.060699

Η	2.300758	-3.898199	0.240715
Н	2.182893	-2.547848	1.353165
Н	0.691212	-0.692972	-1.888361
Н	-1.355867	-2.055225	-1.024554
С	-1.390438	-0.102487	-0.220561
С	-2.695883	0.070472	-0.721109
С	-3.391725	1.271120	-0.604600
С	-2.781341	2.342667	0.037398
С	-1.494237	2.210453	0.544524
С	-0.797254	1.002837	0.417819
С	0.612444	0.980988	0.963327
Н	0.971030	-0.042110	1.083558
Н	0.614717	1.445611	1.958829
С	1.606372	1.733096	0.064552
С	3.046452	1.576257	0.545945
С	4.062244	2.272244	-0.358451
С	5.501905	2.076793	0.113556
Н	5.762930	1.012059	0.135752
Н	6.214149	2.583387	-0.546355
Н	5.639843	2.474177	1.125961
Н	3.829507	3.345115	-0.406948
Н	3.954129	1.885662	-1.381755
Н	3.287577	0.503991	0.601141
Н	3.138083	1.967717	1.570154
Н	1.337116	2.797641	0.024904
Н	1.522651	1.348611	-0.960612
Н	-1.022712	3.051860	1.049297
0	-3.502579	3.501888	0.142788
Н	-2.974428	4.164380	0.608030
Η	-4.399770	1.372672	-0.999623
0	-3.288476	-0.999878	-1.341298
Н	-4.174252	-0.745698	-1.631706

Table S91. Coordinates for global minimum of 3e[‡].



Н	1.381288	-2.805098	0.239153
Η	0.560354	-3.721117	-1.011817
Η	1.392407	-2.198410	-1.438090
С	-1.427224	-2.627423	0.555873
С	-2.572594	-1.727830	1.008617
Η	-2.211472	-1.046542	1.786156
Η	-3.370467	-2.331200	1.456451
С	-3.154973	-0.892319	-0.138550
Н	-1.807122	-3.524972	0.040794
Н	-0.870176	-3.016625	1.418226
Н	-0.072531	-0.374316	-1.716222
Η	-2.381411	0.454435	-1.692411
С	-1.025707	1.500155	1.352003
С	-1.635080	1.812341	0.108958
С	-0.789161	2.270256	-0.939190
С	0.588569	2.206308	-0.825988
С	1.159283	1.748911	0.367274
С	0.350185	1.401953	1.458255
Η	0.807332	1.108076	2.400286
Η	1.222802	2.510872	-1.655098
0	-1.423237	2.702014	-2.046469
Η	-0.779059	2.933975	-2.732336
Η	-2.681995	2.095374	0.087455
0	-1.860936	1.304937	2.393613
Н	-1.356924	1.066116	3.186403
С	2.647648	1.603169	0.474077
Н	2.966225	1.796728	1.505363
Η	3.141178	2.335159	-0.176000
С	3.088686	0.184728	0.069229
Η	2.573194	-0.543604	0.709912
Η	2.757757	-0.011757	-0.959901
С	4.598032	-0.013756	0.174596
Н	4.921063	0.185858	1.206551
Η	5.109580	0.723677	-0.460729
С	5.033311	-1.422327	-0.230129
Η	4.511350	-2.155859	0.400350
Η	4.710597	-1.616232	-1.262514
С	6.542822	-1.626311	-0.114615
Η	6.880912	-1.464451	0.915435
Н	6.833517	-2.640108	-0.408753
Η	7.082720	-0.921490	-0.757318
С	-4.269399	0.027624	0.368724
Η	-4.612997	0.702245	-0.423524
Η	-5.120536	-0.583383	0.686384
Η	-3.943000	0.620355	1.226190
С	-3.775525	-1.809626	-1.233010
Η	-3.040962	-2.488016	-1.674993

Η	-4.571050	-2.402978	-0.769341
Η	-4.215711	-1.207676	-2.034206

 Table S92. Coordinates for global minimum of 3e.

. >			
S			
<u>~</u>			
	V Y		
-			
C	-2.300866	-0.480219	0.272522
C	-3.133153	0.4/5849	1.103107
C	-4.2/5049	1.051951	U./UZZ88
	-3.043000	1.993964 2.170250	1.3/8396 2.527276
п Ц	-4.554455	2.179250	1 789902
н	-5 195818	2 954820	1 068617
C	-4 857944	0 770405	-0 655174
C	-4.219480	-0.447632	-1.320148
C	-2.682122	-0.436405	-1.243186
С	-2.135878	0.801347	-1.966138
Н	-2.491783	1.739431	-1.530925
Η	-1.040976	0.813381	-1.950968
Η	-2.459873	0.778986	-3.013469
С	-2.140858	-1.681720	-1.952507
Η	-2.528920	-2.597942	-1.494356
Η	-1.047005	-1.717069	-1.907624
Η	-2.438395	-1.669378	-3.007770
Η	-4.584152	-1.358670	-0.824792
Η	-4.527883	-0.508426	-2.372013
H	-4.754894	1.666638	-1.285827
H	-5.940825	0.616365	-0.548216
H	-2.779115	0.662050	2.119324
H C	-2.562/9/	-1.493334	0.609785
C	-0.014136	-0.324007	0.550040
C	1 102020	0.924037	0.000101
C	1 982133	-0 100731	1 0/1755
C	1 377577	-1 353798	0 946105
C	0 006274	-1 454352	0 713628
0	-0.596414	-2.683935	0.648745
H	0.071041	-3.367325	0.794330
Н	1.971375	-2.259198	1.059874
С	3.471835	0.015168	1.232308
Н	3.701476	0.934085	1.786751

Η	3.833759	-0.827759	1.835381
С	4.228934	0.033951	-0.104360
С	5.741172	0.145009	0.077171
С	6.503832	0.171440	-1.246903
С	8.015461	0.280241	-1.054115
Η	8.397942	-0.568718	-0.475483
Η	8.276060	1.196852	-0.512153
Н	8.542571	0.296788	-2.013962
Η	6.268956	-0.738103	-1.817154
Η	6.146644	1.016110	-1.852248
Η	5.973127	1.056170	0.648386
Η	6.097984	-0.699799	0.684903
Η	3.989451	-0.880676	-0.665128
Η	3.865674	0.876166	-0.710108
Η	1.625329	2.029992	1.011051
0	-0.861436	2.105797	0.597224
Η	-1.820784	1.925745	0.583405

 Table S93. Coordinates for global minimum of 6e[‡].



-1.452366	-0.835076	0.797725
-1.763930	0.470528	1.267089
-2.836935	1.173052	0.810542
-3.152147	2.529332	1.335006
-3.085781	3.259621	0.516839
-4.187153	2.571084	1.697155
-2.473212	2.832150	2.135253
-3.793686	0.589024	-0.174874
-3.283980	-0.660180	-0.893299
-2.639104	-0.357825	-1.722683
-4.126266	-1.207382	-1.332033
-2.496890	-1.603946	0.025957
-4.715389	0.370984	0.389757
-4.086403	1.361001	-0.898327
	-1.452366 -1.763930 -2.836935 -3.152147 -3.085781 -4.187153 -2.473212 -3.793686 -3.283980 -2.639104 -4.126266 -2.496890 -4.715389 -4.086403	-1.452366-0.835076-1.7639300.470528-2.8369351.173052-3.1521472.529332-3.0857813.259621-4.1871532.571084-2.4732122.832150-3.7936860.589024-3.283980-0.660180-2.639104-0.357825-4.126266-1.207382-2.496890-1.603946-4.7153890.370984-4.0864031.361001

Н	-1.130349	0.915516	2.027756
Н	-0.837452	-1.453867	1.448655
С	0.460689	2.217512	-0.336875
С	-0.098874	1.587700	-1.452595
С	-0.046353	0.208929	-1.516805
С	0.395622	-0.556900	-0.401622
С	1.135997	0.113461	0.624123
С	1.130386	1.486815	0.667030
Н	1.636548	2.019896	1.468466
Н	0.563338	-1.618893	-0.555712
0	-0.414244	-0.480185	-2.614459
Н	-0.727893	0.126111	-3.302634
Н	-0.508489	2.182744	-2.264044
0	0.383912	3.557381	-0.301306
Н	0.827234	3.901577	0.489066
С	1.883732	-0.697427	1.640020
Η	1.218691	-1.457666	2.071535
Η	2.208959	-0.044587	2.457753
С	3.110253	-1.409591	1.035046
Η	3.577821	-2.004896	1.829982
Η	2.781657	-2.119257	0.264050
С	4.137498	-0.447598	0.443391
Η	4.423346	0.293719	1.204619
Η	3.681540	0.118270	-0.381920
С	5.388635	-1.160951	-0.067513
Η	5.847696	-1.721329	0.758612
Η	5.095917	-1.905250	-0.821005
С	6.410956	-0.196533	-0.665908
Η	7.298913	-0.726706	-1.025641
Н	5.981969	0.353440	-1.511634
Н	6.737138	0.538475	0.078860
С	-3.424758	-2.178143	1.133822
Н	-2.869551	-2.853065	1.793417
Η	-3.873200	-1.390524	1.745294
Н	-4.224684	-2.750060	0.650812
С	-1.925905	-2.790611	-0.755489
Η	-1.306463	-3.419519	-0.105865
Η	-2.749798	-3.404021	-1.135075
Н	-1.326701	-2.464479	-1.607394



 Table S94. Coordinates for global minimum of 6e.

С	-1.281999	-1.299798	1.110525
С	-2.463195	-1.931720	1.179828
С	-2.962674	-2.552306	2.451185
Η	-3.164557	-3.620870	2.299942
Н	-3.912490	-2.095155	2.756793
Η	-2.242652	-2.446501	3.267348
С	-3.359589	-2.058020	-0.020831
С	-2.970102	-1.113578	-1.155517
Η	-3.300174	-0.094541	-0.917668
С	-1.457338	-1.097369	-1.433168
С	-1.193662	-0.128862	-2.589834
Н	-0.127263	-0.055618	-2.826731
Η	-1.558465	0.877162	-2.357145
Н	-1.713646	-0.483058	-3.488032
С	-0.993038	-2.503340	-1.846713
Η	-1.062323	-3.212748	-1.014874
Η	0.051899	-2.475790	-2.177904
Η	-1.603475	-2.883943	-2.674290
Η	-3.494454	-1.404132	-2.075207
Η	-4.398904	-1.874156	0.285690
Η	-3.338373	-3.104878	-0.361182
Η	-0.673193	-1.221402	2.013276
Η	0.306039	-1.195434	-0.221633
С	-0.354329	0.784412	0.026455
С	-1.281775	1.692820	0.577157
С	-1.026223	3.060858	0.653484
С	0.184531	3.550535	0.186539
С	1.141870	2.679406	-0.327852
С	0.881873	1.309180	-0.404431
С	2.003139	0.423024	-0.898323
Η	2.675215	1.017704	-1.528803
Η	1.627321	-0.388462	-1.531228
С	2.817727	-0.177846	0.258948

-0.135263

С	3.912209	-1.125005	-0.226795
С	4.735744	-1.725164	0.912277
С	5.822284	-2.676771	0.414872
Н	6.400288	-3.096103	1.245155
Н	5.384811	-3.511331	-0.145405
Н	6.520417	-2.158196	-0.252529
Н	4.064016	-2.256966	1.600442
Н	5.193042	-0.912847	1.494004
Н	3.454464	-1.937403	-0.811006
Н	4.580731	-0.588157	-0.916115
Н	2.145446	-0.713009	0.944700
Н	3.261768	0.640948	0.842080
Н	2.099113	3.067905	-0.670256
0	0.391640	4.901389	0.268738
Н	1.269521	5.109021	-0.077854
Н	-1.769159	3.726637	1.081398
0	-2.498034	1.302976	1.066644
Н	-2.485368	0.332502	1.189378

Table S95. Coordinates for global minimum of 3[‡].



С	1.626820	-2.070795	0.256723
С	0.702848	-2.293464	1.304905
С	-0.660191	-2.234597	1.073154
С	-1.131957	-2.018957	-0.231081
С	-0.238218	-1.902264	-1.299647
Η	-0.610521	-1.759490	-2.311629
Η	-1.362601	-2.346762	1.895931
0	1.245741	-2.492325	2.526550
Η	0.546294	-2.577017	3.191180
Н	2.677965	-2.286448	0.417499
0	2.058562	-1.858527	-2.031215
Н	1.630446	-1.739952	-2.892353
С	-2.599455	-1.813318	-0.463094
Н	-3.181241	-2.409718	0.249731
Η	-2.867969	-2.137172	-1.475594
С	-2.959848	-0.324679	-0.293931
Н	-2.681582	-0.004510	0.720398
Η	-2.347909	0.269283	-0.987977
С	-4.439256	-0.040322	-0.537220
Η	-5.045636	-0.633624	0.162324
Н	-4.713867	-0.373843	-1.548453
С	-4.783823	1.440545	-0.380189
Η	-4.504049	1.770975	0.629913
Η	-4.171563	2.028210	-1.078485
С	-6.263921	1.729117	-0.624137
Н	-6.488378	2.794447	-0.507416
Н	-6.558972	1.432471	-1.637287
Η	-6.891876	1.173747	0.081965
С	0.614570	2.037279	1.510509
Н	1.569402	2.575923	1.600711
С	0.277572	1.399842	2.862216
С	-0.474318	3.045833	1.135782
Н	-0.648103	3.724183	1.977726
Н	-0.201685	3.654884	0.269573
Η	-1.419196	2.533215	0.914480
Η	-0.680131	0.867526	2.799800
Η	0.182463	2.174657	3.629708
Н	1.037045	0.691366	3.206056



 Table S96. Coordinates for global minimum of 3.

