
Page 1 of 8

Additional file 1
Note N1: Methods for the Simulation Experiments

The simulation experiments were carried out with the help of a new tool developed

specifically for it. It generates a single seed haplotype, which then serves to construct

a variation graph, on which random walks from source to sink are made to generate

new haplotypes. The seed haplotype is initially a sequence of unique markers. A rate

of duplications determines the number of duplications to add. For each duplication,

the marker to duplicate and the position of insertion are sampled at random. The

orientation of the duplicates is sampled according to a ratio of inversions. Next, the

seed’s variation graph is built based on its sequence, represented as a walk through

the graph. Finally, a given number of unique haplotypes is generated by performing

random walks from source to sink in the graph. Essentially, the simulator starts

from seed sequence, then generates an observable set of haplotypes and their graph.

Because the walks are random, edges not covered by any of the new haplotypes

must be pruned in order to respect the properties of a variation graph. The number

of markers and haplotypes, and the ratios of duplication and inversion are the

simulation parameters. The ratio of duplications (resp. of inversions) is defined as

the ratio of the number of duplications to the number of nodes (resp. number of

inversions to the number of duplications). All simulation experiments were carried

out by running 50 simulations per parameter set, then applying the solutions of

Problems 1 and 3 over the generated graph and haplotype set. The simulation

experiments are implemented as Snakemake [1] workflows which also provide the

benchmarking results then used for evaluation. The data and workflows for the

1p36.13 locus, as well as all simulation experiments are available in the github

repository [2] under the examples directory.

Note N2: Optimal greedy recombination counting using
generalized suffix arrays

Here we provide a solution to Problem 2 using a more space-efficient data structure,

the generalized suffix array. The problem statement remains identical, that is, given

a set of terminal sequences T and a query sequence Q, find a minimal T -block

segmentation of Q. Let pos be the generalized suffix array of all terminal sequences
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T . pos is then the array of indices of all suffixes of the string S = T ∪T ∪$, sorted in

the same lexicographic ordering. In order to achieve the same results as with suffix

trees and in linear time, one may compute a longest common prefix (lcp) array [3],

such that for any suffix at index i, lcp[i] is the maximal value x verifying S[pos[i−

1]..pos[i−1]+x] = S[pos[i]..pos[i]+x], with i ∈ 2..|pos| and lcp[1] = 0. lcp can then

be used to simulate efficiently a top down traversal of the suffix tree corresponding to

pos [4], in linear time and with significantly less space. This relies on child-intervals,

defined as ranges of suffixes pos[a..b] sharing a longest common prefix of size lcp[b],

and in effect child nodes in the would-be suffix tree of S which share the same

branching up to lcp[b] characters starting from the root, itself represented by the

interval [1..|pos|]. The solution is implemented by extending the prefix of a current

T -block Q[i..j] with i ∈ {1..|Q|−1}, j ∈ {i..|Q|−1}, to match that of nested child-

intervals [c..d] ⊆ [a..b], with [a..b] ⊆ [1..|pos|], until either j+1 = |Q| and Q[j+1] is a

terminal marker, or Q[i..j+1] 6= S[pos[d]..pos[d]+lcp[d]]. In the latter case, position

j is marked as a recombination, and pattern matching resets at the root against

Q[j..]. If there is no child-interval [a..b] ⊆ [1..|pos|] such that Q[j] = S[pos[a]],

then the solution is infeasible and Q cannot be generated by T . Child-intervals

[c..d] ⊆ [a..b] can be computed by performing range minimum queries (RMQs) in

lcp[a+1..b]. Observe that the minima m in such a range delimit the right boundary

d of all child-intervals with a longest common prefix S[pos[d]..pos[d]+lcp[d]], where

lcp[d] > lcp[d+ 1] > lcp[b] and lcp[d+ 1] = m (unless d = b).

Listing 1 summarizes the entire procedure in its simplest form. Listing 2 para-

phrases the description in [4] of the supporting GetChild function, which returns

the child-interval matching the current character Q[i], with an additional condition

to avoid an out-of-bounds access.

