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Supplementary Figure 1 The typical discharging/discharging curve for each class of battery, 

after denoising and linear interpolation. Source data are provided as a Source Data file. 

 
  



Supplementary Figure 2 The voltage-capacity curve in the charging cycle for the batteries. 

The unit for voltage is in volts, and the unit for capacity is in Ah. Different colors in each 

subplot represent unique batteries. The subplot title follows a format of A: B, which indicates 

the batteries originate from manufacturer A with cathode material B. Source data are provided 

as a Source Data file. 

 
  



Supplementary Figure 3 The voltage-capacity curve in the discharging cycle for the 

batteries. The unit for voltage is in volts, and the unit for capacity is in Ah. Different colors in 

each subplot represent unique batteries. The subplot title follows a format of A: B, which 

indicates the batteries originate from manufacture A with cathode material B. Source data 

are provided as a Source Data file. 

 
  



Supplementary Figure 4 The dQ/dV curve in the charging cycle for the batteries. The unit 

for voltage is in volts, and the unit for dQ/dV is in Ah/ volts. Different colors in each subplot 

represent unique batteries. The subplot title follows a format of A: B, which indicates the 

batteries originate from manufacture A with cathode material B. Source data are provided as 

a Source Data file. 

 
  



Supplementary Figure 5 The dQ/dV curve in the discharging cycle for the batteries. The 

unit for voltage is in volts, and the unit for dQ/dV is in Ah/ volts. Different colors in each subplot 

represent unique batteries. The subplot title follows a format of A: B, which indicates the 

batteries originate from manufacturer A with cathode material B. Source data are provided 

as a Source Data file. 

 
  



Supplementary Figure 6 The Pearson correlation matrix of the extracted features across 

nine classes of batteries. The red color (blue color) indicates the features are positively 

(negatively) correlated. The darker the color, the more correlation existed in the features. 

Source data are provided as a Source Data file. 

 

  



Supplementary Figure 7 The classification accuracy of the MV and WDV methods at 

selected random noise levels (NSR = 2%, 6%, and 10%), respectively. Source data are 

provided as a Source Data file. 

 
  



Supplementary Figure 8 The two-dimensional feature space spanned by the non-salient 

features. Each class is indicated as unique colors in the legend. Source data are provided 

as a Source Data file. 

 
  



Supplementary Figure 9 The linear correlation between heterogeneity and classification 

accuracy under non-federated situations. The color bar indicates the accuracy value. Source 

data are provided as a Source Data file. 

 

 

  



Supplementary Figure 10 The confusion matrix for the MV and WDV methods when the 

former achieves its best performance. Source data are provided as a Source Data file. 

 

  



Supplementary Figure 11 The battery classification performance of a Convolutional Neural 

Networks (CNN) for comparative study. Up: confusion matrix of the classification results. 

Down: training time required for clients of different sample sizes (under Python 3.9.3). The 

CNN structure consists of two consecutive sets of Convolutional-MaxPooling-Dropout layers, 

followed by a fully-connected layer, a dropout layer, and a final fully-connected layer. Source 

data are provided as a Source Data file. 

 



Supplementary Figure 12 The overall classification accuracy of the proposed WDV method 

under unrecoverable parameter loss and different heterogeneity settings, where the 

receiving end treats the lost client model sorting result as a random guess (a 0.5 sorting 

probability). The client data distribution is randomly generated with the same method 

described in the Client Simulation Section. Source data are provided as a Source Data file. 

 
  



Supplementary Figure 13 Out-of-bag classification error of as-trained random forest models 

with different number of trees 𝐽𝐽 . When 𝐽𝐽  is set to 10, a balance is achieved between 

classification accuracy and computational cost, the latter of which is linearly dependent on 

the number of trees. Source data are provided as a Source Data file. 

 
  



Supplementary Table 1 The classified battery groups and detailed information. 

Manufacturers Cathode Class Cells Composition Capacity  

CALCE1-5 LCO 1 7 LiCoO2 1.35 

HNEI6 NMC_LCO 2 13 LiCoO2 and LiNi4Co4Mn2O2 2.80 

MICH-Expa7 NMC 3 8 NMC111: CB: PVDF (94:3:3) 5.00 

MICH-Form8 NMC 4 39 
NMC111: C65: PVDF 

(94:3:3) 
2.36 

OX9 LCO 5 8 LiCoO2 0.74 

SNL10 LFP 6 21 LiFePO4 1.10 

SNL10 NCA 7 14 LiNi𝑥𝑥Co𝑦𝑦Al1−x−yO2 3.20 

SNL10 NMC 8 15 LiNi𝑥𝑥Mn𝑦𝑦Co1−x−yO2 3.00 

UL-PUR11 NCA 9 5 LiNi0.8Co0.15Al0.05O2 3.40 

Total   130  (Ah) 

  



Supplementary Table 2 The explanation of the feature extraction. 