С	-2.058155	-0.125181	-0.678657
С	-2.358479	-1.595818	-0.890811
С	-3.436874	-2.238347	-0.419945
С	-3.646014	-3.708648	-0.628590
Η	-2.799233	-4.172346	-1.142255
Η	-4.555391	-3.888268	-1.216448
Н	-3.792288	-4.215169	0.334541
С	-4.509048	-1.509040	0.345282
С	-4.423753	0.002516	0.152570
Н	-5.123707	0.506342	0.829368
Н	-4.733862	0.248548	-0.872291
С	-2.996061	0.504515	0.383383
Н	-2.670313	0.128680	1.366943
С	-2.878859	2.043203	0.434872
С	-3.574631	2.744677	-0.735567
Н	-3.328425	3.812352	-0.735496
Н	-4.664594	2.657202	-0.656863
Н	-3.269564	2.333632	-1.703547
С	-3.396533	2.594107	1.767092
Н	-2.869784	2.140019	2.614101
Н	-3.251805	3.679100	1.819580
Н	-4.468563	2.399448	1.890448
Н	-1.806004	2.279165	0.379773
Н	-5.490865	-1.883944	0.024166
Η	-4.428383	-1.768405	1.413112
Η	-1.619236	-2.155322	-1.467045
Н	-2.236296	0.385795	-1.634058
С	-0.595432	0.083401	-0.328616
С	0.027942	-0.634202	0.706547
С	1.352213	-0.398416	1.076192
С	2.105241	0.564464	0.409490
С	1.519513	1.277545	-0.636528
С	0.193298	1.033287	-0.993794
0	-0.398476	1.733649	-2.013812
Η	0.242318	2.356820	-2.380891

54767 36081 '6325
36081 6325
6325
06177
0 T / /
37694
58347
58069
9485
3501
37013
6558
30869
80635
2154
31128
9082
86557
22297
15334

Table S97. Coordinates for global minimum of 6[‡].



Н	0.975004	3.195872	0.212789
Н	-0.033330	1.439364	-1.145245
С	0.516816	-2.181813	1.302164
С	1.148330	-1.186745	2.052750
С	0.698075	0.115111	1.927382
С	-0.315463	0.456285	0.986380
С	-1.016365	-0.594434	0.323997
С	-0.565706	-1.889528	0.445956
Н	-1.055413	-2.698954	-0.091442
Η	-0.802550	1.421217	1.098326
0	1.209727	1.137081	2.631658
Η	1.931261	0.831350	3.203007
Η	1.955912	-1.447216	2.731144
0	0.981520	-3.433306	1.451122
Η	0.469139	-4.051833	0.908942
С	-2.246447	-0.270030	-0.468392
Η	-2.405566	-1.033282	-1.239092
Η	-2.123857	0.695156	-0.977561
С	-3.488811	-0.194717	0.438724
Η	-3.628659	-1.166570	0.930968
Η	-3.313244	0.541125	1.235518
С	-4.747610	0.179767	-0.340329
Н	-4.904509	-0.547160	-1.150542
Η	-4.598840	1.156431	-0.823475
С	-5.995105	0.233967	0.540739
Н	-6.142397	-0.744642	1.017930
Η	-5.831538	0.953792	1.354655
С	-7.248809	0.618730	-0.242769
Н	-7.445850	-0.103095	-1.043775
Η	-8.130973	0.651548	0.404985
Η	-7.133332	1.606053	-0.704646
С	1.035574	-0.486382	-2.498635
Η	-0.031027	-0.619967	-2.264778
С	1.597565	-1.856920	-2.877497
С	1.138692	0.492784	-3.671217
Η	0.794757	1.497537	-3.398339
Η	2.169827	0.575035	-4.031626
Η	0.524092	0.143824	-4.507455
Н	2.652530	-1.789845	-3.166208
Н	1.048221	-2.271457	-3.729314
Н	1.515392	-2.562870	-2.042274



 Table S98. Coordinates for global minimum of 6.

С	-0.636150	-0.595617	0.147177
С	-0.992265	-1.124009	1.523386
С	-2.023761	-1.935352	1.798459
С	-2.351366	-2.366367	3.196968
Н	-2.266852	-3.456481	3.293403
Н	-3.390638	-2.111407	3.443167
Н	-1.692995	-1.896911	3.933280
С	-2.913525	-2.463477	0.704027
С	-2.262388	-2.334448	-0.670067
Н	-2.978848	-2.610015	-1.453067
Н	-1.427563	-3.045854	-0.732347
С	-1.736367	-0.914406	-0.899298
Н	-2.571881	-0.220713	-0.717012
С	-1.254119	-0.663419	-2.344665
С	-2.435446	-0.427801	-3.290917
Η	-3.042075	0.423154	-2.961014
Η	-2.083171	-0.220159	-4.307698
Η	-3.086650	-1.308762	-3.341351
С	-0.359328	-1.783162	-2.887958
Η	0.112468	-1.470037	-3.825840
Η	0.438319	-2.058355	-2.188831
Η	-0.944277	-2.686525	-3.096393
Η	-0.666050	0.266191	-2.324084
Η	-3.155531	-3.513456	0.919302
Η	-3.874962	-1.925778	0.729122
Η	-0.356751	-0.780053	2.341612
Η	0.278167	-1.117169	-0.164329
С	-0.324149	0.894161	0.211436
С	-1.260405	1.782143	0.781171
С	-1.056924	3.159407	0.808987
С	0.112876	3.678295	0.271253
С	1.074539	2.829661	-0.271585
С	0.863942	1.447981	-0.301923

С	1.970181	0.582887	-0.857405
Н	2.625133	1.200247	-1.483915
Н	1.564257	-0.195314	-1.513557
С	2.817750	-0.075834	0.242281
С	3.866886	-1.029435	-0.324474
С	4.719305	-1.694939	0.755134
С	5.753292	-2.659584	0.177320
Н	5.266147	-3.460088	-0.391675
Н	6.437679	-2.138227	-0.502134
Н	6.353435	-3.125452	0.966102
Н	4.061041	-2.231337	1.452780
Н	5.226171	-0.918505	1.344835
Н	4.520907	-0.483784	-1.020797
Н	3.362782	-1.805977	-0.919577
Н	2.164030	-0.621736	0.936858
Н	3.305517	0.710999	0.834630
Н	1.994975	3.244422	-0.677920
0	0.273860	5.037588	0.311625
Н	1.123693	5.267865	-0.086628
Н	-1.802874	3.810101	1.254572
0	-2.437296	1.349742	1.330860
Н	-2.368460	0.390905	1.507841

Table S99. Coordinates for global minimum of 3f[‡].



С	-1.947724	-0.119075	0.587775
С	-3.153024	-0.219966	-0.151460
С	-3.275768	-1.025340	-1.245530
С	-4.591203	-1.240296	-1.902642
Η	-4.807735	-2.313575	-1.977493
Н	-5.407168	-0.737934	-1.379185
Н	-4.544405	-0.868362	-2.935358
С	-2.109808	-1.782220	-1.782368
С	-0.772508	-1.226736	-1.307547
Η	-0.579293	-0.302041	-1.863224
Η	0.038671	-1.909705	-1.568103
С	-0.723352	-0.871602	0.188036
Η	0.145038	-0.209470	0.320964
Η	-2.246283	-2.838325	-1.502622

Η	-2.155971	-1.776286	-2.879638
Н	-4.033391	0.290467	0.232846
Н	-2.067598	0.096607	1.646361
С	-1.081275	2.169945	-0.852103
С	-1.536229	2.086960	0.486222
С	-0.572005	2.168277	1.523782
С	0.779426	2.134815	1.237865
С	1.204813	2.097053	-0.100519
С	0.275575	2.138030	-1.144130
Н	0.612115	2.139168	-2.178250
Н	1.511652	2.130418	2.041874
0	-1.072405	2.206507	2.776689
H	-0.351460	2.190806	3.423889
Н	-2.573067	2.314309	0.711772
0	-2.042447	2.221473	-1.792182
H	-1.645612	2.212468	-2.676440
С	2.662577	1.915961	-0.400040
H	3.266800	2.469863	0.328719
H	2.894732	2.301965	-1.399154
С	3.032452	0.420796	-0.329515
H	2.771953	0.037920	0.667211
Н	2.411385	-0.131962	-1.049066
С	4.508704	0.155562	-0.609280
H	5.123041	0.719322	0.107587
Н	4.767777	0.533673	-1.608642
С	4.857769	-1.330275	-0.519759
H	4.585406	-1.703688	0.477371
H	4.240972	-1.888837	-1.237665
С	6.336522	-1.605358	-0.786007
H	6.562935	-2.674513	-0.718294
Н	6.624483	-1.263242	-1.786677
Н	6.968236	-1.081146	-0.059637
С	-0.443288	-2.040906	1.218994
С	0.054777	-1.418772	2.533617
С	0.671630	-2.939550	0.668790
H	0.334077	-3.536709	-0.184138
Н	1.543188	-2.350367	0.358510
Н	0.993359	-3.633989	1,452807
н	-0 684018	-0 751524	2 990939
н	0.976073	-0 847407	2 369307
н	0 270198	-2 211066	3 258918
C	-1 686197	-2 893866	1 507229
Ч	-2 082023	-3 358813	0 599556
н	-1 422615	-3 697982	2 203484
н Ц	-2 /86160	-2 305179	1 060120
ТT	2.100109	Z.JUJI40	T. JOJTJJ



Table S100. Coordinates for global minimum of 3f.

С	-1.839475	-0.146270	-0.666933
С	-2.857000	-1.257825	-0.464421
С	-3.954148	-1.190352	0.299540
С	-4.861296	-2.365143	0.513962
Н	-4.970888	-2.573345	1.586497
H	-4 485379	-3 266049	0 020879
н	-5 867765	-2 148935	0 133159
C	-/ 33520/	0 098578	0.133133
C	4.555204	1 202006	0.252520
	-3.011029	1.292000	0.333329
H	-3.844561	2.184438	0.938985
H	-4.002898	1.458287	-0.659857
С	-2.092060	1.06504/	0.284451
Η	-1.762518	0.775549	1.295122
С	-1.300886	2.373291	-0.051150
С	-1.600314	2.887538	-1.466146
Η	-2.670126	3.075155	-1.609729
Η	-1.072004	3.833461	-1.636092
Η	-1.266061	2.180169	-2.231775
С	-1.687838	3.472205	0.960201
Η	-1.607450	3.106450	1.991584
Н	-1.008700	4.324826	0.850976
Н	-2.704036	3.845425	0.805712
С	0.217635	2.165183	0.092023
Н	0.465305	1.703882	1.056101
н	0 726070	3 135343	0 039889
н	0.628073	1 535298	-0 698268
и П	-5 123331	1.000200	0.090200
п тт	-J.423331 4 110120	0.232302	0.095570
п тт	-4.119129	0.031442	2.040330
H	-2.618324	-2.196631	-0.966915
H	-1.949985	0.211832	-1.69/618
С	-0.45/284	-0.768720	-0.556098
С	0.457984	-0.732996	-1.614867
С	1.753476	-1.235267	-1.491467
С	2.170669	-1.810770	-0.292454
С	1.258253	-1.923672	0.754699

С	-0.036701	-1.428853	0.610858
0	-0.877111	-1.599014	1.679132
Н	-1.797478	-1.492822	1.372826
Н	1.536579	-2.402533	1.689982
С	3.597306	-2.262651	-0.109610
Н	4.085811	-2.333388	-1.089324
Н	3.612297	-3.265263	0.336210
С	4.401123	-1.305121	0.789161
С	4.474149	0.119840	0.245185
С	5.309344	1.053814	1.119748
С	5.348545	2.482350	0.579221
Η	5.946490	3.139392	1.219574
Η	4.337561	2.902339	0.516112
Η	5.782167	2.507513	-0.427318
Η	4.897844	1.055788	2.138717
Η	6.332106	0.659844	1.199923
Η	4.891552	0.100371	-0.773063
Η	3.457501	0.528158	0.151466
Η	3.950460	-1.289622	1.791308
Η	5.417678	-1.705233	0.906558
Η	2.444552	-1.151812	-2.328318
0	0.048647	-0.135680	-2.780198
Η	0.782977	-0.140164	-3.408370

Table S101. Coordinates for global minimum of 6f[‡].



