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Robustness of Results across Parcellation Resolutions 18 

We replicated all primary analyses across a wide range of resolutions of the Schaefer cortical 19 

parcellation. When correlating edge-length-regressed residuals with FC across the 200-, 400- and 20 

600-node Schaefer atlas (Figure S1A), the negative correlation with R1 and positive correlation21 

with NoS, SIFT2 and COMMIT are all robust. Correlation magnitude tends to increase with 22 
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parcellation granularity. This trend is reversed in the very-high resolution Schaefer-900 (Figure 23 

S1B). 24 

 25 

 26 

Figure S1. Residual Edge Weight Correlations with FC across Parcellation Resolution. (A) Violin 27 

distributions of edgewise Spearman’s rank correlations of residual edge weights in all networks with 28 

residual edge weights in FC. Nodes are defined by the 200, 400 and 600 cortical node Schaefer 29 



parcellation. Residual edge weights were computed by linear regression of edge length. Colored data 30 

points and bars respectively indicate subject-level and group-level correlations. (B) Heat scatter plots of 31 

group-level residual edge weights from FC as a function of COMMIT (left) and R1 (right) across the 100, 32 

200, 400, 600 and 900 node Schaefer cortical parcellation. Spearman’s rank correlations are reported 33 

(r), and the best fit linear curve is shown in black. Color indicates data density. All networks additionally 34 

include 14 subcortical regions.  35 

 36 

When correlating edge-length-regressed residuals with R1 across the 100, 200, 400,600 and 900 37 

node Schaefer atlas (Figure S2A), the negative correlation with NoS, SIFT2, COMMIT and 38 

ICVF are all robust. Interestingly, while correlation magnitude tends to increase with parcellation 39 

granularity in the streamline-specific networks, it follows the reverse trend for ICVF. Scatter 40 

plots for these data are also shown (Figure S2B). The inverse relationship between R1 and 41 

COMMIT is found to be driven by the shortest network edges in the Schaefer-200 (Figure S2C) 42 

similarly to the result reported in the Schaefer-400. 43 

 44 



 45 

Figure S2. Residual Edge Weight Correlations with R1 across Parcellation Resolution. (A) Group-level 46 

edgewise Pearson’s r (top) and Spearman’s r (bottom) of edge-length-regressed-residual edge weights 47 

from R1 with NoS, SIFT2, COMMIT and ICVF across the 100, 200, 400, 600 and 900 node Schaefer 48 

parcellation. (B) Heat scatter plots of group-level residual edge weights from R1 as a function of 49 

COMMIT (left) and ICVF (right) across the 100, 200, 400, 600 and 900 node Schaefer parcellation. 50 

Spearman’s rank correlations are reported (r), and the best fit linear curve is shown in black. Color 51 



indicates data density. (C) Edgewise Spearman’s rank correlation of edge weights in R1 vs COMMIT 52 

across edge length bins for the Schaefer-200. Group-level and subject-level are respectively shown in 53 

green and blue. The square and diamond markers connected by dotted lines show binned correlation 54 

values, and the horizontal dashed green and blue lines mark the correlation values for all edges pooled 55 

together. All networks additionally include 14 subcortical regions. 56 

 57 

When replicating the graph theory analysis for group-level networks in the Schaefer-200 and -58 

600 parcellation (Figure S3), all weighted structural networks display normalized small-59 

worldness. Once again, this feature is higher in magnitude for COMMIT, SIFT2 and NoS 60 

relative to the tractometry networks, which are essentially indiscernible. Small-worldness 61 

increases with parcellation granularity in all structural networks. A weighted rich club is detected 62 

in COMMIT, SIFT2 and NoS, as well as the binary network over a large range of degree k. As in 63 

the main text, FA and R1 do not show a weighted rich-club topology for any degree k. 64 

 65 



 66 

Figure S3. Group-Level Network Topology across Parcellation Resolution. (A) Small-worldness was 67 

estimated in all structural networks: clustering coefficient was normalized within each node, averaged 68 

across nodes (C/Cnull), then plot as a function of normalized characteristic path length (L/Lnull). Topology 69 

measures averaged across 50 degree and strength preserving null networks were used for normalization. 70 

Networks above the identity line (dotted black) are characterized by the small world attribute. 71 

Tractometry networks are indicated by the arrow. (B) Normalized rich club curves are shown for 72 

COMMIT, NoS and SIFT2 (top), as well as ICVF, RD, FA and R1 (bottom). A single binary network 73 

(dotted gray line) is also shown (bottom) as binary connectivity was uniform across weighted networks. 74 