Implementation. Simultaneous construction of the generalized suffix array pos and

lcp can efficiently be implemented in O(|S|) time using generalizations of induced

sorting-based methods[5, 6] suited for constant size alphabets and with a workspace

in the order of |M ∪ M|log|S| bits [7]. RMQs can be performed in constant time

after appropriate preprocessing in O(|S|) time and workspace [8]. In this algorithm’s

most naive form, while the size of the alphabet remains constant, GetChild finds

child-intervals in O(|S|) time. This can be reduced to O(log|S|) simply by using
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Algorithm 1 Suffix array-based recombination counting
1: procedure CountRecSA(Q, S, pos, lcp)
2: [l..k]← [1..|lcp|], i← 1, r ← 0, z ← 0

3: while i ≤ |Q| do
4: [a..b]← GetChild(S,Q[i], pos, lcp, l, k) . find matching child-interval
5: if [a..b] 6= ∅ then
6: if b− a = 1 then . match is a leaf node
7: n← |Q| − z . must match remainder of Q
8: else
9: x← RMQ(lcp[a+ 1..b]) . common prefix length

10: n← min(lcp[x], |Q| − z) . do not overshoot Q (shouldn’t happen)
11: end if
12: j ← i+ n

13: [l..k] = [a..b] . update current interval
14: while i < j do . match n characters from Q[i]

15: if Q[i] 6= S[pos[l] + i− z] then
16: break
17: end if
18: i← i+ 1

19: end while
20: end if
21: if [a..b] = ∅ or i 6= j then . no matching child-interval or mismatch above
22: if [l..k] = [1..|lcp|] then . no further match is possible
23: return ∞
24: end if
25: r ← r + 1 . increase recombinations counter
26: [l..k]← [1..|lcp|] . reset to top
27: i← i− 1 . find interval with last matching character first
28: z ← i . save matched characters offset
29: end if
30: end while
31: return r

32: end procedure

binary searches with the already sorted pos array. In the extreme case, there can be

up to O(|Q|) recombinations, requiring O(|Q|) child queries against the entire lcp

array. With binary search, the over all time complexity for the counting algorithm

is O(2|S|+ |Q|log|S|) = O(|S|+ |Q|log|S|). Complexity can be improved to O(|S|+

|Q|) even without resorting to more efficient data structures such as FM-indices

by implementing child and suffix link tables as in [3] or by other simple tricks,

such as keeping track of visited sub-intervals in an auxiliary trie built on-line while

traversing, to enable fast re-evaluation without much additional space.
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Algorithm 2 Fischer and Heun’s matching child range query
1: procedure GetChild(S, c, pos, lcp, l, r)
2: p← r

3: r ← RMQ(lcp[l + 1..p]) . right bound of first child
4: m← lcp[r] . minimum across entire interval
5: repeat
6: if S[pos[l] +m] = c then
7: return [l..r − 1] . found matching child-interval
8: end if
9: l← r . move to next child-interval

10: if l = p then
11: break
12: end if
13: r ← RMQ(lcp[l + 1..p])

14: until lcp[r] > m . query until past last minimum
15: if S[pos[l] +m] = c then . last interval matches
16: return [l..p]

17: end if
18: return ∅ . queried range cannot contain c

19: end procedure
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Figures
In the following figures, for each of the simulation experiments, performance is

measured with regards to a range of values of a single parameter. All others are

fixed to a constant value indicated above the given plot. They are labeled as follows:

Nm, number of markers; Nh, number of haplotypes; Rd, ratio of duplications; and Ri,

ratio of inverted duplications. Runtime is measured in seconds of wall clock time,