С	-3.703571	-1.131191	0.285682
С	-2.812986	-0.172631	1.074250
Η	-2.175089	-0.774710	1.730161
Н	-3.427943	0.441445	1.736425
С	-1.884870	0.712536	0.220183
Η	-1.064761	1.047869	0.875123
Η	-4.597675	-0.633785	-0.118498
Η	-4.096852	-1.909344	0.953660
Н	-1.405835	-1.756856	-2.236571
Н	-0.699632	0.477953	-1.622812
С	1.028772	0.328610	2.286096
С	0.449359	-0.936044	2.184284
С	0.332612	-1.505556	0.927020
С	0.719262	-0.793254	-0.240143
С	1.421208	0.438355	-0.094253
С	1.521694	1.012555	1.151999
Н	2.014194	1.973899	1.280166
Η	0.829424	-1.356042	-1.162347
0	-0.186193	-2.728075	0.724947
Η	-0.476029	-3.115938	1.564825
Η	0.115351	-1.455822	3.077810
0	1.119117	0.853878	3.519784
Η	1.545337	1.723357	3.486140
С	2.035336	1.081059	-1.302756
Η	2.306492	2.115969	-1.065718
Η	1.301050	1.113573	-2.119129
С	3.283448	0.323717	-1.798937
Η	2.998401	-0.691562	-2.106236
H	3.648288	0.833233	-2.700176
С	4.402110	0.250269	-0.762811
Н	4.052183	-0.302599	0.120692
Н	4.644927	1.265667	-0.415074
С	5.66581/	-0.41/280	-1.304519
H	5.414/45	-1.424986	-1.6636/5
H	6.023471	0.142826	-2.1/9400
C	6.//6335	-0.505341	-0.259265
H	6.44/490	-1.083311	0.612217
H	7.071223	-0.988582	-0.004803
н С	7.063016	0.492802	0.091/15
C	-2.490930	2.074002	-0.300016
C	-2.000447 -3.701503	2.9200JI 1.963516	-1 199153
U U	-3.510501	1 17603/	-1.109133 -2.017371
л Ц	-1 567030	1 /7077/	-2.UI/3/1
ц П	-1 022151	1.4/0//4 2 822128	-1 610559
н	-3 6205101	2.022130	1 505865
н	-3 240548	2.709073	1.505005 0 576800
тт	J.270J40	5.505507	0.070000

Н	-2.016274	3.091676	1.571736
С	-1.423718	2.853614	-1.087925
Н	-1.771688	3.878220	-1.256109
Н	-0.479255	2.904797	-0.531769
Η	-1.224380	2.417375	-2.071863





С	-0.570355	-0.587497	0.151301
С	-0.568066	-1.127077	1.574873
С	-1.509570	-1.901580	2.129392
С	-1.478485	-2.298595	3.575091
Н	-0.639595	-1.840264	4.106332
Н	-1.404478	-3.389295	3.673521
Н	-2.411320	-2.002979	4.073216
С	-2.645336	-2.428804	1.298876
С	-2.328143	-2.337968	-0.188950
Н	-3.199014	-2.662205	-0.764749
Η	-1.514173	-3.040400	-0.415177
С	-1.899705	-0.919079	-0.599113
Η	-2.672169	-0.224102	-0.236875
С	-1.881092	-0.744035	-2.153147
С	-0.987159	-1.786032	-2.841330
Н	-0.953220	-1.591121	-3.919688
Н	0.042780	-1.752832	-2.468142
Η	-1.367706	-2.802804	-2.699383
С	-3.319082	-0.903013	-2.687162
Н	-3.337475	-0.700019	-3.763933
Н	-3.715816	-1.911295	-2.539698
Н	-3.995775	-0.191248	-2.198580
С	-1.416408	0.660955	-2.567179
Н	-1.968067	1.438692	-2.025700
Η	-1.593327	0.800028	-3.640346
Η	-0.352444	0.815705	-2.382465

Н	-2.842742	-3.471385	1.584866
Η	-3.568833	-1.875766	1.535748
Η	0.261003	-0.781182	2.194201
Η	0.241766	-1.092599	-0.385749
С	-0.216924	0.894811	0.238464
С	-1.058932	1.776433	0.944222
С	-0.822848	3.147350	1.000567
С	0.307375	3.660421	0.379408
С	1.206337	2.807339	-0.257122
С	0.957464	1.433808	-0.320436
С	2.007122	0.564326	-0.972408
Η	2.645902	1.191959	-1.605523
Η	1.549191	-0.176963	-1.638820
С	2.887747	-0.161440	0.055551
С	3.931963	-1.065015	-0.596203
С	4.804356	-1.797176	0.422794
С	5.844852	-2.703096	-0.233169
Η	6.456237	-3.219299	0.514565
Η	5.362664	-3.464738	-0.857037
Η	6.518081	-2.124133	-0.876019
Η	4.160366	-2.392328	1.085152
Η	5.307374	-1.059346	1.063242
Η	4.571602	-0.466175	-1.261296
Η	3.424221	-1.802024	-1.236430
Η	2.255100	-0.760591	0.724377
Η	3.384164	0.586685	0.689466
Η	2.108956	3.213495	-0.709563
0	0.502796	5.014096	0.446410
Η	1.323683	5.238982	-0.011260
Н	-1.505213	3.794855	1.542245
0	-2.173039	1.341428	1.614814
Н	-2.064727	0.391582	1.807815
Table S103. Coordinates for global minimum of 3bc[‡].



С	-2.577040	-1.888504	-0.177341
Н	-3.499899	-2.387395	-0.504693
Н	-2.565397	-1.955678	0.918475
С	-2.618074	-0.417637	-0.588082
Н	-2.840776	-0.330584	-1.659486
Н	-1.625726	0.031672	-0.443635
С	-3.648742	0.385801	0.204225
Н	-4.648938	-0.042753	0.042826
Н	-3.438149	0.284355	1.279196
С	-3.662329	1.867338	-0.167771
Н	-2.665021	2.294442	0.018918
Н	-3.845357	1.972405	-1.247438
С	-1.428304	-2.680698	-2.276007
Н	-0.668071	-3.343110	-2.704156
Н	-2.408685	-3.038184	-2.607835
Н	-1.282108	-1.677226	-2.686596
С	-1.524634	-4.165064	-0.280130
Н	-1.585011	-4.243218	0.809584
Н	-2.439738	-4.594211	-0.702935
Н	-0.672782	-4.762901	-0.622047
С	-4.705542	2.676517	0.601911
Н	-4.527996	2.561151	1.680221
Н	-5.702468	2.257728	0.406484
С	-4.689198	4.159123	0.233981
Н	-5.444859	4.720699	0.793248
Н	-3.711074	4.604658	0.450351
Н	-4.889492	4.298829	-0.834733

## Table S104. Coordinates for global minimum of 3bc.



Η	2.222199	1.997613	-0.551675
Н	1.957700	2.405960	1.144490
Н	4.457152	2.639747	1.441817
Η	3.834113	3.769676	0.236068
Н	4.635080	2.388436	-1.606970
Н	5.961777	2.516741	-0.468523
Н	4.214464	-1.195292	0.220230
н	3.073669	0.436041	1.923552
C	1 630401	-0 335857	0 583078
C	1,273067	-0.778427	-0.697733
C	0 086764	-1 477226	-0 939810
C	-0 799008	-1 751630	0 097935
C	-0 463849	-1 315861	1 385103
C	0 720800	-0 621275	1 612065
$\hat{\mathbf{O}}$	1 044325	-0 171879	2 867703
о ц	0 3/3163	-0 125779	3 /82177
и Ц	-1 127395	-1 503317	2 225701
C	-2 116978	-2 /97799	-0 123152
C	-2 128565	-3 771105	0.125152
U U	-2.120303	-3.771103	0.740201
п u	-3.001094 -1.280502	-4.325040	0.1820/1
п II	-1.209592	-4.423001	1 011061
п	-2.0JJIZZ	-3.332943	1 502776
	-2.307401	-2.929904	-1.302770
п	-2.300043	-2.004300	-2.2/0400
п	-1.524502	-3.631095	-1.092102
н	-3.2/20/0	-3.438519	-1.682942
	-3.302880	-1.600093	0.312225
C	-3.40/064	-0.254116	-0.402819
C	-4.551673	0.606046	0.133024
C	-4.666433	1.956256	-0.5/3138
C	-5.811007	2.820163	-0.044200
С	-5.911251	4.168327	-0.756233
Н	-4.986120	4./43/56	-0.634443
Н	-6.0/8458	4.031337	-1.831012
Н	-6.736254	4.771234	-0.362057
Η	-5.672684	2.981492	1.034038
Η	-6.757233	2.272385	-0.155399
Η	-3.718570	2.504139	-0.464791
Η	-4.805659	1.792090	-1.652044
Η	-4.408378	0.770845	1.211289
Η	-5.500317	0.058864	0.027484
Η	-2.459374	0.291510	-0.290714
Η	-3.552169	-0.408471	-1.480435
Η	-4.230440	-2.170302	0.155744
Η	-3.231228	-1.420993	1.393935
Η	-0.114045	-1.785932	-1.959163
0	2.056218	-0.530309	-1.792692



 Table S105. Coordinates for global minimum of 6bc[‡].

С	-2.625094	-0.990955	0.149923
С	-3.340478	-0.666719	1.327237
С	-4.541331	-0.019590	1.279036
С	-5.359481	0.183587	2.502164
Η	-5.478764	1.261103	2.680963
Η	-6.372845	-0.210951	2.352828
Н	-4.913199	-0.278109	3.385259
С	-5.130101	0.423375	-0.021155
С	-4.084077	0.617253	-1.113831
Η	-3.512653	1.527459	-0.904129
Η	-4.570510	0.762319	-2.083265
С	-3.133602	-0.575697	-1.182276
Η	-2.298736	-0.397139	-1.873620
Η	-5.862988	-0.347493	-0.314769
Η	-5.715081	1.338047	0.133687
Η	-2.964879	-1.029611	2.281115
Η	-2.030570	-1.897460	0.178044
С	-0.226827	1.388221	-1.882063
С	-0.916149	2.041318	-0.860859
С	-1.089787	1.370046	0.336323
С	-0.635756	0.034213	0.505939
С	0.169814	-0.562882	-0.501023
С	0.315154	0.100697	-1.704122
Η	0.886159	-0.335909	-2.519010
Η	-0.615866	-0.352242	1.517978
0	-1.716553	1.912141	1.396438
Н	-2.040931	2.800211	1.182390
Н	-1.287673	3.051339	-1.009503

-0.083340	2.062754	-3.038854
0.425404	1.540112	-3.676560
-3.651725	-1.461658	-1.590134
0.864170	-1.909026	-0.286509
2.386803	-1.728827	-0.526334
2.856676	-2.714128	-0.397342
2.547586	-1.447556	-1.575394
3.084255	-0.709561	0.373276
3.020940	-1.023839	1.423247
2.568968	0.259679	0.304585
4.554885	-0.522005	-0.000534
5.069792	-1.492769	0.050168
4.623620	-0.189809	-1.046901
5.277380	0.481197	0.897215
5.211372	0.147522	1.943335
4.759752	1.450859	0.849324
0.335028	-2.928012	-1.317554
-0.744856	-3.081149	-1.215191
0.536669	-2.603468	-2.342894
0.829207	-3.893297	-1.162557
0.640170	-2.479275	1.120634
0.987706	-1.803105	1.906686
-0.412903	-2.712100	1.311900
1.202086	-3.414206	1.213466
6.746480	0.675565	0.522793
7.261874	-0.293775	0.570934
6.811361	1.008062	-0.522629
7.457911	1.681038	1.426680
6.978285	2.665248	1.370432
8.508588	1.803059	1.143015
7.428060	1.355665	2.473050
	-0.083340 0.425404 -3.651725 0.864170 2.386803 2.856676 2.547586 3.084255 3.020940 2.568968 4.554885 5.069792 4.623620 5.277380 5.211372 4.759752 0.335028 -0.744856 0.536669 0.829207 0.640170 0.987706 -0.412903 1.202086 6.746480 7.261874 6.811361 7.457911 6.978285 8.508588 7.428060	-0.083340 $2.062754$ $0.425404$ $1.540112$ $-3.651725$ $-1.461658$ $0.864170$ $-1.909026$ $2.386803$ $-1.728827$ $2.856676$ $-2.714128$ $2.547586$ $-1.447556$ $3.084255$ $-0.709561$ $3.020940$ $-1.023839$ $2.568968$ $0.259679$ $4.554885$ $-0.522005$ $5.069792$ $-1.492769$ $4.623620$ $-0.189809$ $5.277380$ $0.481197$ $5.211372$ $0.147522$ $4.759752$ $1.450859$ $0.335028$ $-2.928012$ $-0.744856$ $-3.081149$ $0.536669$ $-2.603468$ $0.829207$ $-3.893297$ $0.640170$ $-2.479275$ $0.987706$ $-1.803105$ $-0.412903$ $-2.712100$ $1.202086$ $-3.414206$ $6.746480$ $0.675565$ $7.261874$ $-0.293775$ $6.811361$ $1.008062$ $7.457911$ $1.681038$ $6.978285$ $2.665248$ $8.508588$ $1.803059$ $7.428060$ $1.355665$

 Table S106. Coordinates for global minimum of 6bc.