The normalized rich-club coefficient (fnorm) was computed across the range of degree (k) and normalized 75 

against 1000 null networks (degree preserving for binary and degree and strength preserving for 76 



weighted networks). A fnorm value > 1 (horizontal dashed black lines) over a range of k indicates the 77 

presence of a rich club. Analyses were replicated in the 200 (top) and 600 (bottom) node Schaefer 78 

parcellation. All networks additionally include 14 subcortical regions. 79 

 80 

Normalized hubness (Figure S4) is observed to change for each weighted structural network 81 

across the 200, 400 and 600 node Schaefer parcellations.  We suspect that it may be due in part 82 

to the inclusion of 14 subcortical ROIs, which remain static in granularity. Thus, the subcortical 83 

nodes become increasingly more densely connected with respect to the cortex as the granularity 84 

of the cortical parcellation is increased. 85 

 86 



 87 



Figure S4. Group-Level Normalized Hubness across Parcellation Resolution. Nodewise hubness scores 88 

are projected onto the 200, 400 and 600 node Schaefer cortical parcellation plus 14 subcortical regions 89 

(not shown). Scores (0-5) were computed for each node as +1 point for all nodes in top 20% strength, 90 

betweenness, closeness and eigenvector centrality, as well as bottom 20% clustering coefficient. 91 

 92 

 93 

Replication in a Second Dataset 94 

All primary analyses were successfully replicated (Figure S5-S6) in a second multimodal MRI 95 

dataset acquired at a lower resolution and comprising 20 healthy volunteers scanned at 3 Tesla 96 

on a Siemens Magnetom Prisma-Fit scanner equipped with a 64-channel head coil including:  97 

• Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar 98 

imaging sequence consisting of shells with b-values 0, 300, 1000, and 2000s/mm2 in 6, 99 

10, 30, and 64 diffusion directions, respectively (2.6mm isotropic; TR = 3000ms, TE = 100 

57ms; multi-band factor = 3). b0 images were also acquired with reverse phase encoding 101 

direction to facilitate distortion correction of DWI data. 102 

• Quantitative T1 relaxometry data was acquired with a sparse 3D-MP2RAGE sequence 103 

(Marques et al., 2010) (1mm isotropic; TR = 5000ms, TE = 2.7ms, TI1 = 940ms, T12 = 104 

2830ms; partial Fourier = 6/8). This was used to compute a T1 map which was sampled to 105 

estimate the edge weights in networks weighted by R1 (myelin-weighted). 106 

 107 

Preprocessing deviated in two important ways: (1) tractograms of only 1M streamlines were used 108 

(vs 5M in the main text), and (2) the edge weights in NoS-weighted networks were not scaled by 109 

the inverse of node volume. All other methods were identical. 110 



 111 

 112 

Figure S5. The Myelin-Dependence of Structural Brain Networks Replicated. (A) Violin distributions 113 

(left) of edgewise Spearman’s rank correlations with the myelin-weighted network R1. Residual edge 114 

weights are compared following linear regression of edge length. Colored data points and bars 115 

respectively indicate subject-level and group-level correlations. Heat scatter plots (right) of group-level 116 

residual edge weights in R1 as a function of NoS, SIFT2 and COMMIT. Spearman’s rank correlations are 117 

reported (r), and the best fit linear curve is shown in black. Color indicates data density. (B) Line plot 118 

(left) of edgewise Spearman’s rank correlation of edge weights in R1 vs COMMIT across edge length 119 

bins. Group-level and subject-level are respectively shown in green and blue. The square and diamond 120 



markers connected by dotted lines show binned correlation values, and the horizontal dashed green and 121 

blue lines mark the correlation values for all edges pooled together. Scatter plot (middle) of group-level 122 

edge weights in R1 as a function of COMMIT with data points colored by bin identity. Histograms (right) 123 

illustrating subject- and group-level edge length bins. 124 

 125 



 126 

Figure S6. Group-Level Network Topology Replicated. (A) Small-worldness was estimated in all 127 

structural networks: clustering coefficient was normalized within each node, averaged across nodes 128 

(C/Cnull), then plot as a function of normalized characteristic path length (L/Lnull). Topology measures 129 

averaged across 50 degree and strength preserving null networks were used for normalization. Networks 130 

above the identity line (dotted black) are characterized by the small world attribute. (B) Normalized rich-131 

club curves are shown for COMMIT, NoS and SIFT2 (top), as well R1 (bottom). A single binary network 132 



(dotted gray line) is also shown (bottom) as binary connectivity was uniform across weighted networks. 133 

The normalized rich-club coefficient (fnorm) was computed across the range of degree (k) and normalized 134 

against 1000 null networks (degree preserving for binary and degree and strength preserving for 135 

weighted networks). A fnorm value > 1 (horizontal dashed black lines) over a range of k indicates the 136 

presence of a rich club. (C) Nodewise hubness scores are projected onto Schaefer-400 cortical and 14-137 

ROI subcortical surfaces. Scores (0-5) were computed for each node as +1 point for all nodes in top 20% 138 

strength, betweenness, closeness and eigenvector centrality, as well as bottom 20% clustering coefficient. 139 

The matrix (right) shows the Euclidean distance between all pairs of nodal hubness vectors. 140 

 141 

 142 

Permutation Testing 143 

We assessed the significance of edgewise correlations with FC (Figure S7) and R1 (Figure S8) 144 

by way of permutation testing. First, variance due to edge length was controlled for in all 145 

networks using linear regression. Edge weights in NoS, SIFT2 and COMMIT were log 146 

transformed to facilitate linear regression of edge length. Then, the residual edge weights in the 147 

network being correlated with either FC or R1 were shuffled, and a Spearman’s rank correlation 148 

coefficient was computed. This process was repeated 1000 times for each network pair. 149 

Significance was quantified with a one-sided p-value (pperm) as the number of shuffled 150 

correlation coefficients equal in sign and greater in magnitude than the empirical value scaled by 151 

the number of permutation iterations. The correlation coefficients corresponding to all primary 152 

reported results with FC and R1 were significantly greater in magnitude than their corresponding 153 

null distributions: all had Pperm values  ≅	0.  154 

 155 



 156 

Figure S7. Permutation Testing of Edgewise Residual Correlations with FC.  157 

 158 



 159 

Figure S8. Permutation Testing of Edgewise Residual Correlations with R1. 160 

 161 

 162 

Intraclass Correlation 163 

To complement the CQD analysis of variance in the main manuscript, we assessed edge weight 164 

variance by computing an intraclass correlation (ICC) coefficient within each weighted network 165 

in the following manner. First, the edge weights in all networks were normalized to the range [0 166 

1] by dividing by the subject-level maximum value within network. Then, subject-level 167 

connectivity matrices were vectorized such that all lower triangle elements excluding the main 168 

diagonal were stacked in an edge x subject matrix. Any edge = 0 for all subjects was removed 169 

from this matrix. Then, in two variants of this analysis, these edge weights were either (1) not log 170 

transformed, or (2) log10 transformed if they were skewed (NoS, SIFT2 and COMMIT). In both 171 



cases, an ICC coefficient was computed using a two-way random effects ANOVA (analysis of 172 

variance) model (Figure S9).   173 

 174 

 175 

Figure S9. Intraclass Correlation of Brain Networks. 176 

 177 

When edge weights remained untransformed, ICC was highest for COMMIT (r = 0.80), SIFT2 (r 178 

= 0.75) and NoS (r = 0.74). However, log transformation of the edge weights in these networks 179 

decreased the magnitude of all of these coefficients to r ≅ 0.10. All tractometry networks had 180 

ICC values ranging from 0.14 to 0.20. ICC for LoS and FC was 0.35 and 0.49, respectively. It is 181 

important to emphasize that the distribution of edge weights is a fundamental property of a brain 182 

network, and a transformation of this property yields a network with transformed features. Given 183 

that the ICC is sensitive to the distribution of the input data, in contrast to the CQD which is 184 

robust to outliers and skewed data, the comparability of ICC across structural brain networks 185 

with fundamentally different edge weight distributions remains unclear. 186 



 187 

 188 

COMMIT-Weighted Average Tractometry Does Not Alter SC Network Features 189 

In the main text, we have shown features of tractometry-derived SC networks which generally 190 

include lower within- and between-subject edge weight contrast, weaker correlations with FC 191 

and R1, as well as lower magnitude small-worldness and rich-club coefficients relative to 192 

streamline-specific networks. We have suggested that these characteristics are likely to be due in 193 

part to the widespread partial voluming which occurs in the computation of edge weights using 194 

the tractometry method. In our main processing pipeline, we have taken measures to minimize 195 

the impact of this bias on the edge weights in our tractometry networks by eliminating all 196 

streamlines from the tractogram with a zero COMMIT weight (i.e., < 1e-12). According to the 197 

