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Figure S1
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Fig. S1. Quantification of HA in conditioned media. (a) ELISA quantification of HA from
media of BMR and mouse cells. Data are mean + SD of biological replicates. *** P < (0.001
by unpaired two-sided t-test. (b) Quantification of HA intensity from pulsed-field gel. HA
purified from media of different cell lines was subjected to pulsed-field electrophoresis and
stained with Stains-All. The relative HA intensity was quantified using Image]. Data are
mean + SD of gels from three independent experiments. * P < 0.05 by unpaired two-sided t-

test. Source data are provided as a Source Data file.
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Fig. S2. Levels of HA in the heart of subterranean species. (a) Cryosections of heart tissues
from different species were stained with hyaluronan binding protein (HABP, red) and Hoechst
(blue). Experiments were repeated three times. Representative Immunofluorescence images are
shown at 20 x magnification (left). Scale bar, 50 um. Quantification of HABP fluorescence (right).
Data are mean = SD of three independent areas. P-value indicates the difference between
subterranean and the corresponding aboveground species. * P < 0.05, *** P <(0.001 by unpaired
two-sided t-test. (b) RT-qPCR showing expression levels of HAS2 and HYAL2 and HYALI genes
in the heart comparing subterranean species with their aboveground controls. Experiments were
performed using three biological replicates, except EM and SNM, which had two biological
replicates. P-value indicates the difference between subterranean and the corresponding
aboveground species. Data are mean £ SD. * P <0.05, *** P <0.001 by unpaired two-sided t-test.

Source data are provided as a Source Data file.
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Fig. S3. Levels of HA in the kidney of subterranean species. (a) Cryosections of kidney tissues
from different species were stained with hyaluronan binding protein (HABP, red) and Hoechst
(blue). Experiments were repeated three times. Representative immunofluorescence images are
shown at 20 x magnification (left). Scale bar, 50 um. Quantification of HABP fluorescence (right).
Data are mean = SD of three independent areas. P-value indicates the difference between
subterranean and the corresponding aboveground species. * P < 0.05, *** P <(0.001 by unpaired
two-sided t-test. (b) RT-qPCR showing expression levels of HAS2 and HYAL2 and HYALI genes
in the heart comparing subterranean species with their aboveground controls. Experiments were
performed using three biological replicates, except EM and SNM, which had two biological
replicates. P-value indicates the difference between subterranean and the corresponding
aboveground species. Data are mean £ SD. * P <0.05, *** P <0.001 by unpaired two-sided t-test.

Source data are provided as a Source Data file.
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Fig. S4. Negative controls for tissue HABP staining. Cryosections of skin, heart, and kidney
were treated with HAase overnight before staining with HABP. The negative signal for HABP
channel indicates the specificity of HABP staining for HA. Scale bar, 50 pm.
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Fig. S5. Expression of HAS2, HYAL?2, and HYALI in the tissues of subterranean species.
(a) RT-qPCR was performed using three biological replicates, except Mouse, GP, EM and
SNM, which had two biological replicates. Data are mean + SD. * P < 0.05 by unpaired two-
sided t-test. (b) Boxplots showing the expression of HAS2, HAYLI1, and HYAL2 in skin,
kidney and heart of different species determined by RNAseq. Log2 transformed normalized
counts were shown. The boxplots display the median, the 1st, and 3rd quartiles; the whiskers
show a 1.5x interquartile range. Data points outside the whiskers are outliers. Skin: Mouse n
=5 BMRn=5TMVn=3 GPn=5NMRn=4,DMR n=>5, Shrewn=4, EM n =2, and
SNM 7n = 1; Kidney: Mouse n =10, BMR n=5,TMVn=3,GPn=5 NMRrn=5 DMR n =
5, Shrew n =8, EM n =2, and SNM n = 1; Heart: Mouse n =5, TMV n=3, GPrn=3, NMR n
=5, DMR n =5, Shrew n = 10, EM n = 2, and SNM n = 1. Source data are provided as a

Source Data file.
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Fig. S6. Quality controls for RNA sequencing (RNAseq). (a) Heatmap showing the Pearson
correlation coefficient among all samples. Samples are mainly clustered by tissues. (b) Boxplot of
gene expression (in log scale) of individual samples for each tissue after filtering out low-
expressed genes and normalized by DESeq2 package. The boxplots display the median, the 1st,
and 3rd quartiles; the whiskers show a 1.5% interquartile range. Data points outside the whiskers
are outliers. Same number of genes were shown for each species: Heart n = 13,089, Kidney n =

13,323, Lung n = 13,395, Skin n = 13,211, Liver n = 13,023, and Brain n = 13,452.
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Figure S7



Fig. S7. Expression levels of transfected genes. HelLa cells (a) and 293T cells (b) were
transfected with low amount of mouse HAS2 or high amount of BMR HAS2 to mimic the different
endogenous expression in skin fibroblasts. Other genes including HYAL1 and HYAL2 from
mouse, BMR, shrew, SNM, as well as mutant HY AL2 of SNM and NMR were transfected equally.
RT-qPCR was performed to determine expression levels of HAS2, HYAL2, and HYALI1 in
transfected cells. Data are mean + SD of three technical replicates. *** P <(.001 by unpaired two-

sided t-test. Source data are provided as a Source Data file.
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Fig. S8. Effects of HA-related enzymes on HA synthesis and degradation in subterranean
species. (a) 293T cells were transfected with low amount of mouse HAS2 or high amount of BMR
HAS2 (14-fold higher) plasmids. Two days after transfection, HA was purified and run on an
agarose gel. (b) Media containing 20 pg/mL commercial HMM-HA was incubated with growing
fibroblasts from each species. Two days after incubation, HA was purified from the media and run
on an agarose gel. For each cell line, a sample without commercial HA was included to control for
the endogenous HA. The amount of loaded HA was normalized to cell number of each species. (c-
e) 293T cells were transfected with either HYAL2 (c¢) or HYALL1 (e) of mouse, BMR, shrew, or
SNM. Transfected cells were cultured in media containing 20 pg/mL commercial HA. Two days
after incubation, HA was purified and run on an agarose gel. (d) Quantification of HA gel in panel
c. Degradation of HA by HYAL?2 from different species was calculated based on the difference in
intensity between R&D HA and the treated samples. HA intensities were quantified using Imagel.
(F) 293T cells were transfected with either wild-type (WT) SNM HYAL?2 plasmid, or each of its
five mutants. Cells were incubated with media containing 20 pg/mL commercial HA for two days,
followed by HA extraction an electrophoresis. (g) Quantification of HA intensities after
degradation by WT or mutant SNM HY AL2. For (d) and (g), data are mean + SD of three technical
replicates. * P < 0.05 by unpaired two-sided t-test. For (a), (b), and (e), experiments were

performed three times with similar results. Source data are provided as a Source Data file.
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Fig. S9. Alignment of HAS2 and NID1 protein sequence. (a) Alignment of mouse and
BMR HAS2 protein sequences. (b) Locations of two convergent mutation sites of NIDI
protein across subterranean species are indicated with arrows. The names of subterranean

species are labeled in red.



Figure S10
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Fig. S10. Positively selected and convergently evolving genes in subterranean species.
Phylogenetic tree of species without plateau zokor and hoary bamboo rat and their numbers
of positively selected genes (PSGs), convergently evolving genes (CEGs), convergent-to-
divergent site ratio (C/D ratio; >= 3 species) and genes with both positive selection sites and
convergent sites (CEGs-PSGs). Error bars indicate the standard deviations of numbers of
CEGs and (/D ratio resulting from different combinations of species. Subterranean species

are shown in red.
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Fig. S11. The heatmap showing expression of type IV collagen genes between subterranean
and aboveground species. Heatmap showing expression of six genes including COL4Al,
COL4A2, COL4A3, COL4A4, COL4AS and COL4A6. COL4A1 and COL4A2 show consistently
lower expression in most of the subterranean species in the lung, brain, heart, and kidney, but not

in skin and liver.



