Supporting Information

Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic

Fungus Pseudofusicoccum stromaticum CMRP4328

Jucélia Iantas,^{1, 2, 3*} Daiani Cristina Savi,^{4, 5} Larissa V. Ponomareva,^{2, 3} Jon S. Thorson,^{2,}

³ Jürgen Rohr,² Chirlei Glienke,^{1, 4}, Khaled A. Shaaban^{2, 3*}

*These two authors contributed equally to this work.

Affiliations

¹Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
²Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
³Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
⁴Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
⁵Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil

Correspondence

Chirlei Glienke, PhD

Department of Genetics

Federal University of Paraná

Av. Cel. Francisco H. dos Santos, 100

81531-990, Curitiba

Brazil

Phone: + 55 413 361 1562

Fax: +55 413 361 1783

ch.glienke@gmail.com

Khaled A. Shaaban, PhD

Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation University of Kentucky Lexington, Kentucky 40536 United States Phone: +1 859 218 0916 Fax: +1 859 323 0204

khaled_shaaban@uky.edu

Table of Contents:	Page			
EXPERIMENTAL SECTION				
General Experimental Procedures				
Cancer Cell Line Viability Assay				
Physicochemical Properties of Compounds 3-10				
Supplementary References				
Fig. 18 Workup scheme of the metabolites produced by the fungus <i>Pseudofusicoccum stromaticum</i> CMRP4328.	S9			
 Fig. 2S A ¹H, ¹H-COSY (—) and selected HMBC (→) correlations of compounds 6-10. B TOCSY (—) and selected NOESY (r⁻) correlations of compounds 6-7 and 9. 				
Fig. 3S UV-vis (MeOH) spectra of compounds 1-5.	S11			
Fig. 4S Chemical structures of the reported natural products, paecilin B (11), paecilin E (12) along with the synthetic (R)-5-hydroxy-2-(hydroxymethyl)-2-([$2R$, $3R$]-3-methyl-5-oxotetrahydrofuran-2-yl) chroman-4-one (13).				
Fig. 5S. Antifungal activity of compounds 2, 5, and 7-10 against the phytopathogen <i>Phyllosticta citricarpa</i> .				
Table 1S ¹³ C and ¹ H (500 MHz) NMR spectroscopic data for cytochalasin H (6) and cytochalasin J (7) in CD ₃ OD (δ in ppm).				
Figs. 6S-111S HPLC/UV, HPLC/MS, HRMS, and NMR spectra of the compounds.	S14- S119			

EXPERIMENTAL SECTION

General Experimental Procedures

Optical rotation measurements were recorded on a Jasco DIP-370 Digital Polarimeter (Jasco). UV spectra were recorded on an Ultrospec 8000 spectrometer (GE). Ultraviolet-visible (UV-VIS) spectra of compounds 6-10 were taken directly from analytical HPLC-PDA runs and show relative intensities. NMR spectra were measured using Varian Vnmr 500 (¹H, 500 MHz; ¹³C, 125.7 MHz) and Vnmr 400 (¹H, 399.8 MHz; ¹³C, 100.5 MHz) spectrometers where δ -values were referenced to respective solvent signals [CDCl₃, $\delta_{\rm H}$ 7.24 ppm, $\delta_{\rm C}$ 77.23 ppm; CD₃OD, $\delta_{\rm H}$ 3.31ppm, $\delta_{\rm C}$ 49.15 ppm; acetone- d_6 , $\delta_{\rm H}$ 2.05 ppm, $\delta_{\rm C}$ 29.92/206.68; DMSO d_6 , $\delta_{\rm H}$ 2.50 ppm, $\delta_{\rm C}$ 39.51 ppm]. High-resolution electrospray ionization (HRESI) mass spectra were recorded on a Thermo Scientific (www.thermoscientific.com) Q Exactive (orbitrap mass spectrometer), with sample introduction by direct infusion at 3 µL/min. Fullscan mass spectra were recorded in positive and negative ion modes (Instrument parameters included spray voltage: 3.8 kV "for positive ion mode", 3.2 kV "for negative ion mode"; capillary temperature: 225°C; nominal resolution: 140000). HPLC-UV/MS analyses were accomplished with an Agilent InfinityLab LC/MSD mass spectrometer (MS Model G6125B; Agilent Technologies) equipped with an Agilent 1260 Infinity II Series Quaternary LC system and a Phenomenex NX-C18 column (250 \times 4.6 mm, 5 μ m) [Method: solvent A: H₂O/0.1% formic acid, solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B (linear gradient); 30-35 min, 100% B; 35-36 min, 100%-5% B; 36-40 min, 5% B]. HPLC-UV analyses were carried out in a Agilent 1260 system equipped with a photodiode array detector (PDA) and a Phenomenex C₁₈ column (Phenomenex; 250×4.6 mm, 5 μ m; solvent A: H₂O/0.1% TFA, solvent B: CH₃CN; flow rate: 1.0 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100%-5% B; 36-40 min, 5% B). Semipreparative HPLC was accomplished using Phenomenex C₁₈ column (10 × 250 mm, 5 µm) on a Varian ProStar Model 210 equipped with a PDA detector and a gradient elution profile (solvent A: 0.05% TFA/H₂O, solvent B: CH₃CN; flow rate: 5.0 mL min⁻¹; 0-2 min, 25% B; 2-15 min, 25-100% B; 15-17 min, 100% B; 17-18 min, 100%-25% B; 18-19 min, 25% B). All solvents used were of ACS grade and purchased from the Pharmco-AAPER. C₁₈-functionalized silica gel (40 ~ 63 µm) was purchased from Material Harvest Ltd.. Amberlite XAD16N resin (20-60 mesh) was purchased from Sigma-Aldrich. Size exclusion chromatography was performed on Sephadex LH-20 (25-100 µm; GE Healthcare). A549 and PC3 cells were obtained from ATCC. All other reagents used were reagent grade and purchased from Sigma-Aldrich.

Cancer Cell Line Viability Assay

Mammalian cell line cytotoxicity [A549 (non-small cell lung) and PC3 (prostate) human cancer cell lines] assays were accomplished in triplicate following our previously reported protocols [1-4] Actinomycin D and H₂O₂ (A549 and PC3) was used as positive controls. To access the viability of human lung non-small cell carcinoma A549 and prostate adenocarcinoma PC3 cells against compounds **1-10**, the conversion of resazurin (7-hydroxy-10-oxido-phenoxazin-10-ium-3-one) to its fluorescent product resorufin was monitored. DMEM/F-12 Kaighn's modification media (Life Technologies) with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL, streptomycin, and 2 mM Lglutamine was used to grow A549 and PC3 cells (ATCC). Cells were seeded at a density of 5 × 10³ cells per well in 96-well clear bottom culture plates, incubated 24 h at 37°C in a humidified atmosphere containing 5% CO₂ and were subsequently exposed to known toxins (1.5 mM hydrogen peroxide or 10 µg/mL actinomycin D, positive control) and test compounds for 72 h. To assess cell viability, 150 µM of resazurin (Sigma) were added to each well, plates were shaken briefly for 10 s, and incubated for another 3 h at 3°C to allow viable cells to convert resazurin into resorufin. The fluorescence intensity for resorufin was detected on a scanning microplate spectrofluorometer FLUOstar Omega (BMG Labtech) using an excitation wavelength of 560 nm and an emission wavelength of 590 nm.

Physicochemical Properties of Compounds 3-10:

Phomoxanthone A (Pomopxanthone A; 3). $C_{38}H_{38}O_{16}$ (750); pale yellow solid; *HPLC-R*_t = 33.35 min (Supplementary Fig. 30S-31S); UV/vis (MeOH) λ_{max} (log ε) 203 (4.31), 259 (4.05), 337 (4.36) nm (Supplementary Figs. 3S); ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Tables 1 and 2; (–)-HRESI-MS: *m/z* 749.2092 [M - H]⁻ (calcd. for C₃₈H₃₇O₁₆, 749.2087); (+)-HRESI-MS: *m/z* 751.2234 [M + H]⁺ (calcd. for C₃₈H₃₉O₁₆, 751.2233), 773.2047 [M + Na]⁺ (calcd. for C₃₈H₃₈O₁₆Na, 773.2052) (Supplementary Figs. 32S-40S).

Phomoxanthone B (4). $C_{38}H_{38}O_{16}$ (750); pale yellow solid; *HPLC-R*_t = 33.92 min (Supplementary Fig. 41S); UV/vis (MeOH) λ_{max} (log ε) 203 (4.36), 260 (3.95), 339 (4.25) nm (Supplementary Fig. 3S); ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see **Tables 1** and 2; (–)-HRESI-MS: *m/z* 749.2083 [M - H]⁻ (calcd. for C₃₈H₃₇O₁₆, 749.2087); (+)-HRESI-MS: *m/z* 751.2209 [M + H]⁺ (calcd. for C₃₈H₃₉O₁₆, 751.2233), 773.2022 [M + Na]⁺ (calcd. for C₃₈H₃₈O₁₆Na, 773.2052) (Supplementary Figs. 42S-50S).

Dicerandrol C (5). $C_{38}H_{38}O_{16}$ (750); pale yellow solid; *HPLC-R*_t = 32.91 min (Supplementary **Fig. 51S**); UV/vis (MeOH) λ_{max} (log ε) 204 (4.29), 260 (4.04), 339 (4.40) nm (Supplementary **Fig. 3S**); ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see **Tables 1** and **2**; (–)-HRESI-MS: *m/z* 749.2098 [M - H]⁻ (calcd. for C₃₈H₃₇O₁₆, 749.2087); (+)-HRESI-MS: *m/z* 751.2238 [M + H]⁺ (calcd. for C₃₈H₃₉O₁₆, 751.2233), 773.2050 [M + Na]⁺ (calcd. for C₃₈H₃₈O₁₆Na, 773.2052) (Supplementary **Figs. 52S-60S**).

Cytochalasin H [also known as Cytochalasin O, Kodocytochalasin 1, Paspalin P I] (6). $C_{30}H_{39}NO_5$ (493); white solid; *HPLC-R*_t = 23.85 min (Supplementary Fig. 61S); UV/vis λ_{max} 210 nm (sh, end-absorption); ¹H NMR (CD₃OD, 500 MHz) and ¹³C NMR (CD₃OD, 100 MHz), see **Table 1S**; (–)-ESI-MS: *m/z* 492 [M - H][–]; (+)-ESI-MS: *m/z* 476 [(M-H₂O) + H]⁺, 434 [(M-COCH₃-H₂O) + H]⁺ (Supplementary **Figs. 62S-71S**).

Cytochalasin J (7). $C_{28}H_{37}NO_4$ (451); white solid; *HPLC-R*_t = 20.89 min (Supplementary Fig. 72S); UV/vis λ_{max} 210 nm (sh, end-absorption); ¹H NMR (CD₃OD, 500 MHz) and ¹³C NMR (CD₃OD, 125 MHz), see **Table 1S**; (–)-ESI-MS: *m/z* 496 [M + HCOO]⁻; (+)-ESI-MS: *m/z* 452 [M + H]⁺, 434 [(M-H₂O) + H]⁺, 416 [(M-2H₂O) + H]⁺ (Supplementary Figs. 73S-80S).

8-Hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (8a). C₁₅H₁₀O₅ (270); pale yellow solid; *HPLC-R*_t = 24.58 min (Supplementary Fig. 81S); UV/vis λ_{max} 200, 230, 250, 285, 365 nm; ¹H NMR (CD₃OD, 500 MHz) δ 7.86 (dd, H, *J* = 8.5, 7.3, Hz, 3-H), 7.61 (dd, H, *J* = 8.5, 1.0 Hz, 4-H), 7.36 (dd, H, *J* = 7.3, 1.0 Hz, 2-H), 6.85 (d, H, *J* = 0.6, 5-H), 6.65 (d, H, *J* = 0.8 Hz, 7-H), 2.44 (s, 3H, 6-CH₃); ¹H NMR (acetone-*d*₆, 500 MHz) δ 12.24 (brs, 1H, 8-OH), 7.94 (dd, H, *J* = 8.5, 7.3, Hz, 3-H), 7.67 (dd, H, *J* = 8.5, 1.1 Hz, 4-H), 7.44 (dd, H, *J* = 7.3, 1.1 Hz, 2-H), 6.89 (d, H, *J* = 0.7, 5-H), 6.67 (d, H, *J* = 0.7 Hz, 7-H), 2.45 (s, 3H, 6-CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 182.0 (C-9), 173.4 (1-COOH), 162.7 (C-8), 157.6 (C-4a), 157.4 (C-10a), 151.2 (C-6), 136.7 (CH-3), 136.5 (C-1), 123.8 (CH-2), 120.3 (CH-4), 118.2 (C-9a), 112.6 (CH-7), 108.7 (CH-5), 108.0 (C-8a), 22.7 (6-CH₃); ¹³C NMR (acetone-*d*₆, 100 MHz) δ 181.6 (C-9), 169.8 (1-COOH), 162.2 (C-8), 157.1 (C-4a), 156.8 (C-10a), 150.7 (C-6), 138.2 (C-1), 136.5 (CH-3), 123.8 (CH-2), 120.0 (CH-4), 119.0 (C-9a), 112.2 (CH-7), 108.4 (CH-5), 108.0 (C-8a), 22.5 (6-CH₃); (+)-ESI-MS: *m/z* 271 [M + H]⁺, 563 [2M + Na]⁺. This compound was isolated along with traces ~30% of its isomer monodicityxanthone (**8b**) (Supplementary **Figs. 82S-94S**).

5-Carbomethoxymethyl-2-heptyl-7-hydroxychromone [also known as (2'S)-7hydroxy-2-(2-hydroxypropyl)-5-methylchromone; 2-(2'-hydroxypropyl)-5-methyl-7hydroxychromone] (9). C₁₃H₁₄O₄ (234); pale yellow solid; *HPLC-R*_t = 17.54 min (Supplementary Fig. 95S); UV/vis λ_{max} 227, 244, 251, 300 nm; ¹H NMR (CD₃OD, 500 MHz) δ 6.67 (brd, 1H, J = 2.3 Hz, 8-H), 6.64 (brd, 1H, J = 2.3 Hz, 6-H), 6.07 (s, 1H, 3-H), 4.19 (m, 1H, 2'-H), 2.73 (s, 3H, 5-CH₃), 2.72 (dd, 1H, J = 14.4, 5.0 Hz, 1'-H_a), 2.66 (dd, 1H, J = 14.4, 7.9 Hz, 1'-H_b), 1.28 (d, J = 6.3 Hz, 3H, CH₃-3'); ¹³C NMR (CD₃OD, 100 MHz) δ 182.1 (C-4), 167.3 (C-2), 163.3 (C-7), 162.8 (C-8a), 143.8 (C-5), 118.2 (CH-6), 116.0 (C-4a), 112.7 (CH-3), 101.9 (CH-8), 66.5 (CH-2'), 44.4 (CH₂-1'), 23.7 (CH₃-3'), 23.3 (5-CH₃); (–)-ESI-MS: *m/z* 233 [M - H]⁻; (+)-ESI-MS: *m/z* 235 [M + H]⁺ (Supplementary Figs. 96S-103S).

Maltol [also known as 3-hydroxy-2-methyl-4h-pyran-4-one; 2-methyl-3-hydroxy-4-pyrone; e 636; larixic acid larixin; larixin; larixinic acid; maltol; methylmaltol; NSC 2829; NSC 404458; palatone; veltol (plant growth regulator)] (10). C₆H₆O₃ (126); pale yellow solid; *HPLC-R*₁ = 12.87 min (Supplementary Fig. 104S); UV/vis λ_{max} 227, 280 nm; ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.81 (brs, 1H, 3-OH), 8.02 (d, 1H, *J* = 5.5 Hz, 6-H), 6.33 (d, 1H, *J* = 5.5 Hz, 5-H), 2.24 (s, 3H, 2-CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 172.5 (C-4), 154.6 (CH-6), 149.2 (C-2), 142.9 (C-3), 113.5 (CH-5), 14.0 (2-CH₃); (+)-ESI-MS: *m/z* 127 [M + H]⁺ (Supplementary Figs. 105S-111S).

Supplementary References

- (1) Shaaban KA, Wang X, Elshahawi SI, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS. J Nat Prod 2013; 76: 1619-1626
- (2) Wang X, Shaaban KA, Elshahawi SI, Ponomareva LV, Sunkara M, Zhang Y, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS. J Nat Prod 2013; 76: 1441-1447
- (3) Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS. J Nat Prod 2015; 78: 1723-1729
- (4) Savi DC, Shaaban KA, Gos F, Ponomareva LV, Thorson JS, Glienke C, Rohr J. Sci Rep 2018; 8: 3122
- (5) El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham III JO, Wani MC, Peaerce CJ, Oberlies NH. Eur J Org Chem 2015; 1: 109-121
- Kumla D, Shine Aung T, Buttachon S, Dethoup T, Gales L, Pereira JA, Inácio A, Costa PM, Lee M, Sekeroglu N, Silva AMS, Pinto MMM, Kijjoa A. Mar Drugs 2017; 15: 375
- (7) Valdomir G, Senthilkumar S, Ganapathy D, Zhang Y, Tietze LF. Chem Eur J 2018; 24: 8760-8763

Fig. 1S Workup scheme of the metabolites produced by the fungus *Pseudofusicoccum* stromaticum CMRP4328.

Fig. 2S A 1 H, 1 H-COSY (—) and selected HMBC (\rightarrow) correlations of compounds 6-10. B

TOCSY (—) and selected NOESY (r^{-1}) correlations of compounds 6-7 and 9.

Fig. 3S UV-vis (MeOH) spectra of compounds 1-5.

Fig. 4S Chemical structures of the reported natural products, paecilin B $(11)^5$, paecilin E $(12)^6$ along with the synthetic (*R*)-5-hydroxy-2-(hydroxymethyl)-2-([2*R*,3*R*]-3-methyl-5-oxotetrahydrofuran-2-yl) chroman-4-one (13).⁷

Fig. 5S Antifungal activity of compounds **2**, **5**, and **7-10** (10 mg/mL) against the phytopathogen *Phyllosticta citricarpa*. **Ig-1** Evaluation of mycelial growth; **IIg-1** Development of pycnidia in citrus leaves, **IIIg-1** citrus black spot (CBS) lesions in detached fruits. **g** Maltol (**10**); **h** Paecilin R (**2**); Cytochalasin J (**7**); **j** 8-Hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**)/Monodictyxanthone (**8b**); **k** Dicerandrol C (**5**) and **l** 5-Carbomethoxymethyl-2-heptyl-7-hydroxychromone (**9**); **Table 3**. Red arrow (**II**): pycnidia of *P. citricarpa*. Black arrow (**III**): necrotic zone. White arrow (**III**): fungal growth. — Scale bars: **I** = 10 mm; **II** = 3 mm; **III** = 5 mm.

Position	Cytochalasin H (6)		Cytochalasin J (7)	
	$\delta_{\rm C}$, type ^(a)	δ_{H} (mult, J in [Hz])	$\delta_{\rm C}$, type ^(b)	δ_{H} (mult, J in [Hz])
1	177.2, C		178.9, C	
3	55.2, CH	3.28 (ddd, 8.3, 5.4, 2.8)	55.1, CH	3.1 (m)
4	50.0, CH	2.16 (dd, 5.4, 2.8)	50.0, CH	2.60 (dd, 5.2, 3.4)
5	33.6, CH	2.63 (m)	34.1, CH	2.75 (m)
6	151.3, C		152.0, C	
7	72.8, CH	3.81 (dd, 10.5, 1.1)	72.7, CH	3.76 (dd, 10.7, 1.2)
8	48.0, CH	2.92 (t, 10.1)	46.7, CH	2.89 (t, 10.1)
9	53.9, C		55.2, C	
10	45.3, CH ₂	2.87 (dd, 13.0, 5.3)	45.1, CH ₂	2.81 (dd, 13.4, 6.1)
		2.71 (dd, 13.2, 8.3)		2.71 (dd, 13.4, 5.8)
11	13.8, CH ₃	0.54 (d, 6.7)	14.2, CH ₃	0.82 (d, 6.7)
12	113.6, CH ₂	5.19 (brd, 1.3)	113.2, CH ₂	5.22 (brd, 1.4)
		4.98 (brs)*		5.01 (brd, 1.1)
13	129.4, CH	5.63 (ddd, 15.4, 9.4, 1.4)	129.5, CH	5.56 (ddd, 15.4, 9.5, 1.4)
14	137.9, CH	5.29 (ddd, 15.1, 10.2, 4.9)	137.4, CH	5.25 (ddd, 15.0, 10.7, 5.4)
15	$44.7, CH_2$	2.02 (ddd, 11.4, 4.9, 1.7)	$44.7, CH_2$	1.97 (dd, 12.5, 4.7)
		1.83-1.66 (m)		1.67 (m)
16	29.4, CH	1.83-1.66 (m)	29.5, CH	1.84-1.65 (m)
17	55.2, CH ₂	1.83-1.66 (m)	55.1, CH ₂	1.77 (m)
		1.52 (dd, 14.0, 3.0)		1.50 (dd, 14.0, 3.3)
18	74.9, C		75.3, C	
19	139.2, CH	5.52 (dd, 16.6, 2.3)	137.5, CH	5.74 (dd, 16.6, 2.2)
20	127.0, CH	5.74 (dd, 16.5, 2.4)	132.4, CH	5.82 (dd, 16.5, 2.2)
21	78.6, CH	5.43 (t, 2.4)	76.8, CH	3.70 (t, 2.3)
22	26.8, CH ₃	1.02 (d, 6.0)	26.9, CH ₃	1.00 (d, 6.6)
23	30.7, CH ₃	1.28 (s)	31.2, CH ₃	1.26 (s)
24	138.6, C		138.8, C	
25/29	131.1, CH	7.20 (dd, 8.5, 1.5)	131.3, CH	7.25-7.20 (m)
26/28	129.8, CH	7.31 (td, 7.2, 1.2)	129.7, CH	7.31 (td, 7.5, 1.0)
27	128.0, CH	7.23 (td, 7.4, 1.2)	127.9, CH	7.25-7.20 (m)
30	172.0, C			
31	20.9, CH ₃	2.28 (s)		

Table 1S ¹³C and ¹H (500 MHz) NMR spectroscopic data for cytochalasin H (6) and cytochalasin J (7) in CD₃OD (δ in ppm).

^(a)100 MHz; ^(b)125 MHz; See Supporting Information for NMR spectra. Assignments supported by 2D HSQC and HMBC experiments. *Signal buried under water signal in ¹H (500 MHz) NMR spectrum, and it was displayed as a broad singlet signal (not buried under water signal) in the ¹H (400 MHz) NMR spectrum.

Fig. 6S HPLC analysis of paecilin Q (1). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 280 nm. UV-vis inset of full wavelength scan (190-600 nm).

OH O

HO

Fig. 7S (+) and (-)-ESI-MS spectra of paecilin Q (1).

Fig. 8S (+)-HRESI-MS spectrum of paecilin Q (1).

Fig. 9S (-)-HRESI-MS spectrum of paecilin Q (1).

Fig. 11S 13 C NMR spectrum (CD₃OD, 100 MHz) of paecilin Q (1).

Fig. 13S ¹H,¹H-COSY spectrum (CD₃OD, 500 MHz) of paecilin Q (1).

Fig. 14S HSQC spectrum (CD₃OD, 500 MHz) of paecilin Q (1).

Fig. 15S HMBC spectrum (CD₃OD, 500 MHz) of paecilin Q (1).

Fig. 17S NOESY spectrum (CD₃OD, 500 MHz) of paecilin Q (1).

Fig. 18S HPLC analysis of paecilin R (2). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 280 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 19S (+) and (–)-ESI-MS spectrum of paecilin R (2).

Fig. 20S (+)-HRESI-MS spectrum of paecilin R (2).

Fig. 21S (–)-HRESI-MS spectrum of paecilin R (2).

Fig. 22S 1 H NMR spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 25S ¹H,¹H-COSY spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 26S HSQC spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 27S HMBC spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 28S TOCSY spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 29S NOESY spectrum (CD₃OD, 500 MHz) of paecilin R (2).

Fig. 30S HPLC analysis of phomoxanthone A (**3**). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 320, 254, 280, 400 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 31S HPLC analysis of phomoxanthone A (**3**). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 254 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 36S ¹H,¹H-COSY spectrum (CDCl₃, 500 MHz) of phomoxanthone A (3).

Fig. 37S HSQC spectrum (CDCl₃, 500 MHz) of phomoxanthone A (3).

Fig. 39S TOCSY spectrum (CDCl₃, 500 MHz) of phomoxanthone A (3).

Fig. 40S NOESY spectrum (CDCl₃, 500 MHz) of phomoxanthone A (3).

Fig. 41S HPLC analysis of phomoxanthone B (**4**). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 320 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 43S (-)-HRESI-MS spectrum of phomoxanthone B (4).

Fig. 44S ¹H,¹H-COSY spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 46S ¹H,¹H-COSY spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 47S HSQC spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 48S HMBC spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 49S TOCSY spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 50S NOESY spectrum (CDCl₃, 500 MHz) of phomoxanthone B (4).

Fig. 51S HPLC analysis of dicerandrol C (5). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 320 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 52S (+)-HRESI-MS spectrum of dicerandrol C (5).

Fig. 53S (–)-HRESI-MS spectrum of dicerandrol C (5).

Fig. 54S 1 H NMR spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 55S ¹³C NMR spectrum (CDCl₃, 100 MHz) of dicerandrol C (5).

Fig. 56S ¹H,¹H-COSY spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 57S HSQC spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 58S HMBC spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 59S TOCSY spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 60S NOESY spectrum (CDCl₃, 500 MHz) of dicerandrol C (5).

Fig. 61S HPLC analysis of cytochalasin H (6). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 210 nm. UV-vis inset of full wavelength scan (190-600 nm).

OH

.0 ¹

ЮН

НŅ

Ö

Ō

Fig. 62S (+) and (-)-ESI-MS spectrum of cytochalasin H (6).

Fig. 638 ¹H NMR spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 65S ¹³C NMR spectrum (CD₃OD, 100 MHz) of cytochalasin H (6).

Fig. 67S ¹H,¹H-COSY spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 68S HSQC spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 69S HMBC spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 70S TOCSY spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 71S NOESY spectrum (CD₃OD, 500 MHz) of cytochalasin H (6).

Fig. 72S HPLC analysis of cytochalasin J (7). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 210 nm. UV-vis inset of full wavelength scan (190-600 nm).

OH

Ξ́ OH

HN S

ÖВ

Fig. 75S 13 C NMR spectrum (CD₃OD, 100 MHz) of cytochalasin J (7).

Fig. 76S ¹H,¹H-COSY spectrum (CD₃OD, 500 MHz) of cytochalasin J (7).

Fig. 77S HSQC spectrum (CD₃OD, 500 MHz) of cytochalasin J (7).

Fig. 78S HMBC spectrum (CD₃OD, 500 MHz) of cytochalasin J (7).

Fig. 79S TOCSY spectrum (CD₃OD, 500 MHz) of cytochalasin J (7).

Fig. 80S NOESY spectrum (CD₃OD, 500 MHz) of cytochalasin J (7).

Fig. 81S HPLC analysis of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**)/monodictyxanthone (**8b**). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column ($250 \times 4.6 \text{ mm}$, 5 μ m); 254 nm. UV-vis inset of full wavelength scan (190-600 nm).

OH

Fig. 82S (+) and (-)-ESI-MS spectrum of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (8a).

_OH

Fig. 83S (+) and (-)-ESI-MS spectrum of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (8a).

Fig. 84S ¹H NMR spectrum (CD₃OD, 500 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 87S HSQC spectrum (CD₃OD, 400 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 88S HMBC spectrum (CD₃OD, 400 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 89S TOCSY spectrum (CD₃OD, 400 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 90S ¹H NMR spectrum (acetone- d_6 , 500 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 91S ¹³C NMR spectrum (acetone- d_6 , 100 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 92S ¹H, ¹H-COSY spectrum (acetone- d_6 , 500 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 93S HSQC spectrum (acetone- d_6 , 400 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 94S HMBC spectrum (acetone- d_6 , 400 MHz) of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid (**8a**). Note: this compound contains a trace (~25%) of its isomer monodictyxanthone (**8b**).

Fig. 95S HPLC analysis of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (7). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250 × 4.6 mm, 5 μ m); 254 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 96S (+) and (-)-ESI-MS spectrum of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 97S ¹H NMR spectrum (CD₃OD, 500 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 99S ¹H, ¹H-COSY spectrum (CD₃OD, 400 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 100S HSQC spectrum (CD₃OD, 400 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 101S HMBC spectrum (CD₃OD, 400 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 102S TOCSY spectrum (CD₃OD, 400 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 103S NOESY spectrum (CD₃OD, 400 MHz) of 5-carbomethoxymethyl-2-heptyl-7-hydroxychromone (9).

Fig. 104S HPLC analysis of maltol (10). HPLC conditions: solvent A: H₂O/0.1% FA; solvent B: CH₃CN; flow rate: 0.5 mL min⁻¹; 0-30 min, 5-100% B; 30-35 min, 100% B; 35-36 min, 100-5% B; 36-40 min, 5% B; Phenomenex NX-C18 column (250×4.6 mm, 5 μ m); 280 nm. UV-vis inset of full wavelength scan (190-600 nm).

Fig. 105S (+) and (-)-ESI-MS spectrum of maltol (10).

Fig. 106S ¹H (DMSO-*d*₆, 500 MHz) and ¹³C (DMSO-*d*₆, 100 MHz) NMR spectrum of maltol (10).

Fig. 108S ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of maltol (10).

Fig. 109S ¹H, ¹H-COSY spectrum (DMSO-*d*₆, 400 MHz) of maltol (10).

Fig. 111S HMBC spectrum (DMSO-*d*₆, 500 MHz) of maltol (10).