C 1.314543 0.979715 -0.608200

С	0.591039	2.077071	0.147571
С	1.009888	3.349012	0.230468
С	0.261670	4.385489	1.014378
Н	0.921281	4.854901	1,756100
н	-0 087988	5 189737	0 354237
н	-0 601159	3 959295	1 533964
C	2 267908	3 81 38 31	-0 /5895/
C	2.207900	2.013031	1 52/165
C	2.754525	2.031200	-1.524165
C	2./48928	1.404169	-0.981146
H	3.404467	1.3450/3	-0.102669
Н	3.148842	0./00588	-1./20563
Η	2.091408	2.887309	-2.398983
Η	3.758959	3.109776	-1.863490
Η	3.049006	3.972952	0.301783
Η	2.082790	4.802409	-0.901195
Η	-0.340739	1.789972	0.639234
Η	0.775261	0.852359	-1.546446
С	1.288838	-0.348071	0.137387
С	1.805743	-0.358240	1.449772
С	1.932518	-1.522752	2.202809
С	1.515053	-2.715853	1.638768
С	0.948947	-2.737481	0.367099
С	0.814804	-1.574189	-0.398047
С	0.114935	-1.688603	-1.773451
C	1 080381	-1 324572	-2 922846
н	0 573897	-1 471785	-3 884204
и Ц	1 /3328/	-0 292/61	-2 892225
и п	1 958/75	-1 979742	-2 898327
n C	_0 3/2391	-3 1309/7	-2.090327
	-0.342301	-3.130047	-2.072071
п 11	-0.030303	-3.1400JZ	-3.040120
H	-1.052/18	-3.513502	-1.333927
H	0.505618	-3.821495	-2.126580
C	-1.154588	-0./911//	-1.834349
С	-2.116680	-0.932052	-0.655397
С	-3.313701	0.011832	-0.768330
С	-4.284010	-0.109565	0.405128
С	-5.474002	0.844515	0.306787
С	-6.439488	0.708371	1.482909
Η	-7.283582	1.400360	1.392580
Η	-5.932132	0.918990	2.431630
Η	-6.843550	-0.309075	1.540712
Η	-5.103938	1.877790	0.250125
Н	-6.010036	0.657165	-0.634218
Н	-3.743168	0.080632	1.344255
Н	-4.653009	-1.144157	0.466514
Н	-2.950351	1.048770	-0.833484
Н	-3.851336	-0.186152	-1.707606

Η	-1.579612	-0.721620	0.279885
Η	-2.479193	-1.966256	-0.579838
Н	-1.683645	-1.040057	-2.765774
Н	-0.882255	0.265588	-1.926756
Η	0.607851	-3.696041	0.000739
0	1.610746	-3.912419	2.299442
Н	2.011441	-3.767203	3.166792
Η	2.342643	-1.472503	3.208265
0	2.234683	0.782025	2.076058
Н	1.876206	1.560690	1.606147

 Table S107. Coordinates for global minimum of 3bd[‡].



С	-2.154796	-1.034326	1.014382
С	-3.025082	-1.754381	0.178532
С	-2.558551	-2.674697	-0.723992
С	-3.489406	-3.514527	-1.515342
Н	-3.223938	-4.574824	-1.417150
Н	-4.533201	-3.365683	-1.232631
Н	-3.367213	-3.272745	-2.580675
С	-1.098901	-2.926091	-0.888064
С	-0.224946	-1.780464	-0.385803
Н	-0.264638	-0.961506	-1.111617
Н	0.819607	-2.103326	-0.325930
С	-0.683265	-1.260572	0.979268
Н	-0.179093	-0.310305	1.198626
Н	-0.883306	-3.863960	-0.349025
Н	-0.885409	-3.151657	-1.940241
Н	-4.097619	-1.624377	0.300916
Н	-2.562326	-0.634012	1.940303
С	-1.989960	1.125417	-0.963188
С	-2.592264	1.160589	0.313553
С	-1.919074	1.861566	1.335898
С	-0.658131	2.403352	1.127868

С	-0.056182	2.321414	-0.135957
С	-0.733272	1.670819	-1.177134
Η	-0.294742	1.608080	-2.168687
Η	-0.162942	2.908310	1.950168
0	-2.565770	1.930232	2.522202
Η	-2.022835	2.400145	3.172341
Η	-3.646093	0.928304	0.424066
0	-2.701739	0.507781	-1.930612
Η	-2.199286	0.498340	-2.759119
С	1.300420	2.964177	-0.425657
С	2.282700	1.901862	-0.978955
Η	1.849748	1.449352	-1.880979
Η	3.189349	2.429368	-1.306753
С	2.665929	0.793695	0.000890
Η	1.763456	0.412122	0.499580
Н	3.307475	1.197659	0.794815
С	3.381942	-0.370400	-0.681726
Η	2.721087	-0.795029	-1.452363
Η	4.271152	0.003362	-1.210332
С	3.794613	-1.471034	0.293611
Η	4.507211	-1.063152	1.025465
Η	2.914547	-1.792897	0.871581
С	1.092648	4.047427	-1.506258
Η	0.358038	4.789202	-1.174595
Η	2.041836	4.561218	-1.694240
Η	0.746347	3.616265	-2.450398
С	1.910468	3.637744	0.809316
Η	1.294489	4.476841	1.150630
Η	2.040698	2.942631	1.644113
Η	2.897400	4.033308	0.546984
С	4.411985	-2.687718	-0.394056
Η	5.293013	-2.369872	-0.968750
Η	3.695046	-3.088373	-1.124793
С	4.807255	-3.785597	0.591712
Η	5.242621	-4.649279	0.078236
Η	5.545042	-3.417004	1.313839
Η	3.934876	-4.134951	1.156743
С	-0.339523	-2.229509	2.135225
Η	-0.652132	-1.817404	3.099219
Η	-0.827591	-3.200028	2.000765
Η	0.743882	-2.383650	2.156882

× ×		
С	-2.787435	-0.431827

 Table S108. Coordinates for global minimum of 3bd.

		-	
С	-2.787435	-0.431827	0.736856
С	-4.011351	0.273520	0.189425
С	-4.988057	-0.317709	-0.513223
С	-6.156943	0.448189	-1.057403
Η	-6.069480	1.520423	-0.860908
Η	-6.243691	0.296094	-2.141338
Η	-7.093836	0.084948	-0.615735
С	-4.967335	-1.797193	-0.795356
С	-3.985813	-2.545876	0.102765
С	-2.623757	-1.851150	0.141064
Η	-2.270469	-1.744010	-0.896816
С	-1.597222	-2.668996	0.919760
Η	-1.454140	-3.651221	0.455928
Η	-0.625794	-2.164476	0.954743
Η	-1.934341	-2.826123	1.951809
Η	-4.387118	-2.594025	1.125852
Η	-3.868450	-3.579963	-0.244677
Η	-4.713095	-1.953414	-1.855771
Η	-5.984152	-2.195463	-0.673824
Η	-4.081178	1.342888	0.397205
Η	-2.928599	-0.546249	1.820851
С	-1.534869	0.399433	0.534453
С	-0.621299	0.629290	1.573811
С	0.565095	1.330255	1.377241
С	0.894608	1.836908	0.115151
С	-0.006422	1.639483	-0.926757
С	-1.196403	0.938075	-0.714259
0	-2.007511	0.788307	-1.807495
H	-2.8882/4	0.485832	-1.5108/5
H	0.182710	2.015877	-1.925399
C	2.219308	2.5/9654	-0.0/3584
C	2.23/583	3.818652	0.843/64
H	1.4U8664	4.491/39 2 540241	0.59/599
H	Z.LJUX/6 2 177001	3.340341	1.090/1/ 0.712670
п С	3.1//021 2 /10055	4.30/20/	U./120/U
C	2.410233	3.064060	-1.515429

Η	1.646507	3.787827	-1.799584
Н	2.398871	2.244634	-2.239878
Н	3.390851	3.561808	-1.595752
С	3.396360	1.656034	0.330502
С	3.480185	0.328376	-0.420695
С	4.613999	-0.560916	0.089929
С	4.700154	-1.900211	-0.640357
С	5.831298	-2.793848	-0.132238
С	5.900946	-4.132772	-0.864622
Н	4.965997	-4.692494	-0.744647
Н	6.063135	-3.983297	-1.938485
Н	6.717021	-4.757068	-0.485447
Н	5.696714	-2.968461	0.944411
Н	6.787257	-2.262758	-0.241127
Η	3.742927	-2.432422	-0.535861
Н	4.836151	-1.720376	-1.717143
Н	5.571351	-0.028420	-0.011925
Η	4.475156	-0.742744	1.166061
Н	3.622991	0.508805	-1.494605
Н	2.525781	-0.207450	-0.318729
Η	4.329893	2.219110	0.184700
Η	3.329158	1.448393	1.407309
Η	1.236465	1.465211	2.221659
0	-0.938876	0.120617	2.808009
Н	-0.233222	0.342926	3.429621

Table S109. Coordinates for global minimum of 6bd[‡].



Η	-4.804601	0.716302	3.400954
Н	-5.281643	2.140440	2.437238
Н	-6.270237	0.693307	2.375821
С	-5.016035	0.826623	-0.074205
С	-3.985004	0.703429	-1.191649
H	-3 337152	1 585196	-1 168293
н	-4 481707	0 698203	-2 167560
C	-3 122/51	-0 555069	-1 046560
U U	-2 268/1/	-0 401688	-1 736675
п	-2.200414	-0.491000	-1.750075
H	-5.844065	0.111146	-0.20//4/
H	-5.490/32	1.815641	-0.091111
Н	-2.926096	-0.343535	2.446534
Η	-2.054213	-1.620742	0.543618
С	-0.096563	1.075304	-2.126389
С	-0.746719	1.961882	-1.268356
С	-0.952062	1.562497	0.040089
С	-0.566571	0.270186	0.487577
С	0.208708	-0.561593	-0.365919
С	0.382698	-0.171041	-1.679601
Н	0.930484	-0.793385	-2.381829
Н	-0.563647	0.103643	1.558202
0	-1.550838	2.343223	0.958064
Н	-1.818835	3.186350	0.561900
Н	-1.068102	2,935690	-1.626677
0	0 073894	1 480842	-3 398915
ч	0 542922	0 803124	-3 908113
C	0.819571	_1 858119	0 131757
C	2 301137	_1 777079	_0 109096
	2.501157	1.777970	0.242100
п	2.013039	-2.724303	1 100451
н	2.300/80	-1./3/680	-1.190451
C	3.099522	-0.60/913	0.561250
H	3.009662	-0.6812/9	1.653004
Н	2.619827	0.337943	0.270076
С	4.580882	-0.553249	0.186872
Η	5.061068	-1.503657	0.462841
Η	4.674856	-0.465475	-0.905619
С	5.326100	0.602111	0.853020
Η	5.235678	0.512774	1.945726
Η	4.843265	1.552340	0.580334
С	0.299619	-3.049270	-0.680105
Н	0.509459	-2.939248	-1.748375
Н	0.772053	-3.975226	-0.334237
Н	-0.783326	-3.154842	-0.553368
C	0.587607	-2.123554	1,620851
ч	0 955194	-1 318006	2 2625091
н	-0 476069	-2 272/78	1 835681
ц П	1 100010	-3 0/1700	1 010001
п	T.TO02T0	-3.041/99	T.9T009T

6.805454	0.662281	0.473414
7.286136	-0.287743	0.745294
6.894019	0.751368	-0.618372
7.540848	1.820719	1.144931
7.094341	2.782189	0.865516
8.597601	1.845698	0.858656
7.490520	1.735531	2.236695
-3.892263	-1.847822	-1.399253
-4.748533	-1.992817	-0.732662
-4.258851	-1.780080	-2.428042
-3.243375	-2.725174	-1.318592
	6.805454 7.286136 6.894019 7.540848 7.094341 8.597601 7.490520 -3.892263 -4.748533 -4.258851 -3.243375	6.8054540.6622817.286136-0.2877436.8940190.7513687.5408481.8207197.0943412.7821898.5976011.8456987.4905201.735531-3.892263-1.847822-4.748533-1.992817-4.258851-1.780080-3.243375-2.725174

 Table S110. Coordinates for global minimum of 6bd.