Feature Definition 

F1(16) The peak intensity of the dV/dQ curve 

F2(17) The time when the peak intensity of the dV/dQ curve arrives 

F3(18) The voltage where the peak intensity of the dV/dQ curve arrives 

F4(19) The kurtosis statistics of the dV/dQ curve 

F5(20) The skewness statistics of the dV/dQ curve 

F6(21) Q1 quantile of the voltage 

F7(22) Q2 quantile of the voltage 

F8(23) Q3 quantile of the voltage 

F9(24) Q1 quantile of the capacity 

F10(25) Q2 quantile of the capacity 

F11(26) Q3 quantile of the capacity 

F12(27) The kurtosis statistics of the voltage 

F13(28) The skewness statistics of the voltage 

F14(29) The kurtosis statistics of the capacity 

F15(30) The skewness statistics of the capacity 

Note: The format of the extracted features follows Fa (Fb), which denotes that Fa and Fb are 

the features extracted from the charging and discharging process, respectively. 

  



Supplementary Table 3 The detailed setting when clients have homogeneous data access. 

Client Class (Battery number) Total 

1 1 (10), 2 (15), 3 (7), 4 (18), 5 (17), 6 (10), 7 (10), 8 (12), 9 (10) 9 (109) 

2 1 (18), 2 (17), 3 (15), 4 (19), 5 (16), 6 (16), 7 (15), 8 (19), 9 (11) 9 (146) 

3 1 (11), 2 (12), 3 (11), 4 (20), 5 (14), 6 (12), 7 (9), 8 (9), 9 (8) 9 (106) 

4 1 (16), 2 (18), 3 (14), 4 (17), 5 (15), 6 (12), 7 (14), 8 (12), 9 (10) 9 (128) 

5 1 (13), 2 (14), 3 (21), 4 (14), 5 (20), 6 (19), 7 (25), 8 (23), 9 (21) 9 (170) 

6 1 (27), 2 (16), 3 (16), 4 (19), 5 (16), 6 (18), 7 (19), 8 (19), 9 (19) 9 (169) 

7 1 (15), 2 (20), 3 (19), 4 (21), 5 (18), 6 (13), 7 (23), 8 (17), 9 (12) 9 (158) 

8 1 (21), 2 (19), 3 (25), 4 (20), 5 (17), 6 (17), 7 (18), 8 (17), 9 (12) 9 (166) 

9 1 (24), 2 (12), 3 (25), 4 (15), 5 (19), 6 (25), 7 (15), 8 (26), 9 (18) 9 (179) 

10 1 (20), 2 (11), 3 (12), 4 (17), 5 (11), 6 (6), 7 (15), 8 (11), 9 (11) 9 (114) 

Total battery number 1445 

Note: In the Class (Battery number) column, the value follows the format of A(b), which 

denotes each client has batteries from class A and the according numbers of batteries in this 

class are b, respectively. In the Total column, the value follows the format of C(d), which 

denotes that each client has a total number of C classes of batteries, and the total number 

of batteries in all class are d. Since we assume all clients have homogeneous data access, 

C=9 for all clients.   

  



Supplementary Table 4 The privacy budgets (PBs) in each class when referenced at a 0.9 

F1-score level. 

Method Non-federated  Federated  

Class IL MV WDV 

LCO (CALCE, Class1) 5 6 10 

NMC\ LCO (HNEI, Class2) 5 5 10 

NMC (MICH-Expa, Class3) 8 9 10 

NMC (MICH-Form, Class4) 2 6 9 

LCO (Ox, Class5) 10 10 10 

LFP (SNL, Class6) 8 8 9 

NCA (SNL, Class7) 2 2 5 

NMC (SNL, Class8) 2 4 6 

NCA (UL-PUR, Class9) 0 2 6 

Average 4.67 5.78 8.33 

Increased PB (%) using WDV + 78% + 44% - 

 

  



Supplementary Table 5 The detailed setting when clients have heterogeneous data access. 

Client Class (Battery number) Total 

1 2 (41), 3 (41), 4 (34), 5 (36), 6 (45) 5 (197) 

2 1 (20), 2 (11), 4 (12), 5 (15), 6 (16), 7 (12), 8 (10), 9 (17) 8 (113) 

3 1 (15), 3 (22), 4 (14), 5 (16), 7 (21), 9 (23) 6 (111) 

4 2 (27), 3 (23), 5 (33), 6 (25), 7 (22), 9 (29) 6 (159) 

5 2 (82), 8 (79) 2 (161) 

6 2 (38), 5 (33), 6 (39), 8 (36), 9 (26) 5 (172) 

7 2 (58), 4 (43), 8 (49), 9 (45) 4 (195) 

8 1 (20), 2 (25), 3 (17), 5 (20), 6 (20), 7 (16) 6 (118) 

9 1 (40), 3 (51), 9 (49) 3 (140) 

10 1 (26), 2 (23), 3 (27), 4 (25), 5 (20), 7 (21), 9 (27) 7 (169) 

Total battery number 1535 

Note: In the Class (Battery number) column, the value follows the format of A(b), which 

denotes each client has batteries from class A and the according numbers of batteries in this 

class are b, respectively. In the Total column, the value follows the format of C(d), which 

denotes that each client has a total number of C classes of batteries, and the total number 

of batteries in all class are d. 

  



Supplementary Table 6 Recovery rate of LFP and NMC batteries using different methods. 

Method Pyro (in %) Hydro (in %) ML-direct (in %) 
Type LFP NMC LFP NMC LFP NMC 

Cathode materials 94 94 98 94 90 90 
Anode materials 94 94 95 94 90 90 
Cathode current collector 93 93 93 93 90 90 
Anode current collector 93 93 93 93 90 90 
Separator 96 93 93 93 95 95 
Shell 98 98 98 98 98 98 
Note: The data is collected from the literature12. 

 

 

  



Supplementary Table 7 Partial cost of different recycling methods (¥). 
Method Pyro Hydro ML-direct 

Battery disassembly 900 850 1000 
Sewage treatment 800 990 700 
Equipment depreciation 390 365 400 
Transportation 500 500 500 
Average labor 2000 2150 1564 
Note: The data is collected from the literature12. 

 
 

  



Supplementary Table 8 List of material prices. 

Material Price (¥) Source 
Li2CO3 273000 https://dianchizhijia.com/ 
NiSO4 32700 https://dianchizhijia.com/ 
CoSO4 36300 https://dianchizhijia.com/ 
MnSO4 6100 https://dianchizhijia.com/ 
Graphite 25800 https://dianchizhijia.com/ 
Al 18400 https://dianchizhijia.com/ 
Cu 65500 https://dianchizhijia.com/ 
LiFePO4 81500 https://dianchizhijia.com/ 
FePO4 13000 https://dianchizhijia.com/ 
Li(Ni0.5C0.2M0.3)O2 230000 https://dianchizhijia.com/ 
Coke 2074 http://quote.eastmoney.com/center/futures.html 
H2SO4 550 www.100ppi.com 
NaOH 2000 www.100ppi.com 
N2 800 www.100ppi.com 
Liquid ammonia 3800 www.100ppi.com 
Degraded LFP battery 20000 https://dianchizhijia.com/ 
Degraded LFP cathode 
powder 

38750 https://dianchizhijia.com/ 

Degraded NMC battery 39000 https://dianchizhijia.com/ 
Degraded NMC cathode 
powder 

115000 https://dianchizhijia.com/ 

Note: The update time is May 22, 2023. 
 

  



Supplementary Table 9 Composition ratio of LFP and NMC batteries. 

Battery Type NMC LFP 
Cathode 0.26 0.25 
Anode 0.15 0.13 

Cathode current collector 0.07 0.06 
Anode current collector 0.17 0.1 

Electrolyte 0.1 0.16 
Separator 0.22 0.27 

Shell 0.03 0.03 
Note: The data is collected from the literature13. 

 

  



Supplementary Table 10 Cost analysis of LFP and NMC batteries using different methods 

(individual). 

Method Pyro (¥) Hydro (¥) ML-direct (¥) 
Type LFP NMC LFP NMC LFP NMC 
Raw 

material 
9687.50 29900.00 9687.50 29900.00 9687.50 29900.00 

Reagent 637.49 951.35 326.26 468.35 3196.19 5410.20 

Average 
labor 

3400.00 3400.00 3500.00 3500.00 3064.00 3064.00 

Electricity & 
Water 

1360.00 1360.00 1960.00 1960.00 856.00 856.00 

Equipment 
depreciation 

390.00 390.00 365.00 365.00 400.00 400.00 

Sewage 
treatment 

800.00 800.00 990.00 990.00 700.00 700.00 

Total 16274.99 36801.35 16828.76 37183.35 17903.69 40330.20 

Note:  
Individual means there is only one type of battery in one recycling process, and the battery 
cathode type was determined by historical information assumed. The data were collected 
from the literatures12,14. 

 
  



Supplementary Table 11 Revenue analysis of LFP and NMC batteries using different 

methods (individual). 

Method Pyro (¥) Hydro (¥) ML-direct (¥) 
Type LFP NMC LFP NMC LFP NMC 

Li2CO3 12017.68 20425.60  12529.07  20425.60  \ \ 
NiSO4 \ 6403.32  \ 6403.32  \ \ 
CoSO4 \ 2847.72  \ 2847.72  \ \ 
MnSO4 \ 699.33  \ 699.33  \ \ 

Li (Ni0.5C0.2M0.3)O2 \ \ \ \ \ 53831.15  
FePO4 \ \ 3044.89  \ \ \ 

LiFePO4 \ \ \ \ 18337.50 \ 
Graphite \ \ 4421.30  5047.80  4188.60  5262.60  

Al 1026.72  1197.84  1026.72  1197.84  993.60  1159.20  
Cu 6091.50  10355.55  6091.50  10355.55  7663.50  10021.50  

Total 19135.90 41929.37  27113.48  46977.17  31183.20 70274.45   
Note: 
Individual means there is only one type of battery in one recycling process, and the battery 
cathode type was determined by historical information assumed. 



Supplementary Table 12 Cost, revenue, and profit of retired battery recycling (individual). 

Methods Type Cost (¥) Revenue (¥) Profit (¥) 

Pyro 
LFP 16274.99 19135.90 2860.91 
NMC 36801.35 41929.37 5128.02 

Hydro 
LFP 16828.76 27113.48 10284.72 
NMC 37183.35 46977.17 9793.82 

ML-direct 
LFP 17903.69 31183.20 13279.51 
NMC 40330.20 70274.45 29944.25 

Note:  
Individual means there is only one type of battery in one recycling process, and the 
battery cathode type was determined by historical information assumed. 
profit = revenue - cost 

 
  



Supplementary Table 13 The influence of predict accuracy towards the production of ML-

direct recycling (hybrid). 

Ideal production Accuracy (%) Actual production Equivalent price (¥) 

Li (Ni0.5C0.2M0.3) O2 

Fed-WDV (97) Li (Ni0.5C0.2M0.3) O2 230000 

Fed-MV (71) 
71 % Li(Ni0.5C0.2M0.3)O2 

+ 
29 % LiFePO4 

92887.5 

IL (55) 
55 % Li(Ni0.5C0.2M0.3)O2 

+ 
45 % LiFePO4 

80687.5 

LiFePO4 

Fed-WDV (97) LiFePO4 81500 

Fed-MV (71) 
70 % LiFePO4 

+  
30 % Li(Ni0.5C0.2M0.3)O2 

60862.5 

IL (55) 
55 % LiFePO4 

+  
45 % Li(Ni0.5C0.2M0.3)O2 

73062.5 

Note:  
Hybrid means there are multiple types of battery in one recycling process, and the 
battery cathode types were determined by our machine learning method, leveraging field 
information. 
Fed-WDV, Fed-MV, and IL stand for federated machine learning using the MDV method 
(our work), federated machine learning using the MV method, and non-federated 
independent learning.  
The impure product is regarded as degraded cathode material, which needs to be 
treated by hydrometallurgy again. We assumed the equivalent price is calculated by the 
sum of the product of accuracy and retired cathode powder price. For example, for the 
accuracy of 0.71 for NMC, the equivalent price = 0.71*115000+0.29*38750=92887.5. 

 

  



Supplementary Table 14 The influence of prediction accuracy on the revenue of ML-direct 

recycling (hybrid). 

Accuracy(%) MR Cathode (¥) Others (¥) Revenue (¥) 
Fed-WDV(97) 0.00  53831.15  16443.30  70274.45  
Fed-WDV(97) 0.33      57244.03  
Fed-WDV(97) 0.50      50728.83  
Fed-WDV(97) 0.67      44213.62  
Fed-WDV(97) 1 18337.50  12845.70  31183.20  
Fed-MV(71) 0.00  21634.54  15400.00  37034.53  
Fed-MV(71) 0.33      33984.09  
Fed-MV(71) 0.50      32458.88  
Fed-MV(71) 0.67      30933.66  
Fed-MV(71) 1 13994.21  13889.00  27883.22  

IL(55) 0.00  18723.94  14824.38  33548.32  
IL(55) 0.33      32822.02  
IL(55) 0.50      32458.88  
IL(55) 0.67      32095.73  
IL(55) 1 16904.81  14464.62  31369.43  

Note:  
Hybrid means there are multiple types of battery in one recycling process, and the 
battery cathode types were determined by our machine learning method, leveraging field 
information. 
Mixed ratio, MR = LFP/(LFP+NMC) 
Fed-WDV, Fed-MV, and IL stand for federated machine learning using the MDV method 
(our work), federated machine learning using the MV method, and non-federated 
independent learning.  
We assumed the revenue is calculated by the sum of the product of the cathode (weight, 
accuracy, and retired cathode powder price) and others (anode and current collector).  
For example, for the accuracy of 0.71 for the LFP/(LFP+NMC) ratio of 0.5,  
the revenue = 
0.90*0.5*(0.25*38750.00+0.26*115000.00)+0.50*(4188.60+993.60+7663.50)+0.50*(52
62.60+1159.20+10021.50)= 32458.88.  

 

  



Supplementary Table 15 Cost, revenue, and profit of LFP and NMC batteries using 

different methods (hybrid). 

Method MR Accuracy (%) Cost (¥) Revenue (¥) Profit (¥) 

Pyro 
0.33 \ 29959.23  34331.54  4372.32  
0.5 \ 26538.17  30532.63  3994.46  
0.66 \ 23117.11  26733.72  3616.61  

Hydro 
0.33 \ 30398.48  40355.94  9957.45  
0.5 \ 27006.05  37045.32  10039.27  
0.66 \ 23613.62  33734.71  10121.09  

ML-direct 

0.33 

Fed-WDV(97) 32854.70  57244.03  24389.33  

Fed-MV(71) 30686.80  33984.09  3297.29  

IL(55) 29490.72  32822.02  3331.30  

0.5 

Fed-WDV(97) 29116.95  50728.83  21611.88  

Fed-MV(71) 29116.95  32458.88  3341.93  

IL(55) 29116.95  32458.88  3341.93  

0.66 

Fed-WDV(97) 25379.19  44213.62  18834.42  

Fed-MV(71) 27547.09  30933.66  3386.56  

IL(55) 28743.17  32095.73  3352.56  

Note:  
Hybrid means there are multiple types of battery in one recycling process, and the 
battery cathode types were determined by our machine learning method, leveraging field 
information. 
Mixed ratio, MR = LFP/(LFP+NMC) 
Fed-WDV, Fed-MV, and IL stand for federated machine learning using the MDV method 
(our work), federated machine learning using the MV method, and non-federated 
independent learning.  
We assumed the cost is calculated by the sum of the product of individual cost and 
battery ratio. For example, for the LFP/(LFP+NMC) ratio of 0.5 using ML-direct recycling, 
the cost = 0.5*17903.69+0.5*40330.20=29916.95.  

 

 

  



Supplementary Note 1 The definition of the standardization of the retired batteries 

Recyclers often face difficulty identifying the type of retired battery, given poor access to 

the full historical operating data. However, battery recyclers need information on the type 

of retired batteries to decide on the design of recycling strategies. Therefore, it is necessary 

to standardize the retired battery data, even though the battery type and historical usages 

are diversified. Our proposed standardized process aims to test retired batteries with a 

commonly accessible method and to obtain information about retired batteries. Specifically, 

battery information is represented by a voltage-capacity curve and a dQ/dV curve derived 

from the charging and discharging data, respectively. To obtain such curves, battery 

recyclers need to encourage the collaborators to charge, and discharge collected retired 

batteries for one cycle. The observed data on the charging and discharging characteristics, 

after being recorded, are preprocessed according to the unanimous protocol distributed by 

the recyclers to generate curves. The protocol first denoises measurement data by (a) 

identifying out-of-cycle missing data entries and filling them with their nearest non-missing 

data entries; (b) identifying in-cycle outlier data entries (defined as entries outside 3 times 

the median-absolute deviation) and replacing them with their nearest non-outlier data 

entries; and (c) performing median filtering based on 20 neighboring data (the neighboring 

size for SNL and HNEI dataset is 30 and 25, respectively) entries to smooth the data. Next, 

the protocol interpolates and differentiates the denoised data to yield the voltage capacity 

and dQ/dV curves, with a recommended interpolation length of 1000 data points. Based 

on the data standardization results, feature engineering can be conducted by extracting 30 

key statistical features from the generated characteristic curves. It is assumed that 

batteries are mandatorily decommissioned when they reach a given threshold, i.e., 80% of 

the state of health (defined as the ratio of the current capacity to the nominal capacity), 

and are recovered by recyclers. Therefore, data standardization here is equivalent to 

obtaining information on the operating status of retired batteries at the end of their life with 

no requirements on the historical operational data. It is noted that the decommission 

threshold in this work is set as 90% of the nominal capacity of each battery due to the 

limited sample size of the batteries that are deemed to be decommissioned. 



Also, as suggested in the main text, we deliberately retain human-induced and cathode-

heterogeneity-induced noises with the intention of making the model robust and insensitive 

to these two types of noise. The human-induced noise arises from variations in parameter 

settings in feature engineering, as clients may decide on these settings based on the type 

of battery material. Heterogeneity-induced noises stem from the possibility that a client 

may have batteries of multiple cathode material types, complicating the data distribution. 

Consequently, our federated machine learning framework can be broadly applicable to 

various cathode material sorting under both homogenous and heterogenous data 

scenarios even if allowing the collaborators to preprocess the raw data flexibly, showcasing 

the potential for scalable industry implementation. 

 

  



Supplementary Note 2 

The definition of the quantiles: 

The Q1 quantile splits off the lowest 25% of data from the highest 75%. 

The Q2 quantile cuts the data set in half. 

The Q3 quantile splits off the highest 25% of data from the lowest 75%. 

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal 

distribution equals 3. When a distribution is more outlier-prone than the normal distribution, 

the kurtosis is larger than 3. When a distribution is less outlier-prone than the normal 

distribution, the kurtosis is smaller than 3. The definition of kurtosis: 

𝑘𝑘 =
1
𝑛𝑛∑  𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)4

�1
𝑛𝑛∑  𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)2�
2  (S1) 

where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖-th feature point, �̅�𝑥 is the mean value of the feature vector, and 𝑛𝑛 is the 

number of points in the feature vector. 

Skewness is a measure of the asymmetry of the data around the sample mean. If 

skewness is negative, the data spread out more to the left of the mean than to the right. If 

skewness is positive, the data spread out more to the right. The definition of skewness: 

𝑠𝑠 =
1
𝑛𝑛∑  𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)3

��1
𝑛𝑛∑  𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − �̅�𝑥)2�
3  (S2) 

where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖-th feature point, �̅�𝑥 is the mean value of the feature vector, and 𝑛𝑛 is the 

number of points in the feature vector. 

 

  



Supplementary Note 3 

In contrast to the homogeneous data distribution among clients, the heterogeneous data 

distribution is more compatible with the real-world situation. We consider this situation by 

running the Client simulation process when setting the NC𝑘𝑘 to 2. It means the minimum 

number of battery classes, namely the heterogeneity index in each client, is two to nine. 

The possible combinations of the clients under different random situations are also 

considered using the Monte Carlo method. Specifically, the Client simulation process is run 

with 50 Monte Carlo trials. The random seed is retrieved using a sequence from 50 to 100 

in MATLAB 2022a with the “v5uniform” method. Since we simulate the heterogeneity index 

from two to nine, there are in total of 400 trials in our heterogeneous data distribution setting. 

For each trial, the number of classes and batteries in one specific class are randomly 

shuffled. The model performance evaluations are conducted for each trial.  

  



Supplementary Note 4 

This part aims to describe the calculative process of economical evaluation.  

Step 1: 

Supplementary Tables 6, 7, 8, and 9 are basic data lists.  

Step 2: 

Supplementary Tables 10, 11 are calculation results based on the basic data12,14 in Step 1.  

Step 3: 

Supplementary Table 12 is a statistical result of Supplementary Tables 10, 11 in Step 2.  

Step 4: 

Supplementary Tables 13, 14, and 15 demonstrate the calculation process. 
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