COMMIT model, these streamlines do not contribute to the global diffusion signal and are thus 198 

interpreted as false positives.  199 

 200 

The non-zero COMMIT streamline weights could be used to further reduce partial volume 201 

effects. Here, we compare in four subjects the tractometry edge weight computation approach 202 

described in the main text to a variant that uses the non-zero COMMIT streamline weights to 203 

compute a weighted average over streamlines for each node pair. For example, the edge weights 204 

in the FA-weighted network derived using the COMMIT-weighted-average method are 205 

computed as:  206 
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, 207 



where 𝛼!" is the edge weight between nodes i and j, 𝑁!" is the number of streamlines, and 𝐹𝐴!"#  208 

and 𝑥!"#  are the FA and COMMIT weights of streamline k. Importantly, streamlines with a 209 

COMMIT weight < 1e-12 are excluded by both methods. Therefore, these results are most 210 

accurately interpreted as a comparison of degrees of COMMIT-weighted tractometry.  211 

 212 

Using this approach, we report that subject-level edge weight distributions appear qualitatively 213 

similar across the original (simple mean across streamlines) and COMMIT-weighted average 214 

tractometry methods (Figure S10). In addition, patterns of edgewise correlation with FC and R1 215 

(Figure S11), as well as small-worldness and rich-club curves are essentially identical. Thus, at 216 

this level of analysis, the COMMIT-weighted average tractometry approach (COMMIT-filtered 217 

tractogram à COMMIT-weighted average) does not substantially alter the features of SC 218 

networks relative to the tractometry approach (COMMIT-filtered tractogram à simple mean) 219 

implemented in the main manuscript.  220 

 221 



 222 



Figure S10. Pooled Subject-Level Edge Weight Distributions. Original (simple mean; red) and 223 

COMMIT-weighted (weighted average; blue) methods of tractometry edge weight computation are 224 

compared across SC networks weighted by FA, ICVF, RD and R1. Data from only four subjects is shown. 225 

 226 

 227 

Figure S11. Residual Edge Weight Correlations with FC and R1. Edgewise Spearman’s rank correlations 228 

were computed with FC (top) and R1 (bottom) for networks derived using original (left) and COMMIT-229 

weighted (right) tractometry methods. Variance due to edge length was controlled for in all networks 230 

using linear regression. Colored data points and colored bars correspond to subject-level and group-231 

level correlation coefficients, respectively. Data from only four subjects is shown. 232 

 233 



 234 

Figure S12. Network Topology of COMMIT-Weighted Tractometry Networks. Normalized small 235 

worldness (A) and normalized rich club (B) are shown. The edge weights in tractometry networks 236 

correspond to the COMMIT-weighted average tractometry method. The normalization of all topology 237 

measures was carried out as in the main manuscript. Data from only four subjects is shown. 238 

 239 

 240 



Our R1 Network is Comparable to Boshkovski et al. (2021) 241 

To assess the comparability of our R1-weighted SC network to that presented in Boshkovski et 242 

al. 2021, we replicated Figure 1 from their publication, which illustrates the edgewise 243 

relationship between both NoS and FA with R1 (Figure S13). In an attempt to align our data 244 

more closely with theirs, we performed this analysis in the Schaefer-200 parcellation using only 245 

cortical nodes, and we did not control for edge length using linear regression.  246 

 247 

 248 

Figure S13. Edgewise Relationship of NoS and FA with R1 Without Controlling for Edge Length. 249 

 250 



Here, NoS shows a negative correlation with R1 reflected in both the negative slope of the best fit 251 

linear curve and the negative Spearman’s rank correlation coefficient similar to the result we 252 

report in the main text. The magnitude of this correlation is inflated with respect to the values we 253 

report in the main text. However, that is to be expected, as we have already shown that NoS and 254 

R1 have opposite relationships with edge length, and we did not control for this variance here. 255 

The coefficient of determination (R2 = 0.291) suggests that NoS and R1 share a portion of their 256 

variance. This contrasts with the result reported in Boshkovski et al. (R2 = 0.023). This may be 257 

due to that fact that our computation of NoS networks included a step in which edge weights 258 

were scaled by the inverse of the volume of their interconnecting nodes. This normalization was 259 

not performed by Boshkovski et al.  260 

 261 

For this reason, the relationship with FA is likely to provide a better basis of comparison 262 

between our R1 networks. The edgewise relationship between FA and R1 we report here appears 263 

quite similar to the result reported in Boshkovski et al. Both scatter plots (ours and theirs) 264 

suggest a positive correlation and a similar amount of shared variance between FA and R1. 265 

Overall, our R1 network shows a similar distribution of edge values and relationship with FA to 266 

the network reported in Boshkovski et al. Fundamental differences in our NoS networks limit 267 

comparability. 268 

 269 