С	1.196101	1.000270	-0.484036
С	0.162590	1.945206	0.099021
С	0.344218	3.259312	0.293831
С	-0.708786	4.126798	0.916542
Η	-1.034081	4.902856	0.211734
Η	-0.306600	4.650422	1.793804
Η	-1.582757	3.546546	1.226004
С	1.627148	3.941088	-0.103690
С	2.478487	3.083007	-1.036584
Η	3.475148	3.526922	-1.153105
Η	2.019025	3.060048	-2.036054
С	2.606885	1.647502	-0.521741
С	3.589918	0.841001	-1.366561
Η	3.323070	0.885034	-2.429005
Η	3.606834	-0.211756	-1.064430
Η	4.602886	1.244524	-1.260179
Η	3.002964	1.695213	0.501556
Η	2.190926	4.193862	0.808561
Η	1.386259	4.903625	-0.576056
Η	-0.789802	1.494873	0.384242
Η	0.924901	0.826229	-1.527106
С	1.182689	-0.339431	0.244523
С	1.512483	-0.323482	1.617679

С	1.699214	-1.480539	2.365978
С	1.510250	-2.699579	1.739361
С	1.071249	-2.753154	0.418878
С	0.872155	-1.593425	-0.341695
С	0.236757	-1.754771	-1.745347
С	1.218749	-1.381181	-2.875306
Η	1.488622	-0.324975	-2.884403
Н	0.761204	-1.613665	-3.844274
Η	2.142740	-1.963330	-2.786141
С	-0.171206	-3.215212	-2.029265
Η	-0.678720	-3.247823	-2.998957
Н	-0.857051	-3.619990	-1.280039
Η	0.700525	-3.875190	-2.093711
С	-1.051930	-0.892520	-1.865808
С	-2.085239	-1.090261	-0.757251
С	-3.283568	-0.153165	-0.907357
С	-4.306227	-0.307545	0.216538
С	-5.497059	0.641407	0.086267
С	-6.511423	0.474441	1.216253
Η	-6.047048	0.668488	2.190194
Η	-7.356148	1.162435	1.103988
Η	-6.909925	-0.546651	1.235653
Η	-5.131525	1.677735	0.067679
Η	-5.990632	0.471430	-0.880925
Η	-4.670063	-1.345579	0.238438
Η	-3.809544	-0.135279	1.183259
Η	-2.926836	0.887911	-0.932265
Η	-3.774136	-0.333682	-1.875470
Η	-1.610831	-0.912517	0.218196
Η	-2.440702	-2.129277	-0.745175
Η	-1.510765	-1.129396	-2.836784
Η	-0.799043	0.171762	-1.911039
Η	0.867600	-3.731296	0.000606
0	1.724120	-3.832097	2.479608
Η	1.528181	-4.607490	1.936960
Η	1.968892	-1.417518	3.415406
0	1.675620	0.845704	2.315175
Н	1.259557	1.575088	1.817405



 Table S111. Coordinates for global minimum of 3be[‡].

С	2.964789	0.773461	0.813546
С	2.744406	-0.625178	0.944522
С	3.372039	-1.537532	0.150448
С	3.223518	-2.999717	0.382108
Η	2.716860	-3.456323	-0.479141
Η	4.209667	-3.476467	0.443745
Η	2.653821	-3.221359	1.286956
С	4.306249	-1.119663	-0.934309
С	4.213312	0.357572	-1.304631
Η	3.345528	0.514777	-1.952680
Η	5.098477	0.656532	-1.877759
С	4.075854	1.267021	-0.076466
Η	5.320349	-1.377062	-0.586179
Η	4.144880	-1.756286	-1.814266
Η	2.100492	-0.976699	1.745917
Η	2.793263	1.379703	1.702312
С	0.295146	1.169369	1.307362
С	1.007895	1.632991	0.165628
С	0.719084	1.000757	-1.068534
С	-0.004263	-0.180777	-1.112580
С	-0.595571	-0.688303	0.051777
С	-0.459863	0.015137	1.260586
Η	-0.945816	-0.335531	2.166120
Η	-0.149541	-0.668844	-2.070238
0	1.193604	1.605822	-2.176277
Η	0.972650	1.083285	-2.962139
Η	1.386266	2.649506	0.168890
0	0.470227	1.895891	2.429002
Η	0.006600	1.480694	3.171729

С	-1.424985	-1.968478	0.037743
С	-2.862718	-1.656322	0.530433
Η	-3.417010	-2.605281	0.532588
Η	-2.818583	-1.325854	1.576546
С	-3.630214	-0.617534	-0.285916
Н	-3.787526	-0.981409	-1.309829
Η	-3.033979	0.302802	-0.369452
С	-4.985161	-0.280243	0.336763
Η	-5.575547	-1.201790	0.447831
Η	-4.828498	0.110660	1.353000
С	-5.782662	0.736239	-0.478614
Н	-5.184355	1.650865	-0.605220
Η	-5.954898	0.338022	-1.489486
С	-1.480976	-2.622993	-1.347594
Η	-2.095272	-3.527209	-1.287578
Н	-1.923274	-1.969435	-2.104845
Η	-0.481924	-2.918439	-1.687024
С	-0.782621	-2.977949	1.011905
Н	-0.752968	-2.595721	2.036602
Н	-1.365465	-3.905622	1.011131
Н	0.240204	-3.214099	0.701123
С	-7.125545	1.097246	0.155969
Н	-6.951404	1.498138	1.164245
Н	-7.720648	0.182637	0.286261
С	-7.915421	2.110715	-0.670419
Н	-8.126780	1.718632	-1.672090
Н	-8.872111	2.356538	-0.197535
Н	-7.350579	3.042604	-0.790343
С	5.337681	1.166282	0.829345
Н	5.505808	0.150586	1.197055
Н	6.207193	1.477609	0.240335
Н	5.246723	1.835171	1.691039
С	3.932338	2.732755	-0.496777
Н	3.133452	2.866988	-1.229530
Н	3.733485	3.371595	0.371085
Н	4.868733	3.066613	-0.955451

27			
C C C H	-2.698237 -2.713590 -3.788621 -3.727329 -2.710628	-0.311327 -1.753474 -2.400693 -3.830418 -4.230100	-0.680135 -0.214073 0.256585 0.704719 0.654660
H	-4.382413	-4.456758	0.085610
H	-4.089913	-3.925010	1.736831
C	-5.129754	-1.726769	0.343623
C	-5.179592	-0.426239	-0.455759
C	-3.960858	0.480521	-0.205865
C	-3.901806	0.872985	1 275532
H H	-3.815291 -4.821613	0.008813	1.940086
H	-3.054805	1.538575	1.472035
C	-4.113988	1.758565	-1.035761
H	-3.255150	2.424110	-0.897673
H	-5.016954	2.299021	-0.727716
H	-4.196736	1.527960	-2.103400
H	-6.097091	0.127886	-0.218002
H	-5.218534		-1.527867
H	-5.380425	-1.553439	1.401373
H	-5.897105	-2.422924	-0.023087
H H C	-1.774038 -2.765269 -1.374258	-2.300394 -0.338329	-0.316968 -1.777343
C C C	-0.698573 0.503471	0.215063	0.860801
C	1.107517	1.683757	0.177324
C	0.476988	1.823310	
C	-0.731690	1.171499	-1.315841
O	-1.331718	1.298014	-2.542878
H	-0.785289	1.864818	-3.103253
H	0.911841	2.432339	-1.843963
C	2.427887	2.384179	0.507971
C	2.971758	3.198302	-0.673079

 Table S112. Coordinates for global minimum of 3be.

Η	3.933666	3.640899	-0.392109
Н	2.292143	4.015342	-0.939201
Н	3.132078	2.584675	-1.564467
С	3.484210	1.339341	0.946480
С	3.802098	0.250019	-0.076153
С	4.784801	-0.787772	0.465719
С	5.123025	-1.880611	-0.547242
С	6.104925	-2.920542	-0.009202
С	6.434624	-4.006632	-1.031882
Н	6.884150	-3.572300	-1.932486
Н	7.138507	-4.741164	-0.626349
Н	5.528818	-4.542878	-1.338154
Н	7.029435	-2.415751	0.304234
Н	5.683374	-3.380936	0.895249
Н	4.196707	-2.384716	-0.860662
Н	5.543894	-1.419606	-1.453198
Н	5.711349	-0.284330	0.779726
Н	4.362740	-1.249159	1.370820
Н	4.222266	0.696963	-0.987151
Н	2.871387	-0.253102	-0.374890
Н	3.145188	0.864098	1.876571
Н	4.406604	1.882852	1.198707
С	2.193495	3.355535	1.682146
Н	3.125693	3.877994	1.928002
Н	1.437959	4.103919	1.417863
Η	1.852534	2.826567	2.577727
Н	0.955918	0.700864	2.104901
0	-1.178553	-0.576976	1.867550
Н	-1.933657	-1.098483	1.535143

 Table S113. Coordinates for global minimum of 6be[‡].



С	-2.362542	-0.102600	-1.006978
С	-2.734888	-1.441251	-1.346901
С	-3.797548	-2.073671	-0.786683
С	-4.192339	-3.445877	-1.210020
Н	-3.572871	-3.821667	-2.027342
н	-4.109280	-4.131394	-0.355820
н	-5 246271	-3 464289	-1 515448
C	-1 667371	-1 /06912	0 228882
C	-1 072300	-0 120746	0.220002
	2 251020	0.129740	1 600556
п 11	-3.331029	-0.307734	1.0000000
н	-4.859198	0.464539	1.295945
C	-3.362511	0./333/5	-0.234640
H	-5.631122	-1.200453	-0.264491
Н	-4.90///4	-2.126189	1.022839
Н	-2.140451	-1.964113	-2.094153
Η	-1.836518	0.455203	-1.777080
С	0.085238	0.947643	2.205084
С	-0.595675	-0.264161	2.325652
С	-0.809381	-1.001453	1.176686
С	-0.456242	-0.494538	-0.115978
С	0.352002	0.691167	-0.186115
С	0.564402	1.414383	0.965238
Η	1.140239	2.335991	0.951556
Η	-0.289494	-1.247490	-0.877280
0	-1.352045	-2.228533	1.186416
Η	-1.603743	-2.484128	2.087833
Н	-0.902323	-0.624985	3.303212
0	0.281616	1.641190	3.338407
Н	0.773060	2.456769	3.157203
С	1.019895	1.126771	-1.492235
С	2.541195	1.317621	-1.240115
Н	2.988423	1.616284	-2.198457
Н	2.688523	2.164570	-0.557585
С	3.283839	0.100235	-0.690876
н	3.186782	-0.748057	-1.380914
н	2 827533	-0 214061	0 258684
C	4 768655	0 384783	-0 462496
н	5 231101	0 689077	-1 412961
и п	A 874716	1 240007	1.412001 0.221157
n C	5 525223	_0 81/303	0.221137
	5 407026	-0.014303	0.107140
п	5.407020	-1.0/4304	-0.566524
н	5.070324	-1.108995	1.004517
C	0.438064	2.484006	-1.939846
H	0.96/546	2.8266/9	-2.835621
H	-0.625894	2.402/66	-2.186363
H	0.553064	3.243830	-1.160527
С	0.834889	0.116771	-2.634574

Η	1.224605	-0.874342	-2.386206
Н	-0.211929	0.007799	-2.935257
Н	1.384015	0.478302	-3.509943
С	7.014282	-0.542522	0.319138
Н	7.468307	-0.255831	-0.639606
Н	7.131963	0.322062	0.987209
С	7.756525	-1.745206	0.899532
Н	8.821274	-1.530970	1.039614
Н	7.673046	-2.613548	0.235641
Н	7.339834	-2.029022	1.872973
С	-4.366098	1.210440	-1.318984
Н	-4.835778	0.377605	-1.848450
Н	-5.146761	1.803817	-0.830081
Н	-3.861594	1.846277	-2.054149
С	-2.763810	1.979479	0.416897
Н	-2.158400	2.549285	-0.294955
Н	-3.575558	2.624659	0.769321
Н	-2.144011	1.722806	1.276290

Table S114. Coordinates for global minimum of 6be.



