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Testing the Null Hypothesis
in Small Area Analysis
Kevin C. Cain and Paula Diehr

The goal ofsmall area analysis is often to demonstrate that hospital admission rates
or procedure rates vary greatly among regions, suggesting the occurrence of unneces-
sary admissions or procedures in some regions. Recent articles have shown that
such variation may be largely due to chance, even if no underlying differences exist
among the small areas; thus, it is important to test if the observed variation is
larger than expected by chance. In this article we discuss how the appropriate
methodfor testing the null hypothesis depends on the distribution of the number of
admissions at the person level. If it is not possiblefor an individual to have more
than one admission for a given procedure, the appropriate test is a simple chi-
square test. If multiple admissions are possible, a modified chi-square test can be
used to account for the excess variability due to multiple admissions. Failure to
make the correct modification to the chi-square test in this latter case can result in
spurious results. This underscores the importance of collecting data on multiple
admissions in order to estimate the distribution of the number of admissions at the
individual-patient level.

Small area analysis is a popular methodology in health services
research. This type of analysis is used when health services use rates
are known within each of several "small areas." The goal of the analysis
is usually to demonstrate that the rates differ across areas, and perhaps
to explain these differences in terms of differences in physician practice
styles or patient population characteristics. Many such analyses have
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been published, and several review articles have been written in this
field (Health Affairs 1984; Copenhagen Collaborating Center 1985;
Paul-Shaheen, Clark, and Williams 1987; Wennberg 1990).

In this article we restrict attention to small area analyses in which
health services use rates are calculated as the number of hospital admis-
sions (or surgical procedures, office visits, etc.) divided by the popula-
tion size. We consider only rates that are counts of events and not
analyses in which health services use rates are measured as dollar cost
or length of stay. For simplicity, we refer throughout this article to the
"small area" as a county and the event of interest as an "admission."
However, the methods discussed here are also applicable to any other
health services use measure that is a count of the number of events.
Other examples of events of interest might be surgical procedures,
diagnostic procedures, lab test orders, office visits for a specific disor-
der, or dental check-up visits. These methods are also of use in out-
comes research and epidemiology. Examples of relevant event types
here would be incidence of surgical complications in a hospital, and
incidence of cancer or mortality in a community.

We can assume that the observed rate will differ from the expected
rate in a county, due to random variation. In order to make inferences
about how rates vary across counties, we need to know the distribution
(or at least the variance) of this random variation. In particular, we are
often interested in testing the null hypothesis that the underlying
admission rate is actually the same in all counties, and the observed
rates differ from each other only due to random variation. In order to
test whether the observed variation is or is not bigger than expected, we
need to know the amount of variation that is expected by chance when
the null hypothesis is true.

A recent article (Diehr et al. 1990) used simulations to show that
the variation in rates can be quite large, even when the null hypothesis
is true. In this article we take a somewhat more theoretical approach.
We consider four theoretical distributions for modeling the number of
admissions an individual can have, and the situations in which these
models might be appropriate. We then show how these assumptions
about the behavior of individuals translate into the distribution of
number of admissions at the county level. Once we know the probabil-
ity distribution of number of admissions (and hence rates) at the
county level, we can determine the appropriate analysis method. The
most important aspect of the distribution at the individual level is
whether multiple admissions are possible or not. If multiple admissions
(or events) in the specified time period are either impossible or highly
unusual, then the analysis is simple and straightforward. Examples of
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this are most "ectomies" such as hysterectomy, and some outcome mea-
sures such as mortality.

The analysis is more problematic when readmissions are possible.
Examples in which multiple admissions (or events) are common are
hospital admission for cancer chemotherapy, chronic obstructive pul-
monary disease, manifestations of coronary artery disease, or compli-
cations of diabetes, as well as office visits or laboratory tests for
conditions such as urinary tract infections. If one incorrectly performs
an analysis by assuming that multiple admissions are not possible when
they are in fact common, the results may well be spurious since the
variance in number of admissions will in general be underestimated.
We propose an analysis based on a normal approximation that can be
used when the variance of number of admissions at the individual level
is known and none of the counties is too small. In order to use this
proposed analysis method one needs to know only the variance of the
distribution; it is not necessary to know precisely which theoretical
distribution best models the data.

THE MODELS

Small area analyses usually use age-sex-adjusted rates. However, for
ease of presentation we will focus first on the simple case in which age-
sex stratification can be ignored because the probability of an admis-
sion is the same across all strata. (Alternatively, we can think of the
analysis as being done within a single stratum.) The generalization to
stratified analyses is discussed later.

Let nj denote the number of people in countyj. Let yij denote the
number of admissions for the ith person in countyj. The total number
of admissions in county j is

nj

and the rate of admissions per thousand is 1000 Yj/nj. In most small
area analyses, person-level data are not available. The total number of
admissions Yj (or the rate per thousand), is known, but theyij s are not.
However, it is generally easier to consider hypothetical distributions
and decide which ones make sense at the individual level than at the
county level. We will therefore start with assumptions about the distri-
bution of individual admissions (y3j) and then show the resulting distri-
bution at the county level (Yj).

269



270 HSR: Health Services Research 27:3 (August 1992)

We begin with the following assumptions, which hold for all the
distributions we consider:

Assumption 1. The random variables ylj, Y2J, Ynjj are
independent.

Assumption 2. The random variables y,j, Y2j, y..j are
identically distributed, and all have the same
expected value (i.e., mean) mj.

Assumption 1 implies that the probability that person 1 has an
admission does not depend on whether person 2 has an admission.
This seems reasonable for most types of admissions or procedures.
However, there are some situations for which this assumption clearly
does not hold. Examples are infectious diseases and trauma due to
large-scale disasters such as airplane crashes and hurricanes. Statistical
analysis methods for use when assumption 1 is violated are beyond the
scope of this article and are not discussed here.

Assumption 2 implies that everyone in county j has the same
expected number of visits. At first this may seem inappropriate since
individuals clearly differ in their level of health. For example, an indi-
vidual with a chronic disease is more likely to be hospitalized than one
without. However, assumption 2 means not that all persons have the
same level of health, but rather that we do not have information about
the health status of individuals. Person 1 is just as likely to be healthy
or sickly-as person 2; therefore, the probability of having one admission
is the same for person 1 as for person 2 if we have no individual
information about health status. Statistical analysis methods are avail-
able for use with data in which individual level information is known
(Mauritsen 1984; Wong and Mason 1985), but again, these are beyond
the scope of this article.

The expected value (MJ) and variance of the total number of admis-
sions in county j can be calculated based on assumptions 1 and 2:

nj nj
Mj= E(YJ)= E E(y1J)= E mj = njmj,

i=1 t=1

nj
Var(Y1)= F, Var(yj) = n.Var(y,j).

We now present four possible models for the distribution of the
yij s, and show how the distribution and variance of Yj depends on the
model for generating theyij s. These four models were chosen because
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they represent simple and understandable mechanisms for generating
the number of admissions at the individual level. The purpose of this
section is to gain insight into sources of variability in Yj, not to present
an exhaustive class of probability distributions among which one
should choose when doing an analysis. In fact, the data presented at
the end of this section are too skewed for any of these four distributions
to fit well.

BERNOULLI (BINOMIAL) DISTRIBUTION

Suppose that multiple admissions are not possible, so that a person can
have at most one admission. This is true for some procedures such as
hysterectomy. There are other types of admission for which multiple
admissions theoretically are possible but are relatively rare so that it is
a reasonable approximation to assume that they do not occur.

The Bernoulli distribution is the appropriate distribution to use
when multiple admissions are not possible. (In fact, the Bernoulli is the
only distribution applicable when individuals can have only zero or one
admission. This is discussed further in the section titled "Chi-square
Tests.") Under a Bernoulli distribution with expected value mj, the
random variabley3j is equal to one with probability mj and is equal to
zero with probability (1-mj). The variance of yij is Var(y,j) = mj
(1-mj), and the total number of admissions for the county, Yj, has a
binomial distribution with p = mj and n = nj, so that:

Var(Y,) = njrmj(1 - mj) = Mj(1 - mj). (1)
The probability density functions for the Bernoulli and binomial

distributions are given in Appendix A. Figure la shows the distribu-
tion ofyij when mj is 0. 7. This is admittedly a rather artificial situation
(with 70 percent of persons having one admission, and no one having
more than one), but mj equal to 0.7 was chosen to accentuate the
differences among the four distributions presented here. Figure 2a
shows the distribution of Yj in a county with 5,000 people and an
expected admission rate of 1/1000 (i.e., mj = 0.001 and nj = 5000).

POISSON DISTRIBUTION

We next consider the Poisson distribution (Johnson and Kotz 1969).
The probability density function for a Poisson distribution with mean
mj is shown in Appendix A. The variance of a Poisson random variable
is equal to its mean, so that Var(y,,) = mj. A sum of Poisson random
variables also has a Poisson distribution. Thus Yj is Poisson with mean
Mj and:
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Figure 1: Plots of the Distribution of the Number of
Admissions for One Individual (y,j), under Four Different
Assumed Distributions; in all cases, E(y,,) = mj = 0.7;
(a) Bernoulli; (b) Poisson; (c) Bernoulli Mixture of Poissons,
with bj = 2; (d) negative binomial with kj = 0.54
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Figure 2: Plots of the Distribution of the Number of
Admissions for 5,000 Individuals (YJ), under Four Different
Assumed Distributions; in all cases, E(y,J) = 0.001 and
E(YJ) = Mi = 5.0; the distribution ofyij for each Individual is
(a) Bernoulli; (b) Poisson; (c) Bernoulli Mixture of Poissons,
with bj =4; (d) negative binomial with kj = 0.00025
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Var(YJ) = n3m1 = Mj. (2)

A comparison between Equation 1 and Equation 2 shows that the
variance of Yj is somewhat smaller under the Bernoulli assumption
than under the Poisson assumption, but if mj is close to zero the two
variances will be about the same.

Figure lb shows a Poisson distribution with m1 = 0.7. This distri-
bution looks very different from the Bernoulli distribution shown in
Figure la, which has the same mean. However, if mj is close to zero the
two distributions will look very similar since the probability of multiple
admissions will be very small. Figure 2b shows the distribution of Yj
whenyij is from a Poisson distribution with mean 0.001 and the popu-
lation size of the county is 5,000. A comparison of figures 2a and 2b
shows very close agreement between the two distributions.

The primary way in whichyij can have a Poisson distribution is if
admissions follow a Poisson process. This means that the times
between successive admissions are independent and follow an exponen-
tial distribution. This implies, for example; that the expected number
of admissions a person has in February is independent of the number of
admissions he or she had in January. This is not in general a reason-
able assumption. For most types of admission, a person with one
admission in January is more likely to have an admission in February
than is a person with no admission in January. For some procedures,
such as "ectomies," the converse is true.

Even though the Poisson distribution is usually not appropriate
when multiple admissions are possible, it can be useful as an approxi-
mation to the binomial distribution when mj is small and multiple
admissions are not possible. The Poisson distribution is also useful as a
standard against which to compare other distributions. Since the vari-
ance of the Poisson distribution is so simple (Equation 2), we will
describe other distributions in terms of how much bigger (or smaller)
their variance is compared to the Poisson variance.

We now turn to a class of distributions known as mixture distribu-
tions. The next two subsections describe two members of this class, the
Poisson-Bernoulli distribution and the negative binomial distribution.

POISSON-BERNOULLI (POISSON-BINOMIAL)
DISTRIBUTION

In the previous subsection the distribution of number of admissions
followed a Poisson distribution with mean mj for all persons in the
county. We now generalize the Poisson distribution to a heterogeneous
population.
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Assume that among persons with a given health status the number
of admissions follows a Poisson distribution. However, health status is
not the same for everyone in the county, which means that the mean of
the Poisson distribution is different for different subgroups. Persons
with good health will have a lower mean than those with poorer
health.

Since the health status of individuals is not known, we will think of
health status as a random variable that varies across individuals in the
population. There are now two sources of variability inyij: the random
health status of person i, and the random number of admissions condi-
tional on health status. The distribution of yij in this situation is
referred to as a mixture distribution.

In this subsection we describe a simple mixture distribution in
which only two levels of health are possible: either a person does or
does not have a particular chronic disease. Let us use diabetes as an
example, and assume that the events of interest are hospital admissions
for diabetes, so that "admission" means hospitalization for diabetes.

Let pj be the probability that a person has diabetes. Let b1 denote
the mean number of admissions among persons with diabetes, and
assume that among persons with diabetes the number of admissions
follows a Poisson distribution. Persons without diabetes have no admis-
sions for diabetes (this can be thought of as a degenerate Poisson
distribution, with mean zero). For a person whose disease status is
unknown, we can think ofyij as being generated by a two-step process:
first, a health status is randomly generated for the person (diabetes or
no diabetes); then, yij is randomly generated from a Poisson distribu-
tion with mean dependent on health status (bj or 0). The expected
value of Yij under this two-step process is

mj = E(yZJ) = E(yi1Idiabetes) Pr(diabetes)
+ E(yI no diabetes) Pr(no diabetes)
=bjpj +O(1-pp) = bjpj.

A somewhat more complicated derivation gives the variance ofyij
under the two-step process as

Var(y1j) = mj [1 + bj(1 -pJ)].
The total number of admissions (for diabetes) in the county, Yj,

has mean M = njpj bj and variance

Var(YJ) = Mj[I + bj(I-pJ)]. (3)
The distribution of Yij is referred to as a Bernoulli mixture of

Poissons, and the distribution of Yj is a binomial mixture of Poissons or
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a Poisson-binomial distribution (Johnson and Kotz 1969). A compari-
son of Equation 3 with Equation 2 shows that the variance of the
Poisson-binomial distribution is larger than the variance of a Poisson
distribution with the same mean, and can be much bigger than the
Poisson variance if bj is large and pj is small.

Figure 1 c shows a plot of this mixture distribution for one individ-
ual with mj = 0.7 and bj = 2 (and hence pj = mj/bj = .35). Compared
to the Poisson probability density function with the same mean, the
Poisson-Bernoulli density has a higher probability of zero admission, a
much lower probability of only one admission, and a much higher
probability of having three or more admissions. A comparison of equa-
tions 2 and 3 shows that when mj = 0.7 and bj = 2 the variance of the
Poisson-Bernoulli distribution is 2.3 times that of a Poisson with the
same mean. For rare diseases (i.e., p close to zero) the variance is
approximately (1 + bj) times the variance of a Poisson distribution.

Figure 2c shows the distribution of the total number of admissions
for a county of 5,000 people, each of whom has a Poisson-Bernoulli
distribution with mj = 0.001, bj = 4, and p = .00025. The probability
of 15 or more admissions is 5 percent, compared to virtually zero under
the Poisson distribution. The probability of zero admissions in the
county is about 30 percent, compared to 1 percent for the Poisson
distribution. Even though the expected number of admissions is five, the
expected number of individuals with the disease is only pjnj = 1.25.

The variance of Yj in Figure 2c is 4.99 times what it would be
under a Poisson distribution. The heterogeneity in the population
allowed by this model (some persons have diabetes, some do not) has
greatly increased the variance over what it would be in a homogeneous
population where everyone has the same disease status.

NEGATIVE BINOMIAL DISTRIBUTION

In the previous subsection we assumed that there were only two possi-
ble levels of health. Letting mij denote the expected number of admis-
sions for person i, we saw that under the Poisson-Bernoulli model mij
is either bj if the person has diabetes or 0 if he does not. Now suppose
that the level of health actually varies continuously from perfect health
(mij = 0) to terrible health (mij very large). Let us further suppose that
level of health (as indexed by miJ) is a random variable distributed as a
gamma distribution with mean mj and variance mj/kj (Johnson and
Kotz 1970). The parameter kj is called the shape parameter of the
gamma distribution: ifk is small the distribution is highly skewed to the
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right, while large k corresponds to a distribution that is approximately
normal. If kj is large relative to mj, the variance of mij is small so that
level of health does not vary much across individuals. On the other
hand, if kj is small relative to mj, the variance of mij is large so that
health varies greatly across individuals.

Assume now that if mij is known, the number of admissions for
person i is distributed as a Poisson random variable with mean mij. For
a person whose disease status is unknown, we can think ofyij as being
generated by the two-step process of first generating mij from a gamma
distribution with mean mj and variance mj/kj and then generating y31
from a Poisson distribution with mean mij. It can then be shown that
when mij is unknown, E(y,,) = mj and Var(y,j) = mj (1 + mj/kj), and
hence

Var(YJ) = Mj(1 + mj/kj). (4)

The distribution ofyij can be referred to as a gamma mixture of
Poissons, but it is more commonly called a negative binomial distribu-
tion (Johnson and Kotz 1969). Its probability density function is
shown in Appendix A.

If mj/kj is small, the negative binomial is almost the same as the
Poisson distribution. If mj/kj is large, the negative binomial is more
skewed to the right and has a much bigger variance than the Poisson. It
can be shown that a sum of negative binomial variables with a common
shape parameter will also have a negative binomial distribution. That
is, Yj will be negative binomial with mean Mj = njmj and shape
parameter njkj.

Figure ld shows a negative binomial distribution for one individ-
ual with mean 0. 7 and shape parameter 0. 54. The shape of this proba-
bility density function is intermediate between the Poisson and the
Poisson-Bernoulli. A comparison of equations 2 and 4 shows that the
variance of this negative binomial is 2.3 times that of the Poisson with
the same mean.

Figure 2d shows the distribution of Yj when the distribution ofyi1
for each of the 5,000 individuals is negative binomial with mean 0.001
and shape parameter 0.00025. This means that Yj is negative binomial
with mean 5.0 and shape parameter 1.25, so that the variance is 5.0
times that of the Poisson. The probabilities of observing zero, one, and
two admissions in the negative binomial are very different from such
probabilities in the Poisson-binomial distribution, but the two distribu-
tions are similar for more than three admissions.
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Example: Hospitalizations for Nonelective Procedures in the Elderly

We now apply the Poisson, Bernoulli-Poisson, and negative binomial
distributions to an actual data set in order to see how well these distri-
butions approximate the distribution ofy,j. The first column of Table 1
shows the distribution of number of hospital discharges at the individ-
ual level, based on data from the Washington State Commission Hos-
pital Abstracting System (CHARS) for the calendar year 1987. This
table only includes hospitalizations of persons aged 65 and over in
which one of the nonelective surgeries listed by Pasley, Vernon, Gib-
son, et al. (1987) was performed. Note that 11,815 of the 531,155
elderly residents of Washington State (2.2 percent) had at least one
admission, and that three of them had seven admissions each. The
mean number of hospitalizations per person is 0.0235 and the variance
is .0263. This variance is 11 percent higher than expected under a
Poisson distribution.

The second column of Table 1 shows the expected frequencies if
the data are from a Poisson distribution with mean 0.0235. Notice that
the number of persons with two or more admissions is severely under-
estimated. This underestimation carries over to the distribution of Yj,
the total number of admissions in a county. Consider a county of size
1000, with expected number of admissions Mj = 1000 mj = 23.5. If
1000 values ofyij are sampled (with replacement) from the population

Table 1: Observed and Expected Frequencies of Number of
Admissions for Certain Nonelective Procedures among the
Elderly in Washington State

Expected Frequency under
Theoretical Probability Distributions *

Observed Bernoulli- Negative
Frequency Poisson Poisson Binomial

0 519,340 518,831.3 519,548.8 519,517.6
1 11,312 12,179.7 10,784.2 10,872.7
2 415 143.0 782.7 703.5
3 50 1.1 37.9 55.8
4 22 0.0 1.4 4.8
5 10 0.0 0.0 0.4
6 3 0.0 0.0 0.0
7 3 0.0 0.0 0.0

> 7 0 0.0 0.0 0.0
Total 531,155 531,155.0* 531,155.0* 531,155.0*
Source: Washington State Commission Hospital Abstracting System.
*Expected frequencies do not sum to 531,155 due to rounding.
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shown in the first column of Table 1 and then added up, the probability
that the total is greater than or equal to 40 is .0025. However, if
observations are sampled from the Poisson distribution shown in the
second column, the probability that the total is greater than or equal to
40 is only .0010. Thus, the Poisson distribution provides an anticon-
servative approximation when testing whether a county with a high
admission rate is an outlier. It should be noted that in this example the
variance is only slightly larger (11 percent) than the Poisson. If the
variance were 50 percent larger, the discrepancy between the actual
data and the Poisson approximation would be much worse.

We next fit a Poisson-Bernoulli distribution to the data by finding
the parameters pj and bj, which give the same mean and variance as
observed in the data. Letting mj and vj denote the observed mean and
variance, we get

b1= mj+vj/mj-1 = 0.0235+0.0263/0.0235-1 = 0.143,

pj= mjlbj= 0.0235/0.143 = 0.164.

The third column of Table 1 shows the expected frequencies if the
data are from a Poisson-Bernoulli distribution with these parameters.
The fit of observed to expected is better than with the Poisson distribu-
tion, but the number of persons with four or more admissions is still
underestimated.

The fourth column of Table 1 shows the expected frequencies if the
data are from a negative binomial distribution with parameters mj =

0.0235 and kj = mj/(vj -mj) = 0.197. The fit is only slightly better than
the Poisson-Bernoulli. In order to substantially improve the fit in the
upper tail (for number of admissions greater than three), we would need
to use a more complicated distribution, such as a Bernoulli mixture of
negative binomials.

The two mixture distributions give reasonably good fits to the
distribution of Yj, the total number of admissions for a county of size
1000. The probability of observing 40 or more admissions is .0022
under the Poisson-Binomial model and .0026 under the negative bino-
mial model, compared to .0025 in the observed data.

As the size of the county (nj3) goes to infinity, the distribution of the
total admissions in the county Yj approaches a normal distribution with
mean nj mj and variance v; min. Ifwe approximate the actual distribution
by any theoretical distribution with mean mj and variance vj, then the
distribution of Yj under this theoretical distribution will also approach
a normal distribution with mean nj mj and variance v1 min. Thus, any
theoretical distribution will give a good approximation to the distribu-
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tion of Yj for large counties, as long as the mean and variance are
correct. The problem with using the Poisson distribution as an approx-
imation is that the variance will usually be wrong.

In this section we have seen how the distribution (and in particular
the variance) of the number of admissions at the county level Yj is quite
dependent on the model that generates the data at the person level.
Heterogeneity of health status in the population can lead to the vari-
ance of Yj being much larger than it would be under the Poisson model.
However, the Poisson distribution is frequently used as the basis for
inference in small area analyses due to its simplicity, even when it is not
appropriate. In the next section we discuss methods for testing the null
hypothesis, and propose an adjusted chi-square test for use when the
variance is bigger than the Poisson variance. The researcher does not
need to know which distribution fits the data best, only its variance.
Methods that do require knowledge of the distribution (likelihood-
based and simulation-based methods) are discussed briefly, but a full
discussion of these methods is beyond the scope of this article.

METHODS FOR TESTING
THE NULL HYPOTHESIS

We wish to test the null hypothesis that the expected admission rate is
the same in all counties, and that the differences in observed rates are
no bigger than that expected by chance. Formally, we have

Ho: ml = M2 = . . MP
where J is the number of counties. We now describe methods for
testing Ho. We begin with a class of chi-square tests which are appro-
priate if the expected number of admissions is "large" in all counties.
We then describe two alternative methods which may be preferred
when this condition is not met, although further research is needed to
determine rules for deciding how large is "large."

CHI-SQUARE TESTS

If there are no multiple admissions, the Bernoulli distribution is appli-
cable. In this case a simple chi-square test can be used to test Ho. Let m
denote the observed admission rate for all counties taken together:

J J
m= E Y-1 E n.Y./

J =
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Under the null hypothesis the expected number of admissions in
countyj is estimated to be m nj. The familiar formula for the chi-square
test statistic is written in terms of the observed (0) and expected (E)
numbers in the cells of the 2 byJ table. In our notation this becomes

X2= (0-E)2/E
J
, {(Yj - nj m2/ nj m + [(nj - YJ) - (nj - nj m)] (nj - n, m')}

= 1(Yj-n1m)2/m(l-m)n1, (5)j = 1

where the subscript B in XB indicates that this formula is appropriate
for data with a Bernoulli distribution. The value calculated from this
formula can then be compared to a chi-square distribution with J- 1
degrees of freedom in order to test Ho. The expected number of admis-
sions should be at least five in every county in order for the chi-square
approximation to be reasonable.

This simple chi-square test is appropriate if multiple admissions
are not possible so that the data have a Bernoulli distribution at the
individual level. This is true even if the probability of admission is
different for different individuals, as long as we do not know what the
individual probabilities are. The recent article by Kazandjian,
Durance, and Schork (1990) assumes that multiple admissions are not
possible and then claims to model variation among individuals using a
binomial-beta distribution (Johnson and Kotz 1969). However, a beta
mixture of Bernoullis is still a Bernoulli (a proof of this is given in
Appendix B). What Kazandjian, Durance, and Schork are in fact
doing is modeling Yj, the total number of admissions for the county, as
a binomial-beta, which means they assume that mj varies randomly
across counties. This in effect assumes that the null hypothesis is not
true, which is not appropriate if the goal is to test the null hypothesis.

Pasley, Vernon, Gibson, et al. (1987) present data on rates of
elective surgery among the elderly in the counties of New York State.
We will use some of the data from this article to demonstrate the
calculation of X2. (Note: the rates given by Pasley et al. are age-sex
adjusted, but for the purpose of this example we ignore this fact, and
compute the number of surgeries by multiplying the rate by the popu-
lation size.) The first two columns of Table 2 show the elderly popula-
tion size and number of elective surgeries for the seven smallest
counties in New York. The overall rate for these counties is m' = 0.024
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Table 2: Illustration of the Calculation of the Chi-square
Statistics, Using Data on the Number of Nonelective
Procedures among the Elderly Population in the Seven Smallest
Counties in New York State

(Yj- nj_(Yj- )2
j nj Y. njm njrh(1 -rh) njm
1 837 15 18.30 0.61 0.59
2 2,196 48 48.00 0.00 0.00
3 2,913 64 63.70 0.00 0.00
4 3,266 72 71.40 0.00 0.00
5 3,872 62 84.60 6.19 6.05
6 4,424 87 96.7 1.00 0.97
7 4,543 134 99.3 12.39 12.12

Total 22,051 482 482.00 20.19 19.75*
Source: Pasley, Vernon, Gibson, et al. 1987.
*The last column does not sum to 19.75 due to rounding.

(i.e., 24 per thousand). The third column shows the expected number
of surgeries under the null hypothesis. Since it is clearly possible for a
person to have more than one elective surgery in a year it is not
appropriate to use Equation 5 for these data. However, we will do so as
an illustration of the computations. The fourth column of Table 2
shows the terms for the sum in Equation 5, with the resulting sum
shown at the bottom of this column. This sum, 20.19, can be compared
to a table of the chi-square distribution with 6 degrees of freedom,
giving a significance level of p = .0026.

The chi-square test easily generalizes to the situation in which the
data are age-sex stratified. Within each stratum a separate 2 byJ table
of observed and expected is calculated as above. These tables are then
combined into one by summing over all strata the observed and
expected numbers within each cell. The X2 statistic is then calculated
from this combined table using Equation 5, and compared to a chi-
square distribution with]- 1 degrees of freedom. This test is referred to
as the Mantel-Haenszel test (Mantel and Haenszel 1959; Fleiss,
1981).

In addition to testing the overall null hypothesis, one may wish to
determine which counties have rates significantly higher or lower than
the other counties. This can be done as follows. For each countyj, test
whether the rate in countyj is significantly different from that in the
other counties taken together by doing a chi-square test on the 2 by 2
table where the first row gives the numbers of persons with and without
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an admission in county j, and the second row gives the numbers of
persons with and without an admission in all of the other counties
combined. The Yates continuity correction or Fisher's exact test can be
used if the expected number of admissions in county j is small. The
Bonferroni adjustment for multiple comparisons should be used when
testing individual counties. This means that the p-value required
before a test is declared significant is .05/J rather than .05.

As an example, consider again the data shown in Table 2. There
are 134 surgeries and a population of 4,543 in county 7, and 348
surgeries and a population of 17,508 in the six other counties com-
bined. The resulting 2 by 2 table gives X2 = 15.64. Comparing this to
a chi-square distribution with 1 degree of freedom gives a p-value of
.00008. Since this is less than .05/7 = .007, we conclude that the
surgery rate in county 5 is significantly different from that of the other
counties.

An equally simple chi-square test is appropriate when the data are
from a Poisson distribution (Brown and Hollander 1977, 196). Under
the null hypothesis, the expected number of admissions in countyj is
njm. Comparing the observed to the expected number of admissions in
each county and summing over counties gives

X2 =(S(- E2/

J
= E (Y nj )2/(nj) (6)
j = 1

As above, this can be compared to a chi-square distribution with
J-1 degrees of freedom. Notice that Equation 5 differs from Equation 6
only by a factor of (1-m) in the denominator of Equation 5. If m is close
to zero, the value of Xp calculated from Equation 5 will be almost the
same as X1B calculated from Equation 6. This is illustrated in the
example shown in Table 2. The fifth column shows the terms of the
sum in Equation 6. The resulting chi-square statistic is 19.75 (p =
.0031), compared to 20.19 (p = .0026) calculated from Equation 5.

Notice that in both equations 5 and 6, the denominator is Var(Yj)
= nj Var(yi3). This suggests a generalization of the definition of the
chi-square test statistic. First, define

MAF = Var(y J)hM. (7)

MAF stands for Multiple Admission Factor and is the ratio of the
actual variance of yij to what the variance would be if the data were
from a Poisson distribution. Now define
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J
XMAF= E (Y3-njm)2/[n3 Var (yj)]j = 1

= Xs (Yj- n1r)2/(njm MAF)

= XpMAF. (8)

Suppose that some data are available on the distribution of admis-
sions at the individual level (y5j), so that it is possible to estimate mj and
Var(y,j) and hence MAF. These data could be a sample of persons from
the counties under consideration, or could be from studies done by
other researchers on similar populations. By analogy with the Bernoulli
and Poisson tests described earlier, we propose the following procedure
for testing the null hypothesis when MAF is (at least approximately)
known.

Calculate X2 from Equation 6, then calculate X2AF = XY/MAF.
Finally, compare X2MAFto a chi-square distribution with J-1 degrees of
freedom.

It can be shown that regardless of the distribution ofyij, the distri-
bution of X2AFwhen the null hypothesis is true will be approximately
chi-square withJ- 1 degrees of freedom (Appendix C). The approxima-
tion will only be good if nj is large enough in all counties to ensure that
the distribution of Yj is approximately normal.

How large do the n3s have to be for this to be a reasonable approx-
imation? The rule of thumb for the usual chi-square test is that the
expected number of admissions should be greater than five in every
county. In Figure 2a the expected number of admissions for the county
is five and the Poisson distribution looks fairly normal, with only a
slight skewness. However, in Figure 2c the expected number of admis-
sions is also five, but the distribution is decidedly non-normal, being
very skewed to the right. The probability of observing 18 or more
admissions is .023, but the normal approximation gives a probability of
only .005. Recall that under the Binomial-Poisson distribution shown
in Figure 2c the expected number of people with the disease in the
county is only 1.25. This suggests some possible alternative rules of
thumb: (i) the expected number of individuals with one or more admis-
sions should be greater than five in every county; (ii) the expected
number of admissions in each county should be greater than five times
the mean number of admissions among persons who have at least one
admission; and (iii) the expected number of admissions in each county
should be greater than five times MAF. An alternative strategy would
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be to use an adjustment similar to the Yates continuity correction for 2
by 2 tables. For example, one could subtract MAF/2 from the absolute
value of the numerator before squaring (or set to zero if the result is
negative). Further work is needed to determine whether any of these ad
hoc rules work well in practice under a wide range of distributions.

Consider again the example shown in Table 2. In order to use the
test based on Equation 8 we need an estimate of MAF. The first
column of Table 1 shows data from Washington State on hospitaliza-
tions of persons aged 65 and over in which one of the nonelective
surgeries listed by Pasley, Vernon, Gibson et al. (1987) was performed.
The mean number of hospitalizations per person is 0.0235 and the
variance is 0.0263, which gives MAF = 0.0263/0.0235 = 1.11. Com-
bining this with the value of X'p from Table 2 gives X2AF = 19.75/1.11
= 17.79. Comparing this to a chi-square distribution with 6 degrees of
freedom gives p = .007, still highly significant. The value of MAF in
this example (1.11) is actually not much larger than 1. We have
observed considerably larger values (1.5 to 4) for other types of
admission.

LIKELIHOOD-BASED TESTS

Suppose that the data used to estimate the distribution of Y,j are
approximated fairly well by a Poisson-Bernoulli or a negative binomial
distribution. In this case we could consider using a score test or a
likelihood ratio test to test Ho (Cox and Hinkley 1974). If the data do in
fact have the specified probability density, then these likelihood-based
tests will be more powerful than the test based on X2AF. The small
sample performance should be better as well, although these tests are
also based on asymptotic approximations and will behave poorly if the
counties are too small.

Further research is needed to determine whether the improvement
in power and small-sample performance is large enough or not to
justify the added complexity of the likelihood-based methods. Another
issue to be explored is how these tests behave if the distribution of the
data is in fact somewhat different from that assumed (i.e., how robust
they are to model misspecification).

TESTS BASED ON SIMULATIONS

Another approach to testing Ho would use simulations to estimate the
null distribution of a test statistic such as Xp (Diehr et al. 1990; Diehr
and Grembowski 1990). The simulations can use random numbers
generated from a parametric distribution such as negative binomial, if
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such a distribution appears to fit the data well. Alternatively, the simu-
lations can be based on a nonparametric density estimate, the simplest
being the unsmoothed empirical density function. We are currently
exploring computation methods, such as the fast Fourier transform,
which we hope will make the nonparametric approach feasible in
practice.

OTHER APPROACHES

Another approach has been suggested for testing the null hypothesis.
This consists of correlating the variation in rates across counties with
some county population characteristics, such as per capita income or
number of surgeons per capita. If the variation in rates is totally due to
chance, then there should be no correlation with any population char-
acteristics. This approach is somewhat reasonable, but one should be
aware of the potential pitfalls described in Diehr et al. (1990). The
small number of counties typical of small area analyses, the unequal
variance of the estimated rates, the possibility of spurious correlation,
and non-normality and influential outliers all potentially can lead to
anticonservative tests. These problems might be alleviated somewhat
by first taking z-scores of the rates [let Zi = (Yi -M?nj) / .J and then
using Spearman rank correlation rather than Pearson correlation.

When the variation in rates across counties is larger than expected
under the Poisson model, a random effects model can be used to
incorporate this extra-Poisson variation into a regression analysis
(Breslow 1984; Pocock, Cook, and Beresford 1981; Tsutakawa 1988;
Wolf et al. 1989). The approach of these articles is rather different from
the approach we have chosen. We have assumed that the extra-Poisson
variation is due to the individualyij s having larger variance than under
the Poisson (or Bernoulli) model. Thus, extra-Poisson variation can be
present even if the null hypothesis is true.

Analyses based on random effects models, on the other hand,
assume that the Poisson (or Bernoulli) model is appropriate for individ-
uals, and the extra-Poisson variation is due to mi being different in
different counties (mj varies randomly across counties). Such an analy-
sis therefore assumes a priori that the null hypothesis is not true, and
then incorporates this extra-Poisson variation in order to test the signif-
icance of regression coefficients for some variables of interest like phy-
sicians per capita. This is an entirely appropriate thing to do if multiple
admissions are not possible and this type of extra-Poisson variation is
present. However, this approach is not amenable to testing whether the
null hypothesis is true if multiple admissions are possible.
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McPherson et al. (1982) propose the systematic component of
variation (SCV) as a measure of the component of variance in rates
among counties that is not explained by random variation. However,
their calculation is based on the assumption that the random variation
follows a Poisson distribution. The authors state that "since surgery is a
relatively rare event, we concluded that the distribution of Oi is approx-
imately Poisson." This reasoning is not correct. Instead, what is
required for the Poisson assumption to be approximately correct is that
multiple surgeries (or admissions) be extremely rare. When this condi-
tion does not hold, the SCV should be interpreted as a measure of how
much bigger the variance is than the Poisson variance, not how much
true variance there is among the small areas.

SUMMARY AND DISCUSSION

In this article we show that when multiple admissions are possible, the
variance of Yj will probably be larger than it would be under a Poisson
distribution, and hence tests based on the unadjusted chi-square,
Equation 6, will not be valid. However, there are numerous examples
of published works that use an unadjusted chi-square test to test Ho
when multiple admissions are possible. For example, Pasley, Vernon,
Gibson, et. al. (1987) use a chi-square test to compare elderly surgical
discharge rates across counties in New York. Connell, Day, and
LoGerfo (1981) use a chi-square test to compare rates of hospital
admission for ear, nose, and throat surgery; gastroenteritis; and upper
and lower respiratory infection in children across regions in Washing-
ton State. Chassin, Brook, Park, et al. (1986) use a chi-square test to
compare rates for several procedures in Medicare beneficiaries across
13 sites around the United States. Some of these procedures, such as
appendectomy and cholecystectomy, can only be done once and thus a
chi-square test is appropriate. For some other procedures it is quite
possible to have more than one procedure done in a year. Examples
here are destruction of benign skin lesions and coronary angiography.

We offer the following recommendations for testing the null
hypothesis:

1. If multiple admissions are not possible, use a chi-square test based
on the binomial distribution (Equation 5). For rare admissions
(admission rate less than 1 per 100), the chi-square test based
on the Poisson distribution (Equation 6) will provide a good
approximation. Small counties in which the expected number
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of admissions is less than five should be excluded from the
analysis.

2. If multiple admissions are possible, then obtain an estimate of the
Multiple Admission Factor, MAF, and perform an adjusted
chi-square test based on Equation 8. Small counties in which
the expected number of admissions is less than five times MAF
should be excluded from the analysis. Alternatively, one of the
other rules of thumb suggested earlier could be used.

3. If many of the counties are small, then consider using a
likelihood-based or simulation-based hypothesis test. These
two approaches have not been described in detail here, in part
because we believe that it is premature to recommend their use
until completion of further research into the relative merits of
the three approaches in various situations. In any case, a
statistician should be consulted if one wishes to use a
likelihood-based or simulation-based analysis.

Ideally, the data used to estimate MAF are a random sample of
the population of the small areas being analyzed. Alternatively, data or
published values of MAF may be available from another area and/or
time period, as in our example in which data from Washington State
for 1987 were used to estimate MAF for an analysis of data from New
York for 1981. A third possibility is that no estimates of MAF are
available for the specific type of admission of interest, but values of
MAF are available for some other types of admissions similar in some
respects to the admission type of interest. In all cases, and especially in
this last situation, one should perform a sensitivity analysis to see if the
result of the hypothesis test changes as MAF is varied over its range of
plausible values. If so, the results must be interpreted with caution.

Sometimes data are available on the distribution of number of
admissions among persons with at least one admission, but the number
of persons who had no admissions is not accurately known. This is
often the case when the small area is a hospital catchment area, and the
size of the population served by the hospital is not accurately known
due to overlap with other areas. In this case, it is still possible to
calculate an approximation to MAF. Let m' and v' denote the mean
and variance, respectively, of the number of admissions among persons
with at least one admission. It can be shown that MAF = m' (1-p) +
v'/m', where p is the fraction of the population who had at least one
admission. Ifp is small (which is usually the case), then an approxima-
tion to MAF can be obtained by setting p equal to 0 in this formula.
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This approximation will lead to somewhat conservative hypothesis
tests.

FURTHER RESEARCH

We conclude with some issues that need to be resolved by further work
in this area:

1. The use of XMAF for testing Ho is appropriate when all the
counties are large. Is there a rule of thumb that works well in
practice for deciding how small is too small? Under what
circumstances do the likelihood-based, or the simulation-based
approaches work best? Simulation studies can address these
issues.

2. What values for the variance multiplier MAF are reasonable
for procedures or admission types of interest? This can be
addressed by analyzing individual-level data, where available.
We plan to perform such an analysis on data from Washington
State.

3. Any estimate of MAF will have some error associated with it.
How does one incorporate this uncertainty into inference
about the null hypothesis? This requires some more theoretical
work.

4. What implications do multiple admissions hold for
longitudinal data analysis? In particular, if a certain county
has a consistently high admission rate over several years, can
this be due to a few very sick individuals? Individual-level data
over several years are needed to address these issues.

APPENDIX A

Probability Density Functions Mentioned in the Text

Bernoulli distribution with p =m:

Jtyij) = m.Yii(l - mj)(-YYi), foryij = 0, 1

Binomial distribution with N = n, p = mj:

j)) = ( m/mj(]I--mj)(ni -'), for Yj = ,1, ...nj
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Poisson distribution with mean mj:
e--Mj M-Yi

AYij)= , foryij = 0, 1,
yij.

Binomial-Poisson distribution of Yj for a county of population nj where
each person has probability pj of having the disease, and bj is the
expected number of admissions for people who have the disease (note:
mj = pb)

nj
AYj) = b Yi / Yjt O e-bjtYyi(# i)pt(1-Pj)N, for Yj = 0, 1, . . .

Gamma distribution with mean mj and shape parameter kj:

(kj j/mkj k

g(mij) = (kj)/ ij- kyJ / mj

Negative binomial distribution with mean mj and shape parameter kj:
_ F(kj+yi) Ik, \ Mi
I(ibj! |mj k+ ) kj

foryi = 0, 1,

APPENDIX B:

Proof That a Mixture of Bernoulli Distributions is Still a
Bernoulli Distribution

Suppose that the probability of admission for individual i in countyj,
mij, is a randon variable with density g(mij). Define mj to be E(mi1).
Conditional on mij, yij has a Bernoulli distribution with density

h(yI mij) = miAi (I-m.j)('#
The marginal distribution ofyij is

00

f(yi1) = MijnY#((1-Mi1)('-Yi)g(Mij) dmij.
0
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Ifyij = 1, this is equal to

00

Al) = | mij g(mij) dm
0

= E(mi1) = mj.
Ifyij = 0, this is equal to

00

AO) = I (l-mij) g(mij) dmij
0

= I - E(mi) = 1 - mj.
Thus, in the absence of knowledge of mij, yij has a Bernoulli distribu-
tion with probability of admission mj, regardless of what distribution
g(Mij) is.

APPENDIX C

Testing Ho Using ANOVA

Suppose for a moment that yij is known for every individual. Then Ho
can be tested using a one-way analysis of variance (ANOVA) where
county is the factor. Even though theyij s are not normally distributed,
the F-test from the ANOVA will provide a valid test of Ho as long as all
of the Yj s are approximately normally distributed. By the central limit
theorem, the distribution of Yj will approach a normal distribution as n
goes to infinity. The F-test statistic is calculated as

F = MSC/MSE (C 1)

Where MSC stands for mean square due to counties and MSE stands
for mean square due to error. MSC is defined as

i
MSC= s nj(mj_- m)2(-1 (C2)

where A = Yj/nj is the admission rate in countyj. MSE is defined as

J nj
MSE - 1 (1 ( j )2/(N-J) (C3)1=1 =
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I
where N = n and is the total population size.

j = 1

MSE is an estimate of the within-county variance ofyi,3. The F-statistic
calculated from Equation Cl can be compared to an F-distribution
withJ- 1 and N-J degrees of freedom.

Now suppose that individual level data are not available so that it
is not possible to use Equation C3 to calculate MSE. Suppose, however,
we do know what MAF is. Then we can use MAF m' as an estimate of
within-county variance.

Substituting this into the denominator of Equation Cl gives

i
F = MSCAIAF m = .nj (MQj m)2/(J- 1) MAF m

j= 1

= s (n I -n )2/ym(J- 1) MAF
j=1

- 1 (Yj -nA)2/n (J- 1) MAF
j = 1

= Xp2/MAF (J - 1),

where X,2 is as defined in Equation 6.

From the properties of the chi-square and F distributions, we
know that if Xp2/MAF has a chi-square distribution with] - 1 degrees
of freedom, then Xp2/MAF (J - 1) has an F distribution with (J - 1)
and infinity degrees of freedom. IfN - J is large enough to be consid-
ered infinity, (i.e., more than 100), then the F-test using MAF m in
place of MSE is virtually identical to the chi-square test adjusted for
MAF.

Statistical analysis programs that allow specification of case-
weights (e.g., SPSS, STATA) can be used to calculate MSC. This is
done by specifying Mr as the outcome variable and nj as the caseweight
so that the analysis is done as if there were nj observations with identical
outcome. The extension to a stratified analysis is simple in this context
also -one merely uses a two-way ANOVA with stratum and coulity as
factors (with no interaction term). The MSE estimated from such a
model is meaningless and, as before, one uses MAF m for MSE.
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