and peak memory usage as the peak PSS in MB.
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Figure S1 Reduction in the number of recombinations following minimization.
The plots show the total number of recombinations before (blue dots) and after (red dots)
minimization, as a function of each simulation parameter.
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Figure S2 Number of recombinations minimization benchmarks.
Runtime (upper panels) and peak PSS (lower panels) as a function of the number of haplotypes
(left) and the ratio of inverted duplications (right).
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Figure S3 Flow computation performance with a variable ratio of inversions.
Runtime (left) and memory usage (right) as a function of this parameter.
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Figure S4 Visualization of a solution to the minimization problem on the 1p36.13 locus.
The gray bars correspond to the graph’s nodes, labeled 1 to 8. The founder sequence
(>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2 <4>5>6<5>4<5<4<3 <2>7<3>6>7<3<4<3<2>6<4>3>2>7>8)
is traced from top to bottom. A slanted line indicates the underlying node being traversed; if
slanted rightwards, traversal is in forward direction, and if slanted leftwards, traversal is in reverse
direction. Colors correspond to different haplotypes. The haplotype sequence is:
EUR-HG00171-h2, AFR-NA19036-h1, SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1,
AFR-NA19036-h1, AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-h2.
Recombinations are marked with a star.
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Table T1 Sorted haplotype marker sequences used for analyzing the 1p36.13 locus.
Haplotype Oriented marker sequence
CHM13 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
AFR-HG02011-h1 >1>2>3>4>2>3>4<6<5<4<3<2<4<3<2>7>8
AFR-HG02011-h2 >1>2>3<7<6>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-HG02587-h2 >1>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2>7>8
AFR-HG03065-h1 >1>2>3>4>5<6>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03065-h2 >1>2>3>4>2>3<7>3>4>6<4<3<2<4<3>6<4<3<2>7>8
AFR-HG03371-h1 >1>2>3>4>2>3>4<6>3>4>5<6<4<3<2>6<4<3<2<4<3<2>7>8
AFR-HG03371-h2 >1>2>3>4>2>3<7>3>4>5>6<5<4<3<4<3<2>7>8
AFR-NA19036-h1 >1>2>3<4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AFR-NA19036-h2 >1>2>3<7>3>4>5>6<4<3<2<4<3>6<4<3<2>7>8
AFR-NA19238-h1 >1>2>3>4>2>3>4<6<4<3<2>6<5<4<3<2<4<3<2>7>8
AFR-NA19238-h2 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19239-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19239-h2 >1>2>3>4>2>3>4>2>3<7<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h1 >1>2>3>4>5<6>2>3>4>5<6<5<4<3<2<4<3<2>7>8
AFR-NA19240-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AFR-NA19983-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2>7>8
AFR-NA19983-h2 >1>2>3>4>2>3>4<6>2>3>4>5<6>2>3>4>6<5<4<3<2<4<3<2>7>8
AMR-GM19650-h1 >1>2>3>4>5<6<5<4<3<2<4<3<2>7<3<2<4<3<2>7>8
AMR-GM19650-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7<3<2<4<3<2>7>8
AMR-HG00731-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00731-h2 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
AMR-HG00732-h1 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG00732-h2 >1>2>3>4>2>3>4>2>3>4>5>6<5<4<3<2<4<3<2>7>8
AMR-HG00733-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
AMR-HG00733-h2 >1>2>3>4>5>6<4<3<2>6<5<4<3<2>7>8
AMR-HG01114-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
AMR-HG01114-h2 >1>2>3>4>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
AMR-HG01573-h1 >1>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
AMR-HG01573-h2 >1>2>3<7>2>3>4>5<4<3<2<5<4<3<2>7>8
EAS-GM00864-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM00864-h2 >1>2>3>4>2>3>4>5>6<5<5<5<4<3<2>7>8
EAS-GM18939-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-GM18939-h2 >1>2>3<7>2>3>4>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00512-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00513-h1 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00513-h2 >1>2>3<7>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG00514-h1 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
EAS-HG00514-h2 >1>2>3<7>2>3>4>5>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG01596-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>7>8
EAS-HG01596-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-HG02018-h2 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EAS-NA18534-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>6<5<4<3<2>7>8
EUR-GM12329-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM12329-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
EUR-GM20509-h1 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-GM20509-h2 >1>2>3<7<6>2>3>4>5>6<5<4<3<2>6>7<3<2<4<3<2>7>8
EUR-HG00096-h1 >1>2>3<7>2>3>4>5<6<5<4<3<2>6<4<3<2>7>8
EUR-HG00096-h2 >1>2>3>4>5>2>3>4<6<5<4<3<2>7>8
EUR-HG00171-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG00171-h2 >1>2>3<7>5>2>3>4>5>2>3>4>6<5<4<3<2>7>8
EUR-HG01505-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
EUR-HG01505-h2 >1>2>3>4>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
EUR-NA12878-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
EUR-NA12878-h2 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h1 >1>2>3>4>5<6<5<4<3<2>6<5<4<3<2>6<5<4<3<2>7>8
SAS-GM20847-h2 >1>2>3>4>2>3>4>5>6<5<5<4<3<2>6<4<3<2>7>8
SAS-HG02492-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG02492-h2 >1>2>3>4>2>3>4>2>3>4>5>6<4<3<2>6<5<4<3<2<4<3<2>7>8
SAS-HG03009-h1 >1>2>3<7>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8
SAS-HG03009-h2 >1>2>3>4>5>2>3>4>5<6<5<4<3<2>7>8
SAS-HG03683-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03683-h2 >1>2>3>4>5<6>2>3>4>5>6<5<4<3<2>6<4>3>2>7>8
SAS-HG03732-h1 >1>2>3>4>2>3>4>5>6<5<4<3<2>7>8
SAS-HG03732-h2 >1>2>3>4>5>6<5<4<3<2>6<4<3<2>7>8

The sequences are listed in alphabetical order and in GFA Path format, where > corresponds to
traversal in forward direction, and < in reverse direction. The haplotype labeled CHM13 is the

provided reference.


