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Supplemental Methods

1 | Refinement pipeline

As per the CASP13 and CASP14 modeling experiments1,2, predictions of cryoEM targets were

positioned in the density by using a ChimeraX script. The script aligned predictions to the

reference model using the ‘matchmaker’ command and then optimized the local fit to the

experimental map using the ‘fitmap’ function. The fitting and refinement stages of the pipeline

(Fig. S1) used a hierarchical approach built on our previous protocol designed for

Flex-EM/RIBFIND3. This approach was previously shown to allow large conformational changes

to take place and avoid trapping parts of the model in small density pockets during fitting. The

TEMPy-ReFF software package4 supports this hierarchical approach by automatically breaking

down clusters as refinement progresses. This package offers a number of force-fields and

routines for building pipelines for fitting and refinement using the OpenMM molecular dynamics

engine 5. In our application of the software here (Fig. S1), the models were iteratively broken

down into smaller rigid-bodies using the RIBFIND2 software6. These subunits were composed

of interacting secondary structure elements determined using DSSP7 for proteins and RNAView8

for RNA. Each subunit was then subjected to a fitting force which is simply the negative gradient

of the cryoEM map9, whilst strong harmonic restraints maintain the overall geometry of the

subunit.

In the last stage, the models were refined using a Gaussian mixture model (GMM)-based

potential similar to the component-based approach of10, but this time applied to atoms. In this

scheme, each atom is represented by a Gaussian where the mean is given by the atom's

position, sigma can intuitively be thought of as its resolution or Bfactor, and the height is the

atomic number that approximates the scattering potential of neutral atoms. Using the

expectation-maximization algorithm for GMMs, the atomic positions are successively updated so
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as to maximize the likelihood that the Gaussians represent the experimental data while at the

same time, an AMBER14 force-field11 corrects stereo-chemistry. A simulated map represented

by a GMM can be described by the following equation where is a simulated map, is the𝑀
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Despite the RIBFIND rigid body restraints, early testing of the pipeline showed that some RNA

models suffered from distortions. Therefore, our final protocol included an additional stage of

corrections using the ERRASER2 program, an unpublished accelerated version of the

ERRASER protocol for the refinement of RNA in crystallographic and cryoEM maps12. It is

available as part of the ROSETTA package13. However, here ERRASER2 was used only for

optimisation of the structure and not the fit to the density before final refinement of the structure

using the GMM (see Listing 1).

2 | Choice of docking software for chain ranking

A Spearman rank correlation coefficient was performed to compare the rankings produced by

Molrep and PowerFit. For the majority of cryo-EM targets there were no significant differences

between the PowerFit and Molrep rankings. However, for a minority of cryo-EM targets,

significant differences were seen. The greatest differences were for T1114s3 (PowerFit median

CC: 0.6483, Molrep median CC: 0.587), T1137s1 (PowerFit CC: 0.17285, Molrep CC: 0.12070),

T1137s3 (PowerFit CC: 0.1894, Molrep CC: 0.1273), T1137s5 (PowerFit CC: 0.20345, Molrep

CC: 0.11065), T1157s1 (PowerFit CC: 0.46999˙, Molrep CC: 0.6101 ) and T1185s1 (PowerFit
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CC: 0.317, Molrep CC: 0.439). Since PowerFit outperformed Molrep in those cases more often

than the reverse, PowerFit’s placements were chosen for the rankings.

Supplementary Tables

Target Group (o)lDDT GDT-TS score QS-score TM score

Pred. Refined Pred. Refined Pred. Refined Pred. Refined

T1154 494 0.84 0.77 0.63 0.78 NA NA NA NA

T1158 367 0.84 0.86 0.64 0.92 NA NA NA NA

T1169 466 0.66 0.67 0.53 0.72 NA NA NA NA

H1157 239 0.66 0.7 NA NA 0.67 0.8 0.78 0.80

T1170o 165 0.70 0.85 NA NA 0.61 0.85 0.90 0.90

T1121o 091 0.74 0.69 NA NA 0.31 0.25 0.66 0.64

Table S1: Predictions which ranked high by docking but did not pass CASP scoring

criteria: Values for TM, GDT-TS, (o)lDDT and QS scores of predictions and their respective

refined models. TM and QS scores were not applicable to monomeric targets.



Supplemental Figures

Fig. S1: Docking and refinement pipeline. Submitted predictions were chosen for cryo-EM
refinement based on CASP metrics (using the reference structure) and using a ranking scheme
which assesses the overall fit of predictions constituent chains to the experimental map.
Selected models are then flexibly fit to the experimental data using a coarse-grained
hierarchical fitting protocol. Corrections were made to RNA model geometry using ERRASER2
followed by an atomistic refinement scheme based using TEMPy-ReFF. Models were then
assessed using MolProbity, Phenix.rna_validate, ChimeraX CC and TEMPy SMOC scores.



Fig. S2: Comparison of Bfactor and RMSF of best docked predictions for two cryoEM
targets. H1157 had a well-resolved core with low Bfactors (dark blue) and a number of domains
which were less resolved (light-blue to red) suggesting they move independently from the core.
When coloured by the RMSF of the docked models one sees a similar trend. H1129 had lower
resolution loops in the extremities which was also reflected by higher Bfactors. When coloured
by the RMSF of the docked models, a similar pattern is seen.



Figure S3. Comparison of the poses resulting from PowerFit model docking vs. the poses
resulting from initial superposition on the reference for some of the protein targets. For
each CASP target, the pose of the first-ranked model based PowerFit docking is shown (green)
within the cryoEM density (grey) along the pose determined by first superposing it on the
reference structure and then optimizing its fit using ChimeraX (pink). The corresponding CC
scores for each fit is indicated below the target name.



Fig. S4. Refinement of the prediction with the best CASP score from Yang (group 229)
and the best ranking Shennong (group 466). In (A) SMOC scores of the predictions and the
corresponding structures in the experimental density. Both models have several (often different)
regions which fit relatively well. The best-ranked model had more C-terminal residues modeled
but had a poorly placed N-terminal β-propeller domain. After refinement (B), the model based
on CASP metrics had higher SMOC scores overall. The poorly placed β-propeller of the
best-ranked model was too distant to be refined.



Supplemental videos
Supplemental Video 1: Refinement of R1126TS287_2:
https://syncandshare.desy.de/index.php/s/kx8fTAETgiimew4
Supplemental Video 2: Refinement of R1138TS232_3 in Mature map:
https://syncandshare.desy.de/index.php/s/dXWwHEFeKoyjLF9
Supplemental Video 3: Refinement of R1138TS232_4 in Young map:
https://syncandshare.desy.de/index.php/s/CqbF3xFm5XxezTF
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