С	2.612497	1.862788	-2.243899
Н	2.400595	1.126739	-3.026937
Н	3.588390	2.312164	-2.463220
Н	1.852137	2.648929	-2.309661
Н	4.148046	2.570114	-0.172625
Н	2.526157	4.049463	1.183641
Н	2.372795	4.147873	-0.554628
Н	-0.745851	1.695918	0.133532
H	0.711097	0.560332	-1.501996
C	0.964945	-0.524860	0.280339
C	1 275962	-0 511844	1 655559
C	1 309857	-1 661994	2 440119
C	0 979665	-2 867381	1 848169
C	0 546638	-2 903633	0 525917
C	0.540050	-1 754294	-0 269876
C	-0 1/398/	-1 89318/	-1 67/753
C	0 881513	-1 686769	-2 807362
ц	0.001010	-1 855922	-3 775/33
и П	1 704014	-2 404010	-2 709529
п u	1 300/00	-2.404010	-2.709529
п С	-0 722258	-3 305204	-2.025470
U U	-0.722230 -1.205500	-3.303204	-2 999440
п	-1.203399	-3.320922	-2.000440
п	-1.4/1000	-3.303430	-1.1J9440
п С	1 207502	-4.070361	-1.914555
C	-1.327523	-0.89/341	-1.848432
C	-2.353736	-0.070000	-0.715250
C	-3.439300	0.1/336/	-0.939011
C	-4.436047	0.262428	0.215373
C	-5.508197	1.330692	0.005343
С	-6.491/6/	1.418409	
H	-7.009232	0.463270	1.3188/4
H	-5.9/0860	1.661/06	2.104581
H	-7.251382	2.188595	0.999946
Н	-5.021122	2.304981	-0.141254
Н	-6.054936	1.116561	-0.923679
Н	-4.919808	-0.715300	0.358064
Η	-3.890543	0.474892	1.14/158
Η	-2.963518	1.155933	-1.080695
Η	-3.978693	-0.044792	-1.872728
Η	-1.841839	-0.670272	0.234393
Η	-2.822771	-1.865820	-0.605435
Η	-1.832205	-1.157958	-2.790046
Н	-0.960332	0.124869	-1.991068
Η	0.225539	-3.863945	0.147337
0	1.009070	-4.055340	2.529158
Η	1.312432	-3.898607	3.433347
Н	1.577413	-1.588203	3.491139

0	1.577431	0.642472	2.326161
Η	1.247761	1.398852	1.801901

Table S115. Coordinates for global minimum of 3b[‡].



С	-2.233144	-1.232796	0.457264
С	-2.635368	-1.947490	-0.703288
С	-1.726934	-2.416477	-1.604063
С	-2.134361	-3.104247	-2.853826
Н	-1.766193	-4.139122	-2.844523
Н	-3.217033	-3.105646	-2.997143
Н	-1.651934	-2.622749	-3.714903
С	-0.265248	-2.255887	-1.328398
С	0.015754	-2.305733	0.172690
Н	1.083013	-2.151797	0.358531
Н	-0.245676	-3.304898	0.541570
С	-0.797619	-1.238596	0.917523
Н	-0.353271	-0.267790	0.646643
Н	0.303935	-3.022972	-1.865549
Н	0.059111	-1.285208	-1.742183
Н	-3.698998	-2.053694	-0.904428
Н	-2.984151	-1.120177	1.237578
С	-1.936232	1.016913	-1.220356
С	-2.757881	0.790016	-0.081053
С	-2.394042	1.457515	1.118804
С	-1.184802	2.122717	1.229946
С	-0.338168	2.241377	0.115372
С	-0.730352	1.685060	-1.112322
Н	-0.109283	1.799311	-1.995724
Н	-0.917934	2.567056	2.182887
0	-3.273630	1.340370	2.132851
Н	-2.923070	1.762404	2.931770
Н	-3.797447	0.516905	-0.233003
0	-2.393988	0.494734	-2.370847
Н	-1.755843	0.642083	-3.086113
С	0.955467	3.046429	0.192260

С	2.094002	2.386927	-0.623552
Н	1.848377	2.418085	-1.693004
Н	2.978244	3.028082	-0.504832
С	2.453797	0.954481	-0.235917
Н	1.580346	0.303190	-0.380814
Н	2.708473	0.900434	0.830901
С	3.618634	0.403149	-1.058330
Н	3.393969	0.518281	-2.129103
Н	4.518802	1.004430	-0.864404
С	3.911780	-1.066315	-0.761598
Н	4.087548	-1.194696	0.317130
Н	3.020969	-1.666422	-1.001951
С	0.655196	4.427091	-0.436126
Н	0.356244	4.327198	-1.484693
Н	-0.147611	4.936496	0.107509
Н	1.555192	5.050897	-0.390166
С	1.422823	3.265036	1.638653
Н	2.399786	3.758701	1.626044
Н	0.736544	3.914075	2.191423
Н	1.524240	2.323761	2.187981
С	5.107864	-1.616079	-1.537704
Н	6.001769	-1.028365	-1.287192
Н	4.935722	-1.473147	-2.613659
С	5.366131	-3.094002	-1.250013
Н	5.568577	-3.255381	-0.184793
Н	4.494434	-3.702297	-1.518876
Н	6.225254	-3.469878	-1.815510
С	-0.716668	-1.335001	2.460767
Н	-1.355274	-0.527669	2.849166
С	0.706313	-1.081237	2.958156
С	-1.257884	-2.660458	3.004698
Н	-2.258509	-2.885464	2.617536
Н	-0.599475	-3.496650	2.746102
Η	-1.323510	-2.619017	4.096856
Н	1.386893	-1.881102	2.645095
Н	0.725320	-1.041860	4.052486
Н	1.097713	-0.131454	2.575901

	46 69 37
C 2.740348 0.293211 -0.5343 C 3.725059 0.946016 0.4145	27
C 4.622752 0.291057 1.16483	51
C 5.535395 1.000357 2.1202	66
H $6.583979$ $0.856483$ $1.8294$	62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 65
C 4.769017 -1.205195 1.0801	44
C 4.117905 -1.775000 -0.1775	85
H 4.119900 -2.870594 -0.1368	07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 95
C 1.888653 -1.953374 -1.4549	29
C 1.429578 -3.344801 -1.0076	17
н 0.811022 -3.814585 -1.7806	79
H 2.283809 -4.007067 -0.8227	95
H $0.837659 - 3.288411 - 0.0870$ C $2.645161 - 2.044522 - 2.7835$	18 84
H 3.483216 -2.747770 -2.7128	25
Н 1.977481 -2.404461 -3.5742	28
Н 3.040227 -1.073411 -3.0989	89
H $0.984362 - 1.350824 - 1.6225$	28
H $4.710000$ $-1.404310$ $-1.0510$ H $5.837764$ $-1.459099$ $1.1100$	13
H 4.330532 -1.660984 1.9822	85
Н 3.673385 2.034453 0.48052	20
Н 3.086902 0.498873 -1.5557	94
C 1.361435 0.913387 -0.4007	68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92 43
C -1.293580 1.936688 -0.1696	09
C -0.564333 1.569123 0.9631	92
C 0.729964 1.069695 0.8460	35
O         1.349375         0.716103         2.01493           U         2.202550         0.500000         1.04413	36
н 2.303550 0.590986 1.8441 Н -0.985670 1.655124 1.9599	53 19

 Table S116. Coordinates for global minimum of 3b.

С	-2.721641	2.464498	-0.009766
С	-3.390053	2.765378	-1.357190
Η	-3.430042	1.887729	-2.009497
Η	-2.866005	3.565104	-1.892256
Η	-4.418141	3.100464	-1.181247
С	-2.679773	3.775530	0.800209
Η	-2.253052	3.617082	1.795642
Η	-2.073931	4.528531	0.283599
Η	-3.694181	4.173892	0.922416
С	-3.576987	1.436742	0.772992
С	-3.659402	0.039794	0.159948
С	-4.435638	-0.937143	1.043484
С	-4.520513	-2.343907	0.453690
С	-5.287744	-3.324674	1.340264
С	-5.363022	-4.728224	0.741609
Η	-5.913878	-5.414775	1.393239
Η	-5.866860	-4.711592	-0.231786
Η	-4.359441	-5.142103	0.589225
Η	-6.303079	-2.939722	1.509079
Η	-4.807046	-3.369441	2.327380
Η	-3.503753	-2.728527	0.284122
Η	-5.000906	-2.297044	-0.534854
Η	-5.451869	-0.550266	1.210795
Η	-3.957789	-0.986803	2.033132
Η	-4.136862	0.085611	-0.828092
Η	-2.643422	-0.347905	-0.001189
Η	-3.180205	1.350902	1.793537
Η	-4.590195	1.852904	0.872587
Η	-1.199085	2.091280	-2.326965
0	1.220938	1.183776	-2.745708
Н	0.604572	1.479431	-3.428516



**Table S117**. Coordinates for global minimum of **6b**[‡].

		-	
С	-2.212369	-0.065903	-0.972376
С	-2.670124	-1.287863	-1.547969
С	-3.498617	-2.132142	-0.878658
С	-3.939342	-3.430808	-1.448673
Н	-3.714677	-4.240090	-0.740731
Н	-5.030336	-3.435233	-1.574038
Н	-3.463702	-3.648540	-2.407617
С	-4.013819	-1.743697	0.473061
С	-4.162339	-0.226369	0.589435
Н	-4.503602	0.042147	1.593924
Н	-4.930994	0.101402	-0.121260
С	-2.832775	0.481810	0.285134
Н	-2.165241	0.242125	1.128080
Н	-4.967504	-2.248158	0.666459
Н	-3.309267	-2.116255	1.235567
Н	-2.298397	-1.563384	-2.532562
Н	-1.855630	0.672927	-1.681233
С	0.005408	-0.098653	2.181782
С	-0.298426	-1.376812	1.712972
С	-0.319906	-1.570822	0.344646
С	-0.143616	-0.483414	-0.563627
С	0.367819	0.757838	-0.055468
С	0.357308	0.954147	1.306930
Н	0.681950	1.892539	1.744852
Н	0.068568	-0.754129	-1.593916
0	-0.560260	-2.763130	-0.219100
Н	-0.746116	-3.430798	0.459367
Н	-0.494088	-2.186051	2.410609
0	-0.000954	0.072064	3.513170
Н	0.239408	0.983268	3.739267

С	1.033456	1.746007	-1.007235
С	2.372925	1.089459	-1.464878
Η	2.137877	0.251899	-2.136249
Η	2.896621	1.839624	-2.074349
С	3.302424	0.591550	-0.360280
Η	2.814095	-0.215651	0.203404
Η	3.503256	1.394873	0.361686
С	4.630136	0.076237	-0.916478
Н	4.432376	-0.726207	-1.642568
Η	5.129786	0.881862	-1.474028
С	5.568570	-0.444850	0.170574
Η	5.065787	-1.246395	0.731963
Η	5.769116	0.359239	0.894190
С	1.316605	3.098044	-0.339778
Н	2.014385	3.019961	0.498129
Η	1.763203	3.770552	-1.078819
Н	0.391241	3.560397	0.022652
С	0.202143	2.015444	-2.273974
Η	-0.033883	1.099985	-2.826207
Η	-0.727778	2.545716	-2.041513
Η	0.786188	2.654547	-2.944468
С	6.894769	-0.970059	-0.378358
Η	6.693340	-1.775202	-1.098662
Н	7.393996	-0.169607	-0.941934
С	7.825433	-1.483347	0.718994
Н	8.768419	-1.855286	0.304717
Η	7.357274	-2.302406	1.277396
Н	8.063627	-0.687075	1.433838
С	-2.920690	2.023825	0.236031
Н	-1.910314	2.371984	-0.025198
С	-3.261142	2.607225	1.607758
С	-3.886507	2.538521	-0.834206
Н	-4.927254	2.322905	-0.568842
Н	-3.790923	3.624623	-0.935953
Η	-3.688657	2.092534	-1.816154
Η	-4.279556	2.341961	1.913309
Η	-3.198631	3.700266	1.582844
Н	-2.568603	2.243186	2.376335



Table S118. Coordinates for global minimum of 6b.

Η	-1.109429	-3.252578	-2.944723
Н	0.136134	-4.011424	-1.951187
Н	-1.435326	-3.592680	-1.239658
С	0.976474	-1.596186	-2.676046
Н	1.359656	-0.577253	-2.649314
Н	0.581355	-1.775889	-3.683116
Н	1.819172	-2.277361	-2.512481
С	-1.306493	-0.864422	-1.867227
С	-2.462234	-0.964256	-0.871321
С	-3.525365	0.107592	-1.111312
С	-4.666824	0.058395	-0.097019
С	-5.712724	1.151442	-0.312312
С	-6.850363	1.089305	0.705654
Н	-7.586407	1.882364	0.536067
Н	-6.467294	1.199151	1.726998
Н	-7.373511	0.127602	0.648524
Н	-6.121219	1.065417	-1.328922
Η	-5.222356	2.133609	-0.259114
Н	-5.155156	-0.926305	-0.143573
Н	-4.252497	0.149184	0.918360
Н	-3.933190	-0.000640	-2.127310
Н	-3.052609	1.100919	-1.074602
Н	-2.933302	-1.954559	-0.927670
Н	-2.072650	-0.862617	0.151602
Н	-0.946239	0.169159	-1.870189
Н	-1.686000	-1.047698	-2.882969
Н	0.228986	-3.874959	0.131614
0	0.887473	-4.121121	2.548515
Н	1.137057	-3.984822	3.472114
Н	1.252799	-1.668288	3.636045
0	1.187742	0.607823	2.559495
Н	0.839583	1.366619	2.053022

Table S119. Coordinates for global minimum of 3bf[‡].



0.276276

$\sim$	-3.193423	-1.113970	-0.747079
С	-2.722813	-2.107220	-1.560046
С	-3.617383	-2.812973	-2.511400
Н	-3.261747	-2.640010	-3.536606
ц	-3 5601/3	-3 897/2/	-2 352129
11 TT	1 655420	2 101260	2.332123
п	-4.033429	-2.404300	-2.432403
C	-1.310881	-2.5/1661	-1.4/03/6
С	-0.399891	-1.5/6956	-0./60895
Н	-0.203528	-0.750347	-1.453830
Η	0.569685	-2.033092	-0.552218
С	-0.998743	-0.961890	0.514220
Н	-0.409453	-0.059908	0.738592
Н	-1.320922	-3.555724	-0.976296
Н	-0.938262	-2.774443	-2.483376
Н	-4.238210	-0.819891	-0.817893
Н	-2.953423	-0.137576	1.123610
С	-1.501584	1.641629	-1.412247
C	-2.414076	1.674545	-0.333634
C	-1 960235	2 210246	0 891459
C	-0 631718	2 559952	1 074719
C	0.031710	2.555552	0 006968
C	-0 174463	2 004089	-1 237056
	-0.1/4403	2.004009	-1.237930
п	0.500725	1.94/931	-2.0064//
H	-0.31688/	2.925251	2.046214
0	-2.889479	2.300330	1.868982
H	-2.480290	2.613963	2.689062
Η	-3.479137	1.597239	-0.523902
0	-2.003571	1.209608	-2.587898
Н	-1.306001	1.182016	-3.260106
С	1.714798	2.960872	0.151731
С	2.720963	2.007573	-0.535101
Н	2.495957	1.944476	-1.607462
Н	3.708967	2.483766	-0.466499
С	2.803101	0.596573	0.042728
Н	1.800359	0.147622	0.068929
Н	3.154973	0.634020	1.082118
C	3 732768	-0 305536	-0 769404
ч	3 358258	-0 372899	-1 801797
и П	1 727659	0.150703	
п	4./2/0J0 2.0C0115	1 711406	-0.031414
	3.868115	-1./11406	-0.188034
H	4.242169	-1.645/24	0.844518
Н	2.8/3044	-2.1/5443	-0.123490
С	1.786941	4.3301/3	-0.562366
Н	2.794571	4.747130	-0.453206
Н	1.566918	4.231395	-1.630383
Η	1.071305	5.034472	-0.124698
С	2.119828	3.158513	1.619171

Η	1.955959	2.256563	2.217246
Н	3.185090	3.407366	1.665754
Н	1.568777	3.983612	2.081689
С	4.789612	-2.617786	-1.002968
Н	5.789029	-2.164090	-1.055349
Н	4.420173	-2.671013	-2.036629
С	4.892920	-4.026313	-0.420726
Н	3.908691	-4.508540	-0.388884
Η	5.558428	-4.660338	-1.015901
Н	5.282629	-3.998399	0.603489
С	-0.911508	-1.796521	1.859439
С	-1.986087	-2.888189	1.958427
С	-1.073230	-0.823639	3.039052
Η	-0.282644	-0.063996	3.025793
Η	-2.041722	-0.311982	3.031385
Н	-1.002276	-1.373276	3.983945
Н	-1.849804	-3.446233	2.891565
Η	-1.922117	-3.604277	1.133691
Η	-2.997222	-2.466962	1.969869
С	0.475659	-2.441012	1.962689
Н	0.598110	-2.869939	2.963570
Н	0.608845	-3.250107	1.237282
Η	1.270876	-1.702176	1.809523

Table S120. Coordinates for global minimum of 3bf.



С	-2.633750	-1.355607	-0.239677
Н	-2.316279	-1.080548	-1.257578
С	-1.700909	-2.537355	0.183558
С	-1.761932	-3.631762	-0.900481
н	-1 496945	-3 220784	-1 882472
н	-1 045169	-4 426054	-0 663437
и Ц	-2 7/8505	-1 096870	-0 978/10
$\hat{C}$	2.740000	4.090070	1 527061
	-2.12112/	-3.149293	1.02/001
н	-3.124080	-3.386234	1.480921
H	-1.423079	-3.94/859	1.805587
Н	-2.107475	-2.405458	2.332497
С	-0.229250	-2.102488	0.283592
Η	0.090447	-1.552861	-0.609953
Η	0.405537	-2.991369	0.382304
Η	-0.048410	-1.471066	1.154784
Η	-6.024194	-1.005095	-0.974522
Η	-4.715771	-0.691774	-2.100746
Н	-3.627603	1.858691	0.838823
Н	-2.621034	-0.379192	1.693819
С	-1.282865	0.739325	0.485840
С	-0.388711	0.933052	1.547956
C	0.818195	1.605207	1.388518
C	1 180619	2 136027	0 145124
C	0 273668	2 023832	-0 90/002
C	-0 9/23/8	1 360061	-0 722500
0	-1 776091	1 325573	_1 200530
0	-1.770904	1 1014E0	-1.009550
н	-2.6/9424	1.121459	-1.501239
H	0.4/5251	2.444066	-1.882612
С	2.546491	2.805536	-0.015452
С	2.632807	4.018100	0.931894
Η	1.851372	4.748440	0.693516
Η	2.515557	3.721189	1.978839
Η	3.607225	4.509630	0.825015
С	2.786774	3.308391	-1.444543
Η	3.787881	3.748964	-1.506532
Н	2.725483	2.505753	-2.185471
Н	2.061963	4.082364	-1.719599
С	3.659663	1.799203	0.373696
С	3.657157	0.481808	-0.400031
С	4.697981	-0.506630	0.125581
C	4.689895	-1.838441	-0.622833
C	5 715490	-2 837991	-0 089078
C	5 693081	-4 167151	-0 8/1010
U U	C 131030	-1 867070	-0  1  1  2  1  1  1  1  1  1  1
11 TT	0.434230 1 707600	4.00/9/0 1 6/10/7	$\begin{array}{c} 0 & 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$
п тт	4./U/00U	-4.04194/ 1 017707	
н	2.91U308	-4.U1//U/	-1.903996
Н	5.523907	-3.015043	0.9/84/8

Η	6.718702	-2.393862	-0.152949
Н	3.684835	-2.282833	-0.560461
Н	4.880843	-1.658254	-1.691153
Н	4.512769	-0.690636	1.194364
Η	5.699474	-0.056014	0.058671
Н	2.660883	0.021223	-0.332330
Н	3.843614	0.667009	-1.466473
Η	4.628520	2.302560	0.239932
Η	3.575002	1.577619	1.446315
Н	1.485554	1.688729	2.242802
0	-0.732797	0.387795	2.760194
Н	-0.022244	0.556905	3.393043

 Table S121. Coordinates for global minimum of 6bf[‡].



С	2.046697	0.119682	-0.766920
С	2.449484	1.249141	-1.531096
С	3.469368	2.065452	-1.147513
С	3.989625	3.129889	-2.047013
Н	3.860416	4.110146	-1.568734
Н	5.069776	3.005083	-2.197203
Н	3.487581	3.137087	-3.016862
С	4.162207	1.874418	0.159966
С	3.352813	1.034894	1.140862
Н	2.534787	1.658592	1.516429
Н	3.957362	0.774860	2.012181
С	2.720277	-0.221347	0.520106
Н	1.952477	-0.575195	1.225421
Н	5.149353	1.432763	-0.047291
Н	4.381272	2.858975	0.594512
Н	1.988276	1.396396	-2.505637
Н	1.669939	-0.714830	-1.345062

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.333555	-0.191952	2.242115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.009280	1.132260	1.954899
C-0.1104840.552941-0.416870C-0.627014-0.740822-0.098096C-0.653704-1.1202631.225564H-0.984516-2.1099621.523433H-0.2461470.947994-1.418241O0.3685922.7530390.226822H0.5413423.3208910.993412H0.1730621.8394332.758901O-0.373162-0.5366673.541393H-0.623197-1.4679183.637075C-1.246851-1.595981-1.198502C-2.590165-0.909308-1.597011H-2.3622240.009439-2.155295H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-	С	0.072532	1.502664	0.623035
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-0.110484	0.552941	-0.416870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.627014	-0.740822	-0.098096
H       -0.984516       -2.109962       1.523433         H       -0.246147       0.947994       -1.418241         O       0.368592       2.753039       0.226822         H       0.541342       3.320891       0.993412         H       0.173062       1.839433       2.758901         O       -0.373162       -0.536667       3.541393         H       -0.623197       -1.467918       3.637075         C       -1.246851       -1.595981       -1.198502         C       -2.590165       -0.909308       -1.597011         H       -2.362224       0.009439       -2.155295         H       -3.089902       -1.587572       -2.303219         C       -3.545531       -0.568844       -0.454753         H       -3.088622       0.187627       0.198289         H       -4.711866       0.827780       -1.615441         H       -5.365296       -0.807299       -1.593173         C       -5.837596       0.355018       0.163595         H       -6.009930       -0.513470       0.816607         C       -1.514863       -3.034225       -0.736469         H       -2.242718	C	-0.653704	-1.120263	1.225564
H-0.2461470.947994-1.41824100.3685922.7530390.226822H0.5413423.3208910.993412H0.1730621.8394332.758901O-0.373162-0.5366673.541393H-0.623197-1.4679183.637075C-1.246851-1.595981-1.198502C-2.590165-0.909308-1.597011H-2.3622240.009439-2.155295H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.619142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-9	н	-0 984516	-2 109962	1 523433
11       0.368592       2.753039       0.226822         H       0.541342       3.320891       0.993412         H       0.173062       1.839433       2.758901         O       -0.373162       -0.536667       3.541393         H       -0.623197       -1.467918       3.637075         C       -1.246851       -1.595981       -1.198502         C       -2.590165       -0.909308       -1.597011         H       -2.362224       0.009439       -2.155295         H       -3.089902       -1.587572       -2.303219         C       -3.545531       -0.568844       -0.454753         H       -3.088622       0.187627       0.198289         H       -3.720508       -1.453755       0.172315         C       -4.886870       -0.041943       -0.964887         H       -5.356965       1.121394       0.789589         H       -5.356965       1.121394       0.789589         H       -0.589174       -3.519142       -0.406151         H       -2.242718       -3.089006       0.077661         H       -1.916659       -3.608624       -1.577160         C       -0.377546	и Ц	-0.246147	0 9/799/	-1 /182/1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\cap$	0.240147	2 753030	0 226822
H       0.173062       1.839433       2.758901         O       -0.373162       -0.536667       3.541393         H       -0.623197       -1.467918       3.637075         C       -1.246851       -1.595981       -1.198502         C       -2.590165       -0.909308       -1.55295         H       -3.682224       0.009439       -2.155295         H       -3.089902       -1.587572       -2.303219         C       -3.545531       -0.568844       -0.454753         H       -3.088622       0.187627       0.198289         H       -3.720508       -1.453755       0.172315         C       -4.886870       -0.041943       -0.964887         H       -4.711866       0.827780       -1.615441         H       -5.365296       -0.807299       -1.593173         C       -5.837596       0.355018       0.163595         H       -6.009930       -0.513470       0.816607         C       -1.514863       -3.034225       -0.736469         H       -0.589174       -3.519142       -0.406151         H       -2.242718       -3.608624       -1.577160         C       -0.377546		0.500592	2.755059	0.220022
H0.1/30621.8394332./389010-0.373162-0.5366673.541393H-0.623197-1.4679183.637075C-1.246851-1.595981-1.198502C-2.590165-0.909308-1.597011H-2.3622240.009439-2.155295H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-5.3569651.1213940.789589H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H	п 	0.172062	1 020422	0.995412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	0.173062	1.839433	2.758901
H-0.623197-1.4679183.637075C-1.246851-1.595981-1.198502C-2.590165-0.909308-1.597011H-2.3622240.009439-2.155295H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-5.3569651.1213940.789589H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C <t< td=""><td>0</td><td>-0.3/3162</td><td>-0.536667</td><td>3.541393</td></t<>	0	-0.3/3162	-0.536667	3.541393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-0.623197	-1.46/918	3.63/0/5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.246851	-1.595981	-1.198502
H-2.3622240.009439-2.155295H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-5.3569651.1213940.789589H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.991608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.0	С	-2.590165	-0.909308	-1.597011
H-3.089902-1.587572-2.303219C-3.545531-0.568844-0.454753H-3.0886220.1876270.198289H-3.720508-1.4537550.172315C-4.886870-0.041943-0.964887H-4.7118660.827780-1.615441H-5.365296-0.807299-1.593173C-5.8375960.3550180.163595H-5.3569651.1213940.789589H-6.009930-0.5134700.816607C-1.514863-3.034225-0.736469H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.9951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3	Η	-2.362224	0.009439	-2.155295
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	-3.089902	-1.587572	-2.303219
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-3.545531	-0.568844	-0.454753
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Η	-3.088622	0.187627	0.198289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	-3.720508	-1.453755	0.172315
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-4.886870	-0.041943	-0.964887
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Η	-4.711866	0.827780	-1.615441
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-5.365296	-0.807299	-1.593173
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-5.837596	0.355018	0.163595
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-5.356965	1.121394	0.789589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-6.009930	-0.513470	0.816607
H-0.589174-3.519142-0.406151H-2.242718-3.0890060.077661H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	С	-1.514863	-3.034225	-0.736469
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	-0.589174	-3.519142	-0.406151
H-1.916659-3.608624-1.577160C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.326307C3.650118-1.4904350.326307C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	Н	-2.242718	-3.089006	0.077661
C-0.377546-1.668530-2.467126H0.528450-2.261173-2.301910H-0.951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.326307C3.650118-1.4904350.326307C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	н	-1.916659	-3.608624	-1.577160
H0.528450-2.261173-2.301910H-0.951608-2.166646-3.255564H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.326307C3.650118-1.4904350.326307C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	C	-0 377546	-1 668530	-2 467126
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	н	0 528450	-2 261173	-2 301910
H-0.094461-0.681643-2.846878C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.326307C3.650118-1.4904350.326307C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	н Ц	-0 951608	-2 1666/6	-3 255564
In0.00944010.0010432.040070C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H3.371779-3.6326420.123923	и П	-0 091161	-0 681643	-2 8/6878
C-7.1814060.883380-0.336989H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H3.371779-3.6326420.123923		7 101400	0.001045	2.040070
H-7.0074581.747623-0.993147H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H3.371779-3.6326420.123923		-7.101400	0.003300	-0.336969
H-7.6622350.115488-0.958795C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	H	-7.007458	1./4/623	-0.993147
C-8.1183551.2840210.801403H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	H	-7.662235	0.115488	-0.958/95
H-7.6680842.0696751.419235H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	С	-8.118355	1.284021	0.801403
H-8.3304680.4284071.453114H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	Η	-7.668084	2.069675	1.419235
H-9.0736281.6613740.421587C3.650118-1.4904350.326307C4.502763-1.424270-0.949247C2.755173-2.7378300.263323H2.183930-2.8554381.191570H2.041980-2.698855-0.566612H3.371779-3.6326420.123923	Η	-8.330468	0.428407	1.453114
C 3.650118 -1.490435 0.326307 C 4.502763 -1.424270 -0.949247 C 2.755173 -2.737830 0.263323 H 2.183930 -2.855438 1.191570 H 2.041980 -2.698855 -0.566612 H 3.371779 -3.632642 0.123923	Η	-9.073628	1.661374	0.421587
C 4.502763 -1.424270 -0.949247 C 2.755173 -2.737830 0.263323 H 2.183930 -2.855438 1.191570 H 2.041980 -2.698855 -0.566612 H 3.371779 -3.632642 0.123923	С	3.650118	-1.490435	0.326307
C 2.755173 -2.737830 0.263323 H 2.183930 -2.855438 1.191570 H 2.041980 -2.698855 -0.566612 H 3.371779 -3.632642 0.123923	С	4.502763	-1.424270	-0.949247
H 2.183930 -2.855438 1.191570 H 2.041980 -2.698855 -0.566612 H 3.371779 -3.632642 0.123923	С	2.755173	-2.737830	0.263323
H 2.041980 -2.698855 -0.566612 H 3.371779 -3.632642 0.123923	Η	2.183930	-2.855438	1.191570
Н 3.371779 -3.632642 0.123923	Н	2.041980	-2.698855	-0.566612
	Н	3.371779	-3.632642	0.123923

Н	5.148890	-0.541546	-0.968283
Н	3.885577	-1.417156	-1.854315
Н	5.148849	-2.308137	-0.997608
С	4.577245	-1.632706	1.539970
Н	4.013323	-1.603827	2.479754
Н	5.094870	-2.596800	1.484564
Н	5.339290	-0.847432	1.566018

 Table S122. Coordinates for global minimum of 6bf.



С	0.897045	0.784489	-0.261174
С	-0.233146	1.689299	0.214008
С	-0.126722	2.976701	0.568708
С	1.173914	3.709409	0.407236
С	2.136151	2.938350	-0.489045
Н	1.753351	2.961294	-1.518862
Н	3.106362	3.443495	-0.499687
С	2.287980	1.473212	-0.041186
Н	2.494493	1.483933	1.036754
С	3.546085	0.806444	-0.686373
С	3.627558	1.060909	-2.199473
Н	2.710974	0.764633	-2.718342
Н	3.810208	2.117143	-2.421826
Н	4.453510	0.482580	-2.629695
С	3.605279	-0.704847	-0.423990
Н	4.568789	-1.095958	-0.772978
Н	3.515414	-0.924656	0.646242
Н	2.812575	-1.247860	-0.940326
С	4.802108	1.411923	-0.027719
Н	5.702749	0.964465	-0.463967
Н	4.811550	1.206564	1.049505
Н	4.872151	2.494698	-0.169712
Н	0.973493	4.705983	-0.011294
Н	1.621986	3.887870	1.398159
С	-1.286251	3.751334	1.120766
Н	-2.175441	3.124233	1.235325

Η	-1.533576	4.595145	0.463768
Н	-1.032558	4.180602	2.099042
Н	-1.199437	1.199093	0.328701
Н	0.791157	0.647620	-1.340283
С	0.697503	-0.576308	0.416541
С	0.892622	-0.634076	1.811601
С	0.938389	-1.829145	2.524638
С	0.714315	-3.007363	1.834781
С	0.349217	-2.973428	0.491894
С	0.293656	-1.777840	-0.231492
С	-0.277473	-1.849786	-1.673234
С	-0.861387	-3.242039	-1.990959
H	-1.616291	-3.561553	-1.267637
H	-1.336707	-3.198681	-2.976787
Н	-0.081161	-4.008737	-2.037756
С	0.802154	-1.608832	-2.745953
H	1.622686	-2.326357	-2.637277
Н	0.361629	-1.745426	-3.740695
Н	1.222133	-0.603721	-2.710045
С	-1.425359	-0.822964	-1.868969
С	-2.590485	-0.928737	-0.884878
С	-3.625617	0.175996	-1.097928
С	-4.766405	0.135000	-0.082718
С	-5.786906	1.255480	-0.277983
С	-6.926928	1.200213	0.737696
H	-7.644180	2.013169	0.582574
Н	-6.542799	1.281535	1.761275
H	-7.471869	0.252065	0.661376
Н	-6.196065	1.197850	-1.296304
H	-5.273992	2.224981	-0.205874
Н	-4.348751	0.199101	0.933364
Н	-5.277174	-0.837340	-0.145585
Н	-4.037300	0.099266	-2.115160
Н	-3.128609	1.156586	-1.042152
Н	-3.085460	-1.903976	-0.981235
Н	-2.208834	-0.876628	0.144957
Н	-1.033139	0.198416	-1.833934
Н	-1.806599	-0.958336	-2.891647
Н	0.089463	-3.918668	0.035179
0	0.771725	-4.236920	2.436089
Н	1.028334	-4.127992	3.361325
Н	1.126156	-1.812614	3.595147
0	1.063146	0.493763	2,575163
H	0.697192	1.256683	2.090889



Figure S1. Relevant Löwdin partial charges for 7-7b.
# **References:**

- S1. Hamon, D. P.G.; Kellie L Tuck, K. L. Asymmetric Synthesis of (S)-1-Methyl-2cyclohexen-1-ol, a Constituent of the Aggregation Pheromone of Dendroctonus pseudotsugae. *Tetrahedron*. **2000**, *56*, 4829-4835.
- S2. Kolb, A.; Zuo, W.; Siewert, J.; Harms, K.; von Zezschwitz, P. Improved Synthesis of Cyclic Tertiary Allylic Alcohols by Asymmetric 1,2-Addition of AlMe3 to Enones. *Chem. Eur. J.* **2013**, *19*, 16366-16373.
- S3. Huang, L.; Ranganayakulu, K.; Sorensen, T. S.; Cycloallyl-bicycloalkyl cation interconversions. *J. Am. Chem. Soc.* **1973**, *95*, 1936-1944.
- S4. Zhang, P.; Wang, Y.; Bao R.;, Luo, T.; Yang, Z.; Tang, Y. Enantioselective Biomimetic Total Syntheses of Katsumadain and Katsumadain C. *Organic Letters*. **2012**, *14*, 162-165.
- S5. Binder, C. M.; Bautista, A.; Zaidlewicz, M.; Krzemiński, M. P.; Oliver, A.; Singaram,
  B. Dual Stereoselectivity in the Dialkylzinc Reaction Using (-)-β-Pinene Derived
  Amino Alcohol Chiral Auxiliaries. *J. Org. Chem.* 2009, 74, 2337-2343.
- S6. Dauben, W. G.; Michno D. M. Direct oxidation of tertiary allylic alcohols. A simple and effective method for alkylative carbonyl transposition. *J. Org.* Chem. **1977**, *42*, 682-685.
- S7. E. A. Mash, T. M. Gregg, M. A. Kaczynski. Diastereoselective manipulations of bicyclo[*m*.1.0.]alkane derivatives. 2. Nucleophilic additions to the carbonyl carbons of bicyclo[*m*.1.0]alkan-2-ones. *J. Org. Chem.* **1996**, *61*, 2743–2752.
- S8. Chiu, I-C.; Kohn, H. Syntheses and Reactivity of trans -6-Azabicyclo[3.1.0]hexan-2-ol Derivatives and Indano[I,2-h]aziridine. Structural Analogues of Mitomycin C. *J. Org. Chem.* **1983**, *48*, 2857–2866.
- S9. Wu, Z.; Madduri, A.V.R.; Harutyunyan, S.R.; Minnaard, A.J. Catalytic Asymmetric Synthesis of Dihydrofurans and Cyclopentenols with Tertiary Stereocenters. *Eur. J. Org. Chem.* **2014**, *2014*, 575-582.
- S10. Hua, D. H.; Venkataraman, S.; Chan, R. Y. C.; Paukstelis, J. V. Enantioselective total synthesis of (+)-12,13-epoxytrichothec-9-ene and its antipode. *J. Am. Chem. Soc.* **1988**, *110*, 4741-4748.
- S11. Mori, K. Synthesis of (1S,4R)-4-isopropyl-1-methyl-2-cyclohexen-1-ol, the aggregation pheromone of the ambrosia beetle Platypus quercivorus, its racemate, (1R,4R)- and (1S,4S)-isomers. *Tetrahedron: Asymmetry.* **2006**, *17*, 2133-2142.

- S12. Pracht, P.; Bohle, F.; Grimme, S., Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys. Chem. Chem. Phys.* **2020**, *22*, 7169-7192.
- S13. Neese, F., The ORCA program system. *Wiley Interdisciplinary Reviews: Comput. Mol. Sci.* **2012**, *2*, 73-78.
- S14. Neese, F., Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
- S15. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C., The ORCA quantum chemistry program package. *J. Chem. Phys.* **2020**, *152*, 224108.
- S16. Neese, F., Software update: The ORCA program system—Version 5.0. *WIREs Comput. Mol. Sci.* **2022**, *12*, e1606.
- S17. Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M., r2SCAN-3c: A "Swiss army knife" composite electronic-structure method. *J. Chem. Phys.* **2021**, *154*, 064103.
- S18. Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D. G.; Minenkov, Y.; Cavallo, L.; Neese, F., Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. *J. Chem. Phys.* **2018**, *148*, 011101.
- S19. Liakos, D. G.; Guo, Y.; Neese, F., Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A. 2020, 124, 90-100.
- S20. Neese, F.; Hansen, A.; Liakos, D. G., Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. *J. Chem. Phys.* **2009**, *131*, 064103.
- S21. Baek, S.-H. Spectroscopic Methods for Distinguishing Primary and Secondary Alkylation Products. *Bull. Korean Chem. Soc.* **1993**, *14*, 144-146.

¹H and ¹³C NMR Spectra of Reported Compounds:



# Synthesis of (±)-3 from olivetol and (±)-10:











Synthesis of (±)-12 from olivetol and (±)-10:



## Synthesis of (±)-13 from divarinol and (±)-10c:





# Synthesis of (±)-3ac from orcinol and (±)-10c:











S195



### Synthesis of (±)-6ae from orcinol and (±)-10e:





# Synthesis of (±)-6a from orcinol and (±)-10:











Synthesis of (±)-21a from orcinol and (±)-20:





## Synthesis of (±)-3c from olivetol and (±)-10c:







### Synthesis of (±)-6d from olivetol and (±)-10d:



### Synthesis of (±)-3e from olivetol and (±)-10e:



### Synthesis of (±)-6e from olivetol and (±)-10e:



# 2D NOESY NMR analysis of (±)-6e







### Synthesis of (±)-19 from olivetol and (±)-17:





Synthesis of (±)-22 from olivetol and (±)-20:



Synthesis of (±)-21 from olivetol and (±)-20:



Synthesis of (±)-3bc from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10c:


Synthesis of (±)-3bd from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10d:



Synthesis of (±)-3be from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10e:



Synthesis of (±)-3b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10:



## Synthesis of (±)-3bf from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-10f:



## Synthesis of (±)-19b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-17:



Synthesis of (±)-22b from 5-(1,1-Dimethyl-heptyl)resorcinol and (±)-20: