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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The paper presents an innovative approach to retired battery sorting using federated machine 

learning while considering data privacy concerns. With some clarifications, additional details, and 

the incorporation of comparative analysis, this work has the potential to significantly contribute to 

the field of battery recycling and collaborative machine learning. I recommend this paper for 

acceptance pending the suggested revisions. 

1. To preprocess data in different clients and reduce the interference of “noisy” data, do the 

authors have good methods? 

2. CNN-based methods usually have a better prediction accuracy based on a large dataset, why 

not use this method in this paper? 

3. In the proposed federated machine learning framework, how to transfer parameters and ensure 

to avoid missing the received parameters data? 

Reviewer #2 (Remarks to the Author):

The proposed paper raises an important topic in the context of sustainable development and the 

policy of product life cycle in the closed circular economy model. It has been proposed to use 

Federal Machine Learning to classify retired batteries (in particular cathode material sorting), 

assuming that prior information about historical operating conditions is known simultaneously in 

accordance with protecting the personal data of recyclers. However, I have the following concerns: 

1. Thus, the decision trees are a commonly used approach, it is not known whether the authors 

developed and implemented the codes themselves, or whether they used ready-made Matlab-type 

packages or ready-made libraries in the Phyton language. 

2. There is also no description of the neural network (including its structure/topology, number of 

layers, number of neurons, input description, output description, and network diagram). Some 

explanations/arguments for the selection of a neural network just as proposed should also be 

given. 

3. Does the use of the proposed approach allow you to reduce the costs of recycling (taking into 

account the rescaling of the procedure and its implementation in practice) compared to the 

procedure of extracting natural resources? What is the main conclusion of the article? This should 

be clearly stated in the article, especially in the Abstract. 

4. Thus, the information concerning testing the retired batteries at the current cycle, specifically, 

with a complete charging-discharging cycle is not the common approach in the case of general 

lithium-ion batteries. The lithium-ion batteries come not only from electric vehicles, thus the 

authors will praise their method as one that does not require knowledge of historical data on 

battery life, while very often this data is unknown, also user data are unknown (so it is not 

possible to use them in calculations anyway). This is possible only in the case of batteries coming 

from electric vehicles. What chances does the proposed technique have for practical application? 

5. Some last references in the field of retried batteries with Machine Learning are also missing: 

- Zhang, Y., Tang, Q., Zhang, Y. et al. Identifying degradation patterns of lithium ion batteries 

from impedance spectroscopy using machine learning. Nat Commun 11, 1706 (2020). 

https://doi.org/10.1038/s41467-020-15235-7 

- Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z. W., Liu, C., Pan, H., Li, S., Wen, Y., 

Yan, Q., Machine Learning: An Advanced Platform for Materials Development and State Prediction 

in Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2101474. 

https://doi.org/10.1002/adma.202101474 

- Ng, MF., Zhao, J., Yan, Q. et al. Predicting the state of charge and health of batteries using data-

driven machine learning. Nat Mach Intell 2, 161–170 (2020). https://doi.org/10.1038/s42256-

020-0156-7 



6. And finally, the Figures are of low quality. This issue should be definitively improved. 

Thus, this paper is very interesting and the results obtained are of high importance taking into 

account environmental-based issues. However, due to the above comments, I would recommend 

the article for publication, provided that the above concerns will be addressed. I recommend a 

Major Revision.
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Response to Reviewers 5 

Response to Reviewer #1  6 

The paper presents an innovative approach to retired battery sorting using federated 7 

machine learning while considering data privacy concerns. With some clarifications, 8 

additional details, and the incorporation of comparative analysis, this work has the potential 9 

to significantly contribute to the field of battery recycling and collaborative machine learning. 10 

I recommend this paper for acceptance pending the suggested revisions. 11 

Dear Respected Reviewer, 12 

Thank you very much for your recognition of our paper. We are very pleased that you 13 

find our work innovative and significant to battery recycling using the proposed federated 14 

machine learning. 15 

Your constructive comments, covering various aspects such as data preprocessing, 16 

machine learning algorithms, and intermediate parameter transfer, are truly instrumental 17 

in guiding us to clarify our research details and contemplate our research implications. In 18 

the following of the section, we respectfully respond to your suggestions point by point. 19 

Accordingly, we make careful revisions to the original manuscript and supplementary 20 

information, where you could find the according revisions using “track changes” mode. We 21 

truly hope that the responses appropriately address your justified concerns, and that the 22 

revised manuscript lives up to your expectations of a decent Nature Communications23 

publication. 24 

25 
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1. To preprocess data in different clients and reduce the interference of “noisy” data, do 26 

the authors have good methods? 27 

Thank you for your inquiry on the data preprocessing/denoising techniques of the 28 

proposed federated machine learning framework. We deeply agree with you on their 29 

importance as critical preparatory steps, as the data would heavily influence the quality of 30 

the as-trained battery sorting models. 31 

Data preprocessing is of critical challenge for collaborative battery recycling scenarios. 32 

Such challenges stem from three main reasons: (1) Each client (collaborator) has diverse 33 

preferences for data preprocessing. This divergence might be attributed to the knowledge 34 

levels of the client's data experts, varying preprocessing costs, and different local model 35 

accuracy requirements, which can be regarded as human-induced noise. (2) Each client 36 

may possess multiple cathode material types. Heterogeneous battery data distributions 37 

among cathode diversities might necessitate changing data preprocessing methodologies, 38 

such as feature engineering, as well as parameter settings. This can be considered the 39 

cathode heterogeneity-induced noise. (3) For each type of battery material within one 40 

specific client, the battery testing conditions (including testing methodologies, testing 41 

parameters, and measurement errors) can impact data quality. This can be considered 42 

measurement noise. We would like to start with the measurement noise since it is common 43 

to consider for all machine learning settings. 44 

To align the preprocessing across different clients, the recycler distributes a unanimous 45 

preprocessing protocol to the collaborators, such that all the distributed datasets are 46 

standardized in the same fashion. The protocol involves three consecutive steps: denoising 47 

(which you kindly pointed out), curve filling, and feature engineering. 48 

(a) Denoising. Measurement noises arise inevitably from various sources, including 49 

deviations in battery testing methods, testing parameters, and real-time measurements. 50 

To maximally alleviate the impact of these noises, each collaborating manufacturer takes 51 

the following 3 approaches in sequential order: 52 

a1. Identify out-of-cycle missing data entries and refill them with their nearest non-53 

missing data entries. 54 

a2. Identify in-cycle outlier data entries, and replace them with their nearest non-outlier 55 

data entries. Here, we define a data entry as an “outlier” if it has a median deviation of at 56 

least n=3 times the Median Absolute Deviation (MAD) of the original data vector. 57 

a3. Perform moving median filtering on the data. Each data entry is replaced with the 58 

median value of its k=20 neighboring entries, such that fluctuating noises within the course 59 

of measurement can be minimized. Clients may adjust their neighboring size around the 60 

recycler's recommendation for the best suit of data. Specifically, we set the neighboring 61 

size for SNL and HNEI as 30 and 25 as an adjustment, while the others remaining 20. 62 

(b) Curve filling. We obtain the voltage capacity and dQ/dV curves from the denoised 63 
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measurements. This includes interpolating the original voltage/capacity measurements 64 

with the linear interpolation function. Specifically, the recycler recommends the interpolated 65 

length as L=1000 points. Then the collaborator performs differentiation on the interpolated 66 

data to derive the incremental capacity curve of both the charging and discharging curves. 67 

(c) Feature engineering. This includes the extraction of 30 statistical features (e.g., 68 

quantiles and kurtosis) as listed in Figure 2. Further details on how the statistical features 69 

are defined and extracted can be found in Supplementary Note 2. We would also like to 70 

gently point out that feature engineering can also be considered an ex-post denoising 71 

process: by extracting only a few key statistics from the characteristic curves, the effect of 72 

most measurement noises would be neutralized. 73 

Of course, in addition to the general procedures of preprocessing, the parameters 74 

employed for preprocessing should also be aligned across manufacturers. Table R1 below 75 

provides a list of shared parameters in preprocessing for the above steps. 76 

Table R1 Shared parameter values for data preprocessing 77 

Symbol Meaning Value 

n Minimum MAD ratio for an in-cycle data entry to be considered an outlier 3 

k Number of neighboring data entries to be averaged in median filtering 20,25,30 

L Interpolated voltage and capacity vector length in feature engineering 1000 

78 

We deliberately retain human-induced noise and cathode heterogeneity-induced noise79 

with the intention of making the model insensitive to these two types of noise. As previously 80 

mentioned, the source of human-induced noise arises from variations in parameter settings 81 

in feature engineering, as clients may decide on these settings based on the type of battery 82 

material. The source of heterogeneity stems from the possibility that a client may have 83 

batteries of multiple cathode material types, complicating the data distribution. The 84 

reported results demonstrate that federated battery recycling is insensitive to both human-85 

induced noise (by allowing clients to set different data preprocessing parameters) and 86 

cathode heterogeneity-induced noise (by permitting clients to have a mix of different 87 

battery cathode material types). Consequently, our federated machine learning framework 88 

is broadly applicable to various cathode material sorting under both homogenous and 89 

heterogenous data scenarios even if allowing the collaborator to preprocess the raw data 90 

flexibly, showcasing the potential for scalable industry implementation. 91 

We do realize, though, that the above data preprocessing details might not be well 92 

introduced in the original manuscript, which we deeply apologize for. To this end, we add 93 

the following description to Supplementary Note 1: 94 

“Recyclers often face difficulty identifying the type of retired battery, given poor access 95 

to the full historical operating data. However, battery recyclers need information on the type 96 

of retired batteries to decide on the design of recycling strategies. Therefore, it is necessary 97 

to standardize the retired battery data, even though the battery type and historical usages 98 
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are diversified. Our proposed standardized process aims to test retired batteries with a 99 

commonly accessible method and to obtain information about retired batteries. Specifically, 100 

battery information is represented by a voltage-capacity curve and a dQ/dV curve derived 101 

from the charging and discharging data, respectively. To obtain such curves, battery 102 

recyclers need to encourage the collaborators to charge, and discharge collected retired 103 

batteries for one cycle. The observed data on the charging and discharging characteristics, 104 

after being recorded, are preprocessed according to the unanimous protocol distributed by 105 

the recyclers to generate curves. The protocol first denoises measurement data by (a) 106 

identifying out-of-cycle missing data entries and filling them with their nearest non-missing 107 

data entries; (b) identifying in-cycle outlier data entries (defined as entries outside 3 times 108 

the median-absolute deviation) and replacing them with their nearest non-outlier data 109 

entries; and (c) performing median filtering based on 20 neighboring data (the neighboring 110 

size for SNL and HNEI dataset is 30 and 25, respectively) entries to smooth the data. Next, 111 

the protocol interpolates and differentiates the denoised data to yield the voltage capacity 112 

and dQ/dV curves, with a recommended interpolation length of 1000 data points. Based 113 

on the data standardization results, feature engineering can be conducted by extracting 30 114 

key statistical features from the generated characteristic curves. It is assumed that 115 

batteries are mandatorily decommissioned when they reach a given threshold, i.e., 80% of 116 

the state of health (defined as the ratio of the current capacity to the nominal capacity) and 117 

are recovered by recyclers. Therefore, data standardization here is equivalent to obtaining 118 

information on the operating status of retired batteries at the end of their life with no 119 

requirements on the historical operational data. It is noted that the decommission threshold 120 

in this work is set as 90% of the nominal capacity of each battery due to the limited sample 121 

size of the batteries that are deemed to be decommissioned.”122 

We sincerely hope that the above explanations have addressed your concerns 123 

regarding the data preprocessing for federated machine learning. 124 

125 
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2. CNN-based methods usually have a better prediction accuracy based on a large dataset, 126 

why not use this method in this paper? 127 

Thank you for your constructive comment on the selection of the machine learning 128 

algorithm for federated learning. Briefly speaking, CNN is indeed one of the most powerful 129 

algorithms in learning the underlying patterns of big data, but it might not be the best fit for 130 

our federated learning pipeline, due to the presence of the statistical feature engineering 131 

module as well as the computational cost-effectiveness. Please allow us to elaborate as 132 

follows. 133 

First, as presented in Figure 2, our proposed federated learning framework is preceded 134 

by a statistical feature engineering procedure, which extracts 30 key features from each 135 

pair of charging and discharging curves. Feature engineering is standard practice for most 136 

data-driven battery analysis; see, for example, Literatures [R1] and [R2]. Such feature 137 

engineering significantly changes the nature of the dataset, either in mechanism-driven or 138 

in mechanism-agonistic ways, from gigabyte-scale (specifically, 4.17 GB) sequential data 139 

to kilobyte-scale (50kB) tabular data. Decision trees such as random forests might be 140 

better suited to this transformed dataset where the features are small-sized, non-sequential, 141 

and highly heterogeneous [R3]. One can also better interpret the as-trained models to 142 

analyze which extracted features are most fundamental to the determination of battery 143 

cathode types in Figure 3d, because of the inherent feature-wise interpretability of random 144 

forests. While it is still an open question to interpret the network behaviors. 145 

Of course, one could argue that the framework can be designed without feature 146 

engineering, where CNNs often yield more accurate models by automatically extracting 147 

salient features from raw data. To this end, we randomly selected 5 batteries in each class 148 

to demonstrate the raw charging/ discharging data, which is fed into the CNN model. 149 

150 

Figure R1 The raw data of battery charging/ discharging curve in each class (after interpolation). 151 
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In Figure R1, we interpolate the charging/ discharging data of each class of battery to 152 

1000 points for a standardized input size to CNN, respectively. Since the battery charging/ 153 

discharging data are in sequential format, we choose a 1D convolutional layer as input. 154 

The detailed Python CNN implementation prototype is shown in Figure R2: 155 

156 

Figure R2 The implemented CNN prototype with Python3.9.13 version. 157 

In Figure R2, we set the loss function as the sparse categorical cross-entropy loss due 158 

to the multi-class classification nature. We use the stochastic gradient descent, with a 159 

learning rate of 0.01 and momentum of 0.9, to optimize the defined loss function of the 160 

learning process. Given the epochs being 50 and batch size being 128, the constructed 161 

CNN also provides good classification when the input client data is identical to those 162 

producing the result in Figure 3a under the independent learning (IL) mode. Frankly, 163 

through case studies, we find this to be true: without feature engineering, CNN models lead 164 

to a comparable accuracy of 97% in Figure R3, as compared to 95% for random forests.  165 

166 

Figure R3 The confusion matrix of predicted and actual cathode types with client results merged. 167 
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However, such a strategy is not feasible in terms of cost-effectiveness: the construction 168 

and training of a CNN network are computationally expensive, indicating more stringent 169 

requirements on the data storage memory and computational power of the collaborators. 170 

Further considering that federated learning is essentially a cross-entity iterative learning 171 

process, CNNs might significantly slow down the training process. Based on our case study, 172 

the model training time is recorded from each client. In Figure R4, we calculated the slope 173 

of the least square regression line of the time-size pairs, where the value of 0.1084 174 

indicates that one could cost 0.1084 seconds per sample when using the as-trained CNN 175 

model. On the contrary, the cost per sample is only 0.0008 seconds using the random 176 

forest reported in our work. From our perspective, using random forest would be a more 177 

acceptable alternative for the collaborators considering the time efficiency. One may notice 178 

the epochs are impacting the overall training time, but we find that the epochs are small 179 

enough to produce comparable accuracy compared with the random forest. Therefore, 180 

such a huge difference in time efficiency lands on the inherited suitability of the random 181 

forest to the tabular data, thanks to our successful feature engineering, rather than model 182 

parameter settings or network structure designs. 183 

184 

Figure R4 The CNN training time for each client (each client has a unique sample size). 185 

However, thanks to your reminder, we realize that the unique advantage of random 186 

forests is not well justified in the current manuscript. To this end, we add the following 187 

explanations to the Discussions section: 188 

“Specifically, the selection of random forests as the bottom-level machine learning 189 

algorithm, instead of more advanced neural network architectures, is made with full 190 

consideration of the feature engineering settings and cost-effectiveness requirements. 191 
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Feature engineering, which prepares the data for federated learning with expert-192 

knowledge-based information extraction, transforms the raw gigabyte-scale sequential 193 

data into kilobyte-scale tabular data. Decision trees such as random forests are more adept 194 

at learning from such low-dimensional data with heterogeneous features, whether in terms 195 

of accuracy, efficiency, or interpretability. Also, advanced neural network architectures 196 

such as Convolutional Neural Networks (CNNs) require much higher computational power 197 

from every collaborating manufacturer, with a significantly lengthened training time.” 198 

199 
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3. In the proposed federated machine learning framework, how to transfer parameters and 200 

ensure to avoid missing the received parameters data? 201 

Thank you very much for discussing with us the technical details of the parameter 202 

transfer process, which is truly one of the most fundamental building blocks of federated 203 

machine learning in real applications. In our proposal, the shared parameters (namely, the 204 

local cathode sorting probability result) are moderately encrypted by adding random noise 205 

at the model training stage before being directly transferred from the collaborators to the 206 

recyclers. However, just as you kindly pointed out, the transfer process can still be fragile, 207 

and the parameters can end up missing. Extra measures therefore need to be incorporated 208 

to prevent or handle such undesired situations. 209 

From our experience, the failure to receive parameters can mainly be attributed to two 210 

causes: (a) inadvertent parameter losses due to communication delay, and computational 211 

overload and (b) intentional parameter abduction/pollution from malicious third parties. Due 212 

to the distinct nature of the two parameter-missing scenarios, we address them separately 213 

as follows. 214 

In case of inadvertent parameter losses, the most straightforward and ideal method is 215 

to improve the stability of the distributed communicational channel and computational 216 

resources at the hardware wireless level, such as over-the-air digital aggregation that takes 217 

into account channel noises and perturbations [R4] [R5]. Of course, one must admit that 218 

such random losses are inevitable at times in practical deployment, even if the systems 219 

have been fully upgraded. Fortunately, we find that the proposed framework, consistent 220 

with other state-of-the-art federated learning frameworks [R6] [R7], turns out to be robust 221 

against parameter losses: even if parameters from a few manufacturers end up missing, 222 

the subsequent Wasserstein-distance voting can still be implemented by temporarily 223 

neglecting their presence, and the classification accuracy is only slightly degraded. This 224 

robustness is a natural solution against inevitable parameter losses.  225 

To prove the robustness of our WDV method, we designed a simulation experiment to 226 

deliberately discard the parameter to be transferred. Specifically, we randomly discard the 227 

votes from each client with a fixed percentage ratio, i.e., from 0% to 10%, and study the 228 

response to the sorting accuracies. Once a specific vote is hacked, we set the sorting 229 

probability of the vote to 0.5, a random guess. As illustrated in Figure R5, the WDV method 230 

is still robust in a wide range of missing data ratios. For instance, given the heterogeneity 231 

index is 9, the overall classification accuracy is still close to 90% under a 10% data missing 232 

ratio, which can be considered as a severe data missing scenario. One could also find that 233 

the result is still robust under even lower heterogeneity index settings. It is worth noticing 234 

that the sorting accuracy decay in the horizontal direction results from the increased data 235 

distribution complexity among clients (i.e., decreased heterogeneity index), rather than the 236 

sensitivity to the potential data missing in the parameter transfer link. 237 
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238 

Figure R5 The overall classification accuracy of the proposed WDV method under unrecoverable 239 

parameter loss and different heterogeneity settings. The client data distribution is randomly 240 

generated with the same method described in the Client Simulation Section. 241 

In case of malicious parameter attacks, related federated machine learning literature 242 

mostly chooses to design transfer mechanisms that can verify [R8] and protect [R9] the 243 

transferred parameters, such that third parties have fewer motivations or measures in 244 

maliciously maneuvering the transferred parameters. Verification approaches include 245 

cryptographic signatures [R10] and smart contracts in blockchains [R11]; protection 246 

approaches are mostly based on encryption techniques such as homomorphic encryption 247 

[R12] and differential privacy [R13]. In our proposed framework, thanks to your reminder, 248 

we have newly incorporated an RSA-based encryption scheme [R14] for both the 249 

verification and protection of parameters. In the verification stage, RSA is employed to 250 

create an avenue for verifying the authenticity of the parameter publisher. In the protection 251 

stage, RSA is employed to encrypt the parameters into ciphertexts. Additional technical 252 

approaches such as IP whitelisting/blacklisting can also be helpful in preventing third 253 

parties from even knowing that the parameter transfer is underway.  254 

Despite the safe and reliable communication issues that are still open questions in 255 

federated machine learning, the inherent nature of feature engineering and random forests 256 

guarantee that there is scarcely an overwhelming number of parameters to transfer 257 

(kilobytes at best). This can be extremely advantageous in inhibiting parameter losses: the 258 

issue of inadvertent communicational and computational delays would be mild, and the 259 

verification/protection of parameters would not be time-consuming.  260 

The above methods newly adopted in the framework are also introduced in the 261 

Discussion section of the manuscript as follows: 262 

“Supplementary Figure 10 shows that, despite such an idea assumption, the random 263 

forest model, incorporated with the Wasserstein distance voting, is naturally robust against 264 
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random parameter transfer losses even if parameters from a few collaborators end up 265 

missing. The sorting accuracy only slightly degrades given the same heterogeneity setting.”  266 

We sincerely hope that you would also consider these methods suitable for addressing 267 

different types of parameter losses. 268 

269 
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Response to Reviewer #2 270 

The proposed paper raises an important topic in the context of sustainable development 271 

and the policy of product life cycle in the closed circular economy model. It has been 272 

proposed to use Federal Machine Learning to classify retired batteries (in particular 273 

cathode material sorting), assuming that prior information about historical operating 274 

conditions is known simultaneously in accordance with protecting the personal data of 275 

recyclers. However, I have the following concerns: 276 

Dear Respected Reviewer, 277 

Thank you very much for taking your precious time to review our paper. We genuinely 278 

appreciate the positive attitude you hold towards our research paper, as well as your 279 

constructive comments that help us further improve it. 280 

In the following, we will address your comments in a point-by-point manner, with hopes 281 

of further clarifying the research scope and implementation details. Accordingly, the 282 

original manuscript and supplementary files are carefully revised, with changes highlighted 283 

in blue in this response letter, to help readers better understand our research. Accordingly, 284 

we made careful revisions to the original manuscript and supplementary information, where 285 

you might find the corresponding revisions using “track changes” mode. We believe that 286 

your professional suggestions have guided us to bring our revised manuscript up to a new 287 

level, and hopefully, this revised version will also meet your expectations of a qualified 288 

research paper as a decent Nature Communications publication. 289 

290 
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1. Thus, the decision trees are a commonly used approach, it is not known whether the 291 

authors developed and implemented the codes themselves, or whether they used ready-292 

made Matlab-type packages or ready-made libraries in the Python language. 293 

Thank you very much for bringing into question the source of coding, which admittedly 294 

was not well elucidated in the original manuscript. We would like to apologize for neglecting 295 

this issue. To make up for this, we wish to make the following clarifications: 296 

a) Random forest, as the bottom-level machine learning algorithm (i.e., the base learner 297 

in the federated machine learning framework), is implemented with readily available 298 

MATLAB packages (more specifically, the TreeBagger function in the Statistics and 299 

Machine Learning Toolbox). Such packages enjoy high prediction performances in terms 300 

of classification accuracy and computational efficiency and thus relieve us from the burden 301 

of developing our own codes from scratch. 302 

b) The high-level federated learning framework that coordinates the collaborative 303 

learning process, specially invented Wasserstein-distance voting and the transfer of 304 

intermediate model parameters, is coded from scratch on our own design, which is also in 305 

MATLAB language. 306 

We would like to open our key coding and the readers can refer to the Code Availability307 

section to see how the existing random forest packages and the self-developed federated 308 

learning programs interact with each other to achieve the final collaborative classification. 309 

We have also added the following explicit clarifications to the Method-Client model and 310 

Federated learning section:311 

“The bottom-level random forest algorithm (client model) is implemented using readily 312 

available MATLAB packages (more specifically, the TreeBagger function in the Statistics 313 

and Machine Learning Toolbox). The MATLAB version is R2022a, and the code runs on a 314 

personal computer with Intel (R) Core (TM) i5-10400 CPU @ 2.90GHz RAM 8 GB.”  315 

… 316 

“The higher-level federated learning framework, including the Wasserstein-distance 317 

voting and the transfer of parameters, is implemented from scratch.”318 

We sincerely hope that the above clarification is sufficient for readers to understand the 319 

detailed origins of the codes.320 

321 
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2. There is also no description of the neural network (including its structure/topology, 322 

number of layers, number of neurons, input description, output description, and network 323 

diagram). Some explanations/arguments for the selection of a neural network just as 324 

proposed should also be given. 325 

Thank you for kindly reminding us of the fact that we failed to provide selected values 326 

of hyperparameters, alongside the justification for selecting these values. We are very 327 

sorry for this neglect, as it may affect the reproducibility of codes and the evaluation of 328 

modeling results. Moreover, we apologize for any potential confusion that we used a 329 

neural network as the client model. Instead, we used the random forest as the client model. 330 

Regarding the detailed description of the random forest, we only compulsorily set the 331 

number of trees in each random forest as 10, which can be regarded as a standardized 332 

procedure initialized by the battery recycler. In Figure R6, we use the out-of-bag 333 

classification error to rationalize the selection of 10 as the standard number of trees in the 334 

random forest. Note that each tree in the random forest is independently grown on a 335 

drawn bootstrap replication of the input data. Those samples that are not in such 336 

replication are called out-of-bag. Therefore, the out-of-bag classification error evaluates 337 

the generalization of the unseen dataset. It turns out that the out-of-bag classification error 338 

first rapidly decreases and then asymptotically decreases at the point where the number 339 

of trees is 10. Since the input data of Figure R6 is from client 2, who owns up to 8 classes 340 

of batteries, a most challenging classification task among all the heterogeneous settings 341 

described in Supplementary Table 5, we select the number of trees as 10 to ensure an 342 

adequate model capacity for other clients while avoiding redundant computation burden. 343 

344 

Figure R6 The out-of-bag classification error against the number of trees in the random forest.345 

Regarding other hyperparameters, we alternatively let the collaborators learn the most 346 

suitable random forest structure by themselves, rather than fix the parameters since each 347 

collaborator could have very different battery numbers and cathode material types, hence 348 
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different model parameter settings. By only presetting the number of trees in the random 349 

forest, the collaborators could have enough flexibility to train the best model that suits 350 

their own data distribution. The detailed selection of hyperparameter, i.e., the number of 351 

trees n, is listed in Table R2. 352 

Table R2 Selected hyperparameter values of the random forest algorithm 353 

Symbol Meaning Value 

n Number of trees in the random forest 10 

354 

The model input size d_input and output size d_output are summarized in Table R3, 355 

where m is the sample size in each client and 30 is the extracted feature number. 356 

Table R3 The input and output shape of the random forest algorithm 357 

Symbol Meaning Value 

d_input The input size to the random forest m by 30 

d_ouput The output size of the random forest m by 1 

358 

The above explanations have been added to the Methods-Client model section as 359 

follows: 360 

“The number of trees in each random forest is fixed at ten, i.e., 𝐽 = 10 for a balanced 361 

classification accuracy and computation cost. We deliberately let the collaborators (clients) 362 

learn the most suitable random forest structure, i.e., the model parameters, by themselves, 363 

rather than fixing the parameters since each collaborator could have very different battery 364 

numbers and cathode material types. By only presetting the number of trees in the random 365 

forest, the collaborators could have enough flexibility to train the best model that suits their 366 

own data distribution. The bottom-level random forest algorithm (client model) is 367 

implemented using readily available MATLAB packages, more specifically, the TreeBagger 368 

function in the Statistics and Machine Learning Toolbox. The MATLAB version is R2022a, 369 

and the code runs on a personal computer with Intel (R) Core (TM) i5-10400 CPU @ 370 

2.90GHz RAM 8 GB.”  371 

Here are the explanations/arguments for the selection of the random forest, rather 372 

than other advanced machine learning approaches, for instance, convolutional neural 373 

network (CNN). 374 

Briefly speaking, advanced machine learning approaches such as CNN are indeed one 375 

of the most powerful algorithms in learning the underlying patterns of big data, but they 376 

might not be the best fit for our federated learning pipeline, due to the presence of the 377 

statistical feature engineering module as well as the computational cost-effectiveness. 378 

First, as presented in Figure 2, our proposed federated learning framework is preceded 379 



17 

by a statistical feature engineering procedure, which extracts 30 key features from each 380 

pair of charging/discharging curves. Feature engineering is standard practice for most 381 

data-driven battery analysis; see, for example, Literatures [R1] and [R2]. Such feature 382 

engineering significantly changes the nature of the dataset, from gigabyte-scale 383 

(specifically, 4.17 GB) sequential data to kilobyte-scale (50kB) tabular data. Decision trees 384 

such as random forests might be better suited to this transformed dataset where the 385 

features are small-sized, non-sequential, and highly heterogeneous [R3]. One can also 386 

better interpret the as-trained models to analyze which extracted features are most 387 

fundamental to the determination of battery cathode types in Figure 3d, because of the 388 

inherent feature-wise interpretability of random forests. While it is still an open question to 389 

interpret the network behaviors. 390 

To better clarify the motivation for selecting random forest as the base learner, we add 391 

the following explanations to the Discussions section: 392 

“Specifically, the selection of random forests as the bottom-level machine learning 393 

algorithm, instead of more advanced neural network architectures, is made with full 394 

consideration of the feature engineering settings and cost-effectiveness requirements. 395 

Feature engineering, which prepares the data for federated learning with expert-396 

knowledge-based information extraction, transforms the raw gigabyte-scale sequential 397 

data into kilobyte-scale tabular data. Decision trees such as random forests are more adept 398 

at learning from such low-dimensional data with heterogeneous features, whether in terms 399 

of accuracy, efficiency, or interpretability. Also, advanced neural network architectures 400 

such as Convolutional Neural Networks (CNNs) require much higher computational power 401 

from every collaborating manufacturer, with a significantly lengthened training time and 402 

compromised model interpretability.” 403 

404 

405 
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3. Does the use of the proposed approach allow you to reduce the costs of recycling (taking 406 

into account the rescaling of the procedure and its implementation in practice) compared 407 

to the procedure of extracting natural resources? What is the main conclusion of the article? 408 

This should be clearly stated in the article, especially in the Abstract. 409 

We appreciate your insightful comment. In fact, using federated learning to sort cathode 410 

materials for retired batteries cannot reduce the cost of direct battery recycling. On the 411 

contrary, since direct battery recycling requires more cost inputs of raw materials and 412 

chemical reagents in the pretreatment stage, its cost is higher than the procedure of 413 

extracting natural resources (specifically, hydrometallurgy and pyrometallurgy). It is worth 414 

noting that the excess cost of direct battery recycling is not caused by the sorting of retired 415 

batteries assisted by federated learning. This is the intrinsic feature of the direct recycling 416 

method that the recyclers carefully preprocess retired batteries and repair possible 417 

electrode defects. The recycling product is functionalized electrodes or electrode materials 418 

rather than alloy powder produced by hydrometallurgy and pyrometallurgy. The cost 419 

comparison between direct recycling and the procedure of extracting natural resources is 420 

shown item-wise in Figure 5a. For the same cathode material, direct recycling has the 421 

highest cost, and the main source of excess cost is chemical reagents and raw materials 422 

such as lithium supplements. 423 

Pyrometallurgy recycling ultimately produces a metal alloy, while hydrometallurgy 424 

recycling generates lithium salt and precursor materials. In contrast, direct recycling leads 425 

to the regeneration of battery materials. These products have varying degrees of added 426 

value, leading to differences in the profitability associated with the three recycling 427 

strategies. Hence, even though direct recycling methods may entail slightly higher costs, 428 

they can yield significantly greater benefits than traditional recycling methods, particularly 429 

for NCM. However, direct recycling methods, as a promising technology, are still in the 430 

laboratory stage. Specifically, in the laboratory, materials scientists concentrate on 431 

addressing distinct failure issues found in specific cathode materials. Repair strategies are 432 

highly variable, primarily due to the differing failure mechanisms observed in various 433 

materials. To illustrate, let's consider the antisite issue. To achieve precise targeted repair, 434 

addressing Li/Ni antisite issues in spent NCM cathodes often necessitates an oxidation 435 

reaction to convert Ni2+ back to Ni3+. In contrast, for spent LFP cathodes, it is typically 436 

necessary to create a reducing environment that encourages the return of Fe3+ ions, which 437 

occupy the Li layer, to their original positions. These tailored strategies align with the 438 

specific requirements of each cathode material. Hence, to transition direct recycling to real 439 

industrial applications, a critical first step is the rapid sorting of retired batteries. 440 

Considering the current state of development in direct recycling technology, it is generally 441 
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challenging to directly recycle mixed and unsorted retired batteries without proper 442 

classification. 443 

Therefore, the main conclusion of this article is that using only field test data, rather 444 

than battery historical data, to sort retired batteries is a key step toward the industrial 445 

application of direct recycling. Furthermore, the accuracy of retired battery sorting will 446 

greatly affect the profit of direct recycling, which we have analyzed in Figure 5f. Specifically, 447 

when battery data cannot be shared due to privacy restrictions, recyclers can only use 448 

independent learning (IL) for modeling, where the profit of direct recycling is low. This is 449 

because a large number of retired batteries of different cathode materials are misclassified, 450 

resulting in the wrong chemical reagents being added, further leading to the generation of 451 

unqualified products. Using the federated learning framework we proposed, the data 452 

privacy of collaborators is protected, and the high sorting accuracy allows recyclers to add 453 

appropriate chemical reagents to the identified cathode materials for repair, further 454 

generating higher recycling profits. 455 

To better clarify the scope of our work, we have made the modifications in the Abstract, 456 

and Conclusion part of the manuscript: 457 

“Unsorted retired batteries with mixed cathode materials impede the industry 458 

deployment of direct recycling due to the cathode-specific nature. Given the high 459 

profitability, accurately classifying the imminent surging of retired batteries is critical for the 460 

commercial use of direct recycling. However, historical operation conditions, manufacturer 461 

variability, and data privacy concerns from recycling collaborators (data owners) have 462 

remained major challenges. In this work, we collect an out-of-distribution dataset consisting 463 

of 130 lithium-ion batteries, across 5 cathode materials from 7 manufacturers. A federated 464 

machine learning framework is proposed to classify these diverse retired batteries without 465 

assuming any prior information on historical operation conditions and to protect the data 466 

privacy of multiple recycling collaborators. With only one cycle of the end-of-life charging 467 

and discharging data tested at the recycling end, our model achieves 1% and 3% cathode 468 

material sorting errors using such one cycle of field available data, rather than any historical 469 

data, under both homogeneous and heterogeneous recycling circumstances, respectively, 470 

thanks to our proposed Wasserstein-distance voting strategy. The economic evaluation 471 

shows the relevance and necessity of our accurate retired battery sorting to a profitable 472 

and sustainable recycling industry in the future. This work enlightens the possibilities of 473 

leveraging the existing privacy-sensitive data from multiple collaborators to develop and 474 

optimize complex decision-making procedures in a collaborative and privacy-preserving 475 

manner.” 476 

… 477 
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“Federated machine learning is a promising route for retired battery sorting and enables 478 

emerging battery recycling technologies, especially direct recycling, in their development, 479 

practical application, and optimization. We create a retired battery sorting model using only 480 

one cycle of end-of-life charging and discharging data as opposed to any historical data481 

while preserving the data privacy budgets of multiple battery recycling collaborators. In the 482 

homogeneous setting, we obtain a 1% cathode material sorting error; in the heterogeneous 483 

setting, we obtain a 3% cathode material sorting error, thanks to our Wasserstein-distance 484 

voting strategy. Such a level of accuracy is achieved by (1) automatically exploring the 485 

unique patterns in the salient features without assuming any prior knowledge of historical 486 

operation conditions and (2) using our proposed Wasserstein-distance voting strategy to 487 

correct heterogeneous data distribution among recycling collaborators. An economic 488 

evaluation showcases the relevance and necessity of accurate retired battery sorting to 489 

the profitable battery recycling industry using direct recycling. In general, our approach can 490 

complement the existing first-principle-based recycling route research paradigms on actual 491 

battery recycling practice, where retired batteries are necessary while challenging to sort. 492 

Broadly speaking, our work enlightens the possibilities of leveraging existing data from 493 

multiple data owners, rather than time-consuming and expensive data generations, to 494 

develop and optimize complex decision-making procedures such as the battery recycling 495 

route design in a collaborative while privacy-preserving fashion.496 

” 497 
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4. Thus, the information concerning testing the retired batteries at the current cycle, 498 

specifically, with a complete charging-discharging cycle is not the common approach in the 499 

case of general lithium-ion batteries. The lithium-ion batteries come not only from electric 500 

vehicles, thus the authors will praise their method as one that does not require knowledge 501 

of historical data on battery life, while very often this data is unknown, also user data are 502 

unknown (so it is not possible to use them in calculations anyway). This is possible only in 503 

the case of batteries coming from electric vehicles. What chances does the proposed 504 

technique have for practical application? 505 

We sincerely appreciate the comment since it raises a critical concern about the use 506 

case of lithium-ion batteries. As you kindly suggested a complete charging-discharging 507 

cycle is not common in the electric vehicle scenario, which is true. However, for other use 508 

cases such as the battery design stage, and battery manufacturing stage (quality control), 509 

the complete charging-discharging cycle is standard since the battery designer and the 510 

battery manufacturer are finding valuable insights into the battery material formula, and 511 

manufacturing variabilities. The core idea of using complete charging and discharging 512 

cycles is to ensure that no extra variabilities are introduced by dynamic charging or 513 

discharging. We also take a similar idea when dealing with the battery recycling scenario. 514 

Considering the highly heterogeneous data distribution of the retired batteries, if the 515 

recycler wants to gain insights into the diversified cathode material types by studying the 516 

voltage response curves, then the complete charging and discharging procedures should 517 

be standardized to avoid any extra variabilities.  518 

 We also admit that lithium-ion batteries have not only retired from electric vehicles but 519 

also from various applications such as data center energy storage systems, power grid 520 

energy storage systems, and consumer electronics. As you kindly commented, the battery 521 

data is very often unknown, which is also the starting point of our idea that the battery 522 

recycling scenario has very diversified battery origins and has no access to historical data. 523 

Therefore, it is not possible to use the historical data in calculations anyway. To this end, 524 

we use the data at the “current cycle” to emphasize that our method requires no historical 525 

information on the retired batteries. Specifically, the concept of the “current cycle” means 526 

that the battery recycler tests the retired batteries with a charging/ discharging procedure, 527 

regardless of any historical use conditions. However, we admit that this “current cycle” 528 

could lead to potential confusion. We have accordingly made corrections in the Abstract, 529 

Conclusion section, and relevant phrases in the main body of the manuscript (only the 530 

modified Abstract and Conclusion part is pasted below for your easier reference): 531 

 “…With only one cycle of the end-of-life charging and discharging data tested at the 532 

recycling end, our model achieves 1% and 3% cathode material sorting errors using such 533 

one cycle of field available data, rather than any historical data…” 534 
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 … 535 

 “…We create a retired battery sorting model using only one cycle of end-of-life 536 

charging and discharging data as opposed to any historical data while preserving the data 537 

privacy budgets of multiple battery recycling collaborators…Such a level of accuracy is 538 

achieved by (1) automatically exploring the unique patterns in the salient features without 539 

assuming any prior knowledge of historical operation conditions and…” 540 

Therefore, our proposed method is designed in the first place for practical applications 541 

under the retired battery sorting scenario, where historical data access is hardly available. 542 

Despite the diversified cathode material types of the retired batteries, the recycling 543 

collaborators only charge and discharge the batteries for one cycle to retrieve the field-544 

testing data, which brings huge flexibility to the collaborative retired battery sorting. We 545 

even set no restrictions on the origin of the retired batteries, such that the trained model is 546 

more generalized in practical battery recycling scenarios. We hope that our explanation 547 

could alleviate your justified concerns about the practical issues in the industrialization of 548 

direct battery recycling. 549 

550 
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5. Some last references in the field of retired batteries with machine learning are also 551 

missing: 552 

- Zhang, Y., Tang, Q., Zhang, Y. et al. Identifying degradation patterns of lithium ion 553 

batteries from impedance spectroscopy using machine learning. Nat Commun 11, 1706 554 

(2020). https://doi.org/10.1038/s41467-020-15235-7 555 

- Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z. W., Liu, C., Pan, H., Li, S., 556 

Wen, Y., Yan, Q., Machine Learning: An Advanced Platform for Materials Development 557 

and State Prediction in Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2101474. 558 

https://doi.org/10.1002/adma.202101474 559 

- Ng, MF., Zhao, J., Yan, Q. et al. Predicting the state of charge and health of batteries 560 

using data-driven machine learning. Nat Mach Intell 2, 161–170 (2020). 561 

https://doi.org/10.1038/s42256-020-0156-7 562 

Thank you very much for your suggestion on the list of references. After a careful read 563 

of all three papers, we do find them to be highly relevant to our paper, as they are all 564 

centered around the topic of machine-learning-based battery performance evaluation. 565 

Moreover, they focus on different stages of the battery life cycle, including development, 566 

in-service, and recycling, and are all highly accredited in their respective areas. Citing the 567 

mentioned literature would significantly increase the comprehensiveness of the existing 568 

literature review. Therefore, in the revised manuscript, we include these references in the 569 

Introduction section: 570 

“In other battery-related topics, machine learning has recently allowed us to 571 

automatically discover complex battery mechanisms [17-19], predict remaining useful life 572 

[20-23], evaluate the state of health [19, 24, 25], optimize the cycling profile [26, 27], and 573 

approximate the failure distribution [28], even to guide the battery design [29, 30] and 574 

predict life-long performance immediately after manufacturing [31]…575 

[19] Zhang Y, Tang Q, Zhang Y, Wang J, Stimming U, Lee A A. Identifying degradation 576 

patterns of lithium ion batteries from impedance spectroscopy using machine learning. 577 

Nature Communications 11. 2020.578 

[25] Ng M-F, Zhao J, Yan Q, Conduit G J, Seh Z W. Predicting the state of charge and 579 

health of batteries using data-driven machine learning. Nature Machine Intelligence 2. 580 

2020:161-70.581 

[30] Lv C, Zhou X, Zhong L, Yan C, Srinivasan M, Seh Z W, et al. Machine learning: 582 

an advanced platform for materials development and state prediction in lithium-ion 583 

batteries. Advanced Materials 34(25). 2022: 2101474.”584 

Again, we would like to express our gratitude to you for recommending such high-585 

quality journals as references, so that the literature review can now be complete and more 586 

well-rounded. 587 

588 
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6. And finally, the figures are of low quality. This issue should be definitively improved. 589 

Thank you very much for pointing out the quality issue of the figures. We are truly sorry 590 

that we failed to generate the figures in a clear and readable format, which must have 591 

caused you many unnecessary troubles in trying to review our work. 592 

To fix this issue, we have regenerated all figures with higher resolution, and have made 593 

sure that the figure quality is not degraded when the manuscript is converted to PDF format. 594 

Additionally, we enlarge the fonts for most figures in the manuscript and supplementary 595 

information, so that readers can read information more conveniently. 596 

We sincerely hope that you will also find the revised figures decent in quality and ready 597 

for publication. 598 

599 
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Thus, this paper is very interesting and the results obtained are of high importance taking 600 

into account environmental-based issues. However, due to the above comments, I would 601 

recommend the article for publication, provided that the above concerns will be addressed. 602 

I recommend a Major Revision. 603 

Again, we would like to thank you so much for agreeing to review our paper, and for 604 

providing such positive and constructive feedback. We sincerely hope that our carefully 605 

prepared responses and revisions can alleviate all your concerns about our proposed 606 

federated battery classification method and that the paper is more suitable for publication 607 

in Nature Communications. 608 

